数据的统计描述和分析.doc

合集下载

数据的统计与分析方法

数据的统计与分析方法

数据的统计与分析方法数据的统计与分析方法是指在收集和整理大量数据的基础上,运用合适的统计和分析技术,从中提取有用的信息和规律。

在各行各业中,数据的统计与分析方法被广泛应用,帮助人们做出科学的决策和预测,推动社会和经济的发展。

本文将介绍几种常见的数据统计与分析方法,包括描述统计、概率统计和回归分析。

一、描述统计描述统计是对数据进行整理和概括的方法,可以帮助人们更好地理解数据的特征。

主要包括以下几种常用技术:1. 中心位置度量:包括算术平均数、中位数和众数。

算术平均数是将所有数据相加后再除以数据的个数,能够反映数据的总体水平;中位数是将数据按大小排序后,位于中间位置的数,能够反映数据的中间水平;众数是数据中出现次数最多的数,能够反映数据的典型特征。

2. 变异程度度量:包括极差、方差和标准差。

极差是最大值与最小值之间的差异,能够反映数据的离散程度;方差是各数据与平均数之差的平方的平均数,能够反映数据的波动程度;标准差是方差的平方根,能够反映数据的分散程度。

3. 分布形态度量:包括偏度和峰度。

偏度是数据分布的不对称程度,可以通过计算三阶中心矩来度量;峰度是数据分布的陡峭程度,可以通过计算四阶中心矩来度量。

二、概率统计概率统计是以概率论为基础,通过对数据的概率分布进行分析和推断,得出数据的统计规律。

主要包括以下几种方法:1. 概率分布:常见的概率分布包括正态分布、泊松分布和指数分布,可根据数据的特征选择合适的概率分布模型,并利用统计方法进行参数估计。

2. 假设检验:假设检验是用于判断数据是否遵循某种假设的方法。

根据已有数据的样本统计量,与所设定的假设进行比较,通过计算得到的显著性水平,来决策是否拒绝或接受原假设。

3. 区间估计:区间估计是通过样本数据对总体的参数进行估计。

通过计算样本均值与标准差,结合概率分布的性质,得出参数在一定置信水平下的置信区间。

三、回归分析回归分析是用于研究变量之间相互关系的一种方法。

描述性统计分析报告

描述性统计分析报告

描述性统计分析报告引言:统计数据是现代社会中不可或缺的一部分,它为我们提供了了解各种现象和现实情况的重要工具。

在本篇文章中,我们将进行一项关于某地区居民收入的描述性统计分析,通过对数据的分析和解释,将展示出居民收入的整体状况以及在不同人口群体之间的差异。

数据来源和样本:本次统计分析所用的数据来自于某地区政府统计部门的年度统计报告,并且涵盖了该地区所有居民的收入情况。

样本总数为1000,通过随机抽样方式选取了不同年龄、教育水平、职业和家庭收入水平的居民。

总体数据分析:1. 平均收入:通过对数据进行计算,我们得出该地区居民的平均收入为12000元。

2. 中位数:进行中位数的计算后,我们发现该地区居民的中位数收入为10000元。

3. 众数:进行众数的计算后,我们发现该地区居民的众数收入为8000元。

居民收入差异分析:1. 年龄差异:我们将居民按照年龄分组,并计算每个年龄组的平均收入。

结果显示,年龄在25岁到34岁之间的居民平均收入最高,为15000元,而年龄在55岁以上的居民平均收入最低,为8000元。

2. 教育水平差异:根据居民的教育水平进行分组,并计算每个组的平均收入。

结果显示,高中及以下文凭的居民平均收入最低,为8000元,而拥有本科及以上学历的居民平均收入最高,为15000元。

3. 职业差异:我们将居民按照职业进行分组,并计算每个职业的平均收入。

结果显示,专业人士和经理人员的平均收入最高,为20000元,而服务和销售行业的居民平均收入最低,为8000元。

4. 家庭收入差异:我们将居民按照家庭收入水平进行分组,并计算每个组的平均收入。

结果显示,家庭收入水平较高的居民平均收入较高,为16000元,而家庭收入水平较低的居民平均收入较低,为10000元。

结论:通过对该地区居民收入数据的描述性统计分析,我们可以得出以下结论:该地区居民的平均收入为12000元,中位数为10000元,众数为8000元。

同时,在不同人口群体之间存在明显的收入差异,包括年龄、教育水平、职业和家庭收入水平等方面。

报告中的描述性统计和变量分析

报告中的描述性统计和变量分析

报告中的描述性统计和变量分析引言:描述性统计和变量分析是数据分析的重要组成部分,它们提供了对数据集的整体情况和特征进行解释和描述的方法。

本文将介绍描述性统计和变量分析的基本概念和方法,并通过具体的示例说明其应用场景和实际价值。

第一部分:描述性统计的基本方法1.1 平均值和中位数的比较与解释平均值和中位数是描述数据集中心趋势的重要统计量。

通过比较平均值和中位数的差异,我们可以了解数据集中是否存在极端值或者数据偏离的情况,并进一步分析其原因和影响。

1.2 方差和标准差的计算与解释方差和标准差是描述数据集离散程度的统计量。

它们可以帮助我们判断数据的散布情况和数据的可靠性。

较大的方差和标准差意味着数据的波动较大,反之则表示数据的波动较小。

1.3 频率分布表的绘制与分析频率分布表是将数据按照不同取值范围进行分类并计算各个类别的频数和频率的方法。

通过绘制频率分布表,我们可以直观地了解数据分布情况,并分析数据的集中度和分散度。

第二部分:变量分析的基本方法2.1 相关分析的概念与应用相关分析用于衡量两个变量之间的关系程度,常用的方法包括皮尔逊相关系数和斯皮尔曼相关系数。

通过相关分析,我们可以了解不同变量之间是否存在显著相关性,并进一步解释其背后的原因和机制。

2.2 回归分析的基本原理与应用回归分析用于探究一个或多个自变量与一个因变量之间的关系,常用的方法包括简单线性回归和多元线性回归。

通过回归分析,我们可以预测因变量在给定自变量条件下的取值,并评估自变量对因变量的影响程度。

2.3 t检验与方差分析的原理与应用t检验和方差分析用于比较两个或多个样本之间的差异,以评估变量在不同组别或处理条件下的显著性差异。

通过t检验和方差分析,我们可以判断样本之间是否存在显著差异,并进一步分析差异的原因和影响。

结论:描述性统计和变量分析是数据分析中不可或缺的工具,它们提供了对数据集的全面理解和深入解释的方法。

在报告中进行描述性统计和变量分析,可以帮助读者快速了解数据的整体特征和变量之间的关系,提高报告的可读性和可信度。

数据的统计和分析掌握如何统计和分析数据

数据的统计和分析掌握如何统计和分析数据

数据的统计和分析掌握如何统计和分析数据在当今大数据时代,数据的统计和分析已经成为各行各业不可或缺的技能。

无论是科研、市场营销还是企业管理,准确地掌握和解读数据都是取得成功的关键。

本文将介绍数据的统计和分析的基本概念,以及一些常用的方法和工具,帮助读者学会如何进行数据的统计和分析。

一、数据统计的基本概念数据统计是指对收集到的数据进行整理、分类和总结的过程。

在数据统计中,通常会对数据进行描述性统计和推断性统计两种分析。

1. 描述性统计描述性统计是对数据的基本情况进行概括和总结,包括数据的中心趋势、离散程度和分布形态等。

常用的描述性统计指标包括均值、中位数、众数、标准差、极差等。

通过描述性统计可以初步了解数据的基本特征。

2. 推断性统计推断性统计是利用已有的样本数据对总体数据进行推断和预测。

通过推断性统计可以从一个样本的观察结果中得出总体的一般性质。

常见的推断性统计方法包括假设检验、置信区间估计和回归分析等。

二、数据分析的基本步骤数据分析是在数据统计的基础上,通过运用科学的方法和工具来揭示数据背后的规律和趋势。

以下是数据分析的基本步骤:1. 确定分析目标:首先要明确自己的分析目标,了解自己想要通过数据分析得出什么结论或者解决什么问题。

2. 数据收集与清洗:收集与分析目标相关的数据,并对数据进行清洗,剔除异常值和缺失值,确保数据的完整和准确性。

3. 数据探索:对数据进行探索性分析,包括绘制图表、计算统计指标、寻找变量间的关联等,以揭示数据的基本特征。

4. 建立模型:根据分析目标和数据特点,选择合适的模型或方法,建立数据分析模型。

5. 模型评估与优化:对建立的模型进行评估和优化,确保模型的精确性和有效性。

6. 结果呈现:最后将分析结果以清晰、易懂的方式呈现出来,以便对结果进行解读和应用。

三、常用的数据统计和分析方法1. 直方图:用来描述数据的频数分布情况,横轴表示不同的取值范围,纵轴表示频数或频率。

2. 散点图:用来描述两个变量之间的关联关系,横轴和纵轴分别表示两个变量的取值。

1统计学-数据的描述性分析

1统计学-数据的描述性分析

③ 对某些不具有数学特点或不能用数字测定的 现象,可用中位数求其一般水平。
负偏 注: (1)中位数总是介于众数和平均数之间.
正偏
(2) 皮尔逊经验法则 分布在轻微偏斜的情况下,众数、中位数和算术平均 数数量关系的经验公式为:
x M o 3( x M e )
根据卡尔· 皮尔逊经验公式,还可以推算出:

(1).各变量值与均值的离差之和等于零.
x
n i =1
n i
i
x =0

(2).各变量值与均值的离差平方和最小.
x
i =1
x = min

2
△ 算术平均数的特点
算术平均数适合用代数方法运算,因此运用 比较广泛; 易受极端变量值的影响,使 X 的代表性变小; 受极大值的影响大于受极小值的影响; 当组距数列为开口组时,由于组中值不易确 定,使 X 的代表性也不很可靠;同时要求各单位 标志值在组内是均匀分布的,此时各组的平均数正好 等于它的组中值。故用组中值计算得出来的平均数只 能是一个近似值。
总体均值常用X 或 表示,样本均值常用 x 表示,样本均值 的计算公式: 简单算术平均数:
x1 x2 xn x n n
x
x
i 1
n
i
加权算术平均数:
x
i 1 n
n
i
fi
i
f
权数的意义和作用
• 权数:各组次数(频数)的大小所对应的标志值对平均数 的影响具有权衡轻重的作用. • 当各组的次数都相同时,即当 f1 =f 2 =f3 = =f n 时: 加权算术平均数就等于简单算术平均数.
2.中位数(Median)
中位数是一组数据按一定顺序排列后,处于中间位置 上的变量

数据的统计和分析

数据的统计和分析

数据的统计和分析数据在现代社会中扮演着举足轻重的角色。

它们不仅反映了现实世界的情况,还为决策和策划提供了有力的依据。

在这篇文章中,我们将探讨数据的统计和分析方法,以及如何利用这些方法获取有关特定问题的见解。

一、数据采集与整理数据的统计和分析首先需要获得相关的数据。

数据采集可以通过不同途径进行,例如实地调研、问卷调查、实验观测等。

采集到的数据可能是定量数据(如身高、体重等可以用数值表示的数据)或定性数据(如喜好、态度等难以用数值表示的数据)。

完成数据采集后,我们需要对数据进行整理和清洗,确保数据的准确性和一致性。

二、描述性统计描述性统计是对数据进行基本的整理和分析,以了解数据的基本性质。

它通常涉及到以下几个方面:1.中心趋势的度量:通过计算众数、中位数和平均数等指标,可以了解数据的集中程度和典型值。

例如,在收集到一组学生成绩后,可以计算平均成绩,以了解整体的学业水平。

2.离散程度的度量:通过计算极差、方差和标准差等指标,可以衡量数据的分散程度。

离散程度越大,代表数据的分布越分散。

例如,在分析销售额的数据时,可以计算标准差来评估销售额的波动性。

3.数据分布的图形展示:利用直方图、箱线图等图形工具,可以直观地展示数据的分布情况。

图形展示有助于我们更好地理解数据的模式和特征。

三、推断统计推断统计是在对样本数据进行分析的基础上,对总体特征作出估计和推断。

它可以通过统计假设检验和置信区间等方法来帮助我们得出结论。

1.统计假设检验:通过对样本数据进行分析,然后与一个特定的假设相比较,来判断该假设是否成立。

这个假设可以是“两组样本的平均值是否相等”或“观察到的数据模型是否符合某种理论模型”等问题。

统计假设检验能够帮助我们进行科学的推断和判断。

2.置信区间估计:在样本数据的基础上,利用统计方法计算出一个置信区间,以表明对总体特征的估计范围。

例如,在抽样调查中,我们可以利用置信区间估计来推断某个总体特征的范围。

四、因果关系的建立数据的统计和分析也可以帮助我们建立因果关系的模型。

统计学教案统计数据的描述与分析

统计学教案统计数据的描述与分析

统计学教案统计数据的描述与分析主题:统计学教案——统计数据的描述与分析引言:统计学是一门研究如何收集、分析和解释数据的学科。

在现代社会中,统计学在各个领域都起着重要作用,帮助我们了解和解释各种现象。

本教案将介绍统计学中数据的描述和分析方法,以及如何运用这些方法进行实际问题的解决。

一、数据的描述在统计学中,我们经常需要描述数据的特征,以便更好地理解和分析数据。

以下是几种常用的描述统计量:1. 平均数:平均数是数据的总和除以观测次数的结果。

它是最直观也是最常用的描述统计量。

2. 中位数:中位数是将数据按照大小顺序排列后,位于中间位置的数值。

3. 众数:众数是数据中出现次数最多的数值。

4. 极差:极差是数据最大值与最小值之间的差异。

5. 方差:方差表示数据的离散程度,是各个观测值与平均数之差的平方的平均值。

6. 标准差:标准差是方差的平方根,用于度量数据分布的广度。

二、数据的分析数据分析是统计学的核心内容,通过分析数据可以得出结论和推断。

以下是几种常用的数据分析方法:1. 频率分析:频率分析是按照某个变量的取值进行分类,然后统计每个分类的频数。

2. 相关分析:相关分析用于判断两个变量之间的关系和相关性。

常用的相关分析方法有皮尔逊相关系数和斯皮尔曼相关系数。

3. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向。

4. 置信区间:置信区间是用来估计未知参数真值区间的统计量。

通过计算得出的置信区间可以帮助我们对未知参数进行推断。

小结:统计学作为一门重要的学科,提供了丰富的工具和方法来描述和分析数据。

数据的描述能够帮助我们理解数据的特征,数据的分析则能够帮助我们得出结论和推断。

通过学习统计学,我们可以更好地应用这些知识解决实际问题,提高数据分析的准确性和效率。

参考文献:1. 劳伦斯·S.沃尔斯(2013),《统计学导论》。

2. 陈忠进,王洪敏(2017),《应用统计学》。

注:本教案属于纯粹的学术内容,与任何政治、色情等不相关。

数据的统计与分析

数据的统计与分析

数据的统计与分析数据的统计与分析是研究数据收集、整理、描述和解释的一种方法。

它包括数据的收集、数据的整理、数据的描述和数据的分析四个步骤。

一、数据的收集数据的收集是研究的第一步,可以通过调查、观察、实验等方式进行。

收集数据时要注意数据的真实性、准确性和可靠性。

二、数据的整理数据的整理是将收集到的数据进行归类、排序和处理的过程。

常用的整理方法有表格法、图形法和统计量表示法。

三、数据的描述数据的描述是通过图表、统计量等手段对数据的分布、趋势、规律等进行展示。

常用的描述方法有条形图、折线图、饼图、散点图等。

四、数据的分析数据的分析是对数据进行解释和推理的过程,目的是发现数据背后的规律和趋势。

常用的分析方法有频数分析、百分比分析、平均数、中位数、众数等统计量的计算和比较等。

五、概率与统计概率是研究事件发生可能性的一种数学方法。

常用的概率计算方法有古典概型、几何概型和条件概率等。

统计是研究数据收集、整理、描述和解释的一种方法,它包括数据的收集、数据的整理、数据的描述和数据的分析四个步骤。

六、统计图表统计图表是数据整理和描述的重要工具。

常用的统计图表有条形图、折线图、饼图、散点图等。

七、数据的处理数据的处理是对数据进行加工、转换和分析的过程。

常用的处理方法有数据的清洗、数据的转换、数据的插补等。

八、统计推断统计推断是通过样本数据对总体数据进行推断和预测的一种方法。

常用的统计推断方法有假设检验、置信区间等。

九、回归分析回归分析是研究变量之间相互关系的一种统计方法。

常用的回归分析方法有线性回归、多元回归等。

十、统计软件统计软件是进行数据统计和分析的重要工具。

常用的统计软件有SPSS、SAS、R等。

以上就是数据的统计与分析的相关知识点,希望对你有所帮助。

习题及方法:某学校进行了一次数学测试,共有100名学生参加。

以下是部分学生的成绩:80, 85, 90, 88, 87, 92, 84, 86, 91, 83求这组数据的众数、中位数和平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 数据的统计描述和分析数理统计研究的对象是受随机因素影响的数据,以下数理统计就简称统计,统计是以概率论为基础的一门应用学科。

数据样本少则几个,多则成千上万,人们希望能用少数几个包含其最多相关信息的数值来体现数据样本总体的规律。

描述性统计就是搜集、整理、加工和分析统计数据,使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。

它是统计推断的基础,实用性较强,在统计工作中经常使用。

面对一批数据如何进行描述与分析,需要掌握参数估计和假设检验这两个数理统计的最基本方法。

我们将用Matlab 的统计工具箱(Statistics Toolbox)来实现数据的统计描述和分析。

§1 统计的基本概念1.1 总体和样本总体是人们研究对象的全体,又称母体,如工厂一天生产的全部产品(按合格品及废品分类),学校全体学生的身高。

总体中的每一个基本单位称为个体,个体的特征用一个变量(如x )来表示,如一件产品是合格品记0=x ,是废品记1=x ;一个身高170(cm )的学生记170=x 。

从总体中随机产生的若干个个体的集合称为样本,或子样,如n 件产品,100名学生的身高,或者一根轴直径的10次测量。

实际上这就是从总体中随机取得的一批数据,不妨记作n x x x ,,,21Λ,n 称为样本容量。

简单地说,统计的任务是由样本推断总体。

1.2 频数表和直方图一组数据(样本)往往是杂乱无章的,作出它的频数表和直方图,可以看作是对这组数据的一个初步整理和直观描述。

将数据的取值范围划分为若干个区间,然后统计这组数据在每个区间中出现的次数,称为频数,由此得到一个频数表。

以数据的取值为横坐标,频数为纵坐标,画出一个阶梯形的图,称为直方图,或频数分布图。

若样本容量不大,能够手工作出频数表和直方图,当样本容量较大时则可以借助Matlab 这样的软件了。

让我们以下面的例子为例,介绍频数表和直方图的作法。

例1 学生的身高和体重(i)数据输入数据输入通常有两种方法,一种是在交互环境中直接输入,如果在统计中数据量比较大,这样作不太方便;另一种办法是先把数据写入一个纯文本数据文件data.txt中,格式如例1的表格,有20行、10列,数据列之间用空格键或Tab键分割,该数据文件data.txt存放在matlab\work子目录下,在Matlab中用load命令读入数据,具体作法是:load data.txt20 个数据的矩阵。

这样在内存中建立了一个变量data,它是一个包含有10为了得到我们需要的100个身高和体重各为一列的矩阵,应做如下的改变:high=data(:,1:2:9);high=high(:)weight=data(:,2:2:10);weight=weight(:)(ii)作频数表及直方图用hist命令实现,其用法是:[N,X] = hist(Y,M)数组(行、列均可)Y的频数表。

它将区间[min(Y),max(Y)]等分为M份(缺省时M设定为10),N返回M个小区间的频数,X返回M个小区间的中点。

hist(Y,M)数组Y的直方图。

对于例1的数据,编写程序如下:load data.txt;high=data(:,1:2:9);high=high(:);weight=data(:,2:2:10);weight=weight(:);[n1,x1]=hist(high)%下面语句与hist命令等价%n1=[length(find(high<158.1)),...% length(find(high>=158.1&high<161.2)),...% length(find(high>=161.2&high<164.5)),...% length(find(high>=164.5&high<167.6)),...% length(find(high>=167.6&high<170.7)),...% length(find(high>=170.7&high<173.8)),...% length(find(high>=173.8&high<176.9)),...% length(find(high>=176.9&high<180)),...% length(find(high>=180&high<183.1)),...% length(find(high>=183.1))][n2,x2]=hist(weight)subplot(1,2,1)hist(high)subplot(1,2,2)hist(weight)计算结果略,直方图如下图所示:什么规律。

要想从数值上给出更确切的描述,需要进一步研究反映数据特征的所谓“统计量”。

直方图所展示的身高的分布形状可看作正态分布,当然也可以用这组数据对分布作假设检验。

例2 统计下列五行字符串中字符a 、g 、c 、t 出现的频数1.aggcacggaaaaacgggaataacggaggaggacttggcacggcattacacggagg2.cggaggacaaacgggatggcggtattggaggtggcggactgttcgggga3.gggacggatacggattctggccacggacggaaaggaggacacggcggacataca4.atggataacggaaacaaaccagacaaacttcggtagaaatacagaagctta5.cggctggcggacaacggactggcggattccaaaaacggaggaggcggacggaggc解 把上述五行复制到一个纯文本数据文件shuju.txt 中,放在matlab\work 子目录下,编写如下程序:clcfid1=fopen('shuju.txt','r');i=1;while (~feof(fid1))data=fgetl(fid1);a=length(find(data==97));b=length(find(data==99));c=length(find(data==103));d=length(find(data==116));e=length(find(data>=97&data<=122));f(i,:)=[a b c d e a+b+c+d];i=i+1;endfhe=[sum(f(:,1)) sum(f(:,2)) sum(f(:,3)) sum(f(:,4))...sum(f(:,5)) sum(f(:,6))]fid2=fopen('pinshu.txt','w');fprintf(fid2,'%8d %8d %8d %8d %8d %8d\n',f');fclose(fid1);fclose(fid2);我们把统计结果最后写到一个纯文本文件pinshu.txt 中,在程序中多引进了几个变量,是为了检验字符串是否只包含a 、g 、c 、t 四个字符。

1.3 统计量假设有一个容量为n 的样本(即一组数据),记作),,,(21n x x x x Λ=,需要对它进行一定的加工,才能提出有用的信息,用作对总体(分布)参数的估计和检验。

统计量就是加工出来的、反映样本数量特征的函数,它不含任何未知量。

下面我们介绍几种常用的统计量。

(i )表示位置的统计量—算术平均值和中位数 算术平均值(简称均值)描述数据取值的平均位置,记作x ,∑==ni i x n x 11 (1) 中位数是将数据由小到大排序后位于中间位置的那个数值。

Matlab 中mean(x)返回x 的均值,median(x)返回中位数。

(ii )表示变异程度的统计量—标准差、方差和极差标准差s 定义为2112)(11⎥⎦⎤⎢⎣⎡--=∑=n i i x x n s (2) 它是各个数据与均值偏离程度的度量,这种偏离不妨称为变异。

方差是标准差的平方2s 。

极差是),,,(21n x x x x Λ=的最大值与最小值之差。

Matlab 中std(x)返回x 的标准差,var(x)返回方差,range(x)返回极差。

你可能注意到标准差s 的定义(2)中,对n 个)(x x i -的平方求和,却被)1(-n 除,这是出于无偏估计的要求。

若需要改为被n 除,Matlab 可用std(x,1)和var(x,1)来实现。

(iii )中心矩、表示分布形状的统计量—偏度和峰度随机变量x 的r 阶中心矩为rEx x E )(-。

随机变量x 的偏度和峰度指的是x 的标准化变量Dx Ex x /)(- 的三阶中心矩和四阶中心矩: ()[](),)()()()(2/3331x D x E x E x D x E x E -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=ν ()[]().)()()()(2442x D x E x E x D x E x E -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=ν 偏度反映分布的对称性,01>ν称为右偏态,此时数据位于均值右边的比位于左边的多;01<ν称为左偏态,情况相反;而1ν接近0则可认为分布是对称的。

峰度是分布形状的另一种度量,正态分布的峰度为3,若2ν比3大得多,表示分布有沉重的尾巴,说明样本中含有较多远离均值的数据,因而峰度可以用作衡量偏离正态分布的尺度之一。

Matlab 中moment(x,order)返回x 的order 阶中心矩,order 为中心矩的阶数。

skewness(x)返回x 的偏度,kurtosis(x)返回峰度。

在以上用Matlab 计算各个统计量的命令中,若x 为矩阵,则作用于x 的列,返回一个行向量。

对例1给出的学生身高和体重,用Matlab 计算这些统计量,程序如下:clcload data.txt;high=data(:,1:2:9);high=high(:);weight=data(:,2:2:10);weight=weight(:);shuju=[high weight];jun_zhi=mean([high weight])zhong_wei_shu=median(shuju)biao_zhun_cha=std(shuju)ji_cha=range(shuju)pian_du=skewness(shuju)feng_du=kurtosis(shuju)统计量中最重要、最常用的是均值和标准差,由于样本是随机变量,它们作为样本的函数自然也是随机变量,当用它们去推断总体时,有多大的可靠性就与统计量的概率分布有关,因此我们需要知道几个重要分布的简单性质。

相关文档
最新文档