最新初中数学三角函数经典考题知识讲解

合集下载

三角函数知识点及典型例题

三角函数知识点及典型例题

三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。

三角函数中考知识点总结

三角函数中考知识点总结

三角函数中考知识点总结一、基本概念1. 三角函数的定义:正弦函数、余弦函数、正切函数、余切函数等的定义和图像。

2. 周期性:三角函数的周期和图像的性质。

3. 奇偶性:三角函数的奇偶性质。

4. 三角函数的定义域和值域。

5. 三角函数的相关位置:在平面坐标系和单位圆中的位置。

二、三角恒等式1. 三角函数的互化公式。

2. 三角函数的和差化积公式。

3. 三角函数的倍角公式。

4. 三角函数的半角公式。

三、三角函数的性质1. 三角函数的增减性。

2. 三角函数的周期性。

3. 三角函数的奇偶性。

4. 三角函数的反函数。

四、三角函数的函数图像1. 正弦函数的图像和性质;2. 余弦函数的图像和性质;3. 正切函数的图像和性质;4. 余切函数的图像和性质;5. 正割函数和余割函数的图像。

五、三角函数的应用1. 在三角形中的应用;2. 在物理问题中的应用;3. 在数学分析中的应用;4. 在工程计算中的应用。

六、三角函数的求值1. 三角函数解析式的计算;2. 三角函数的运算;3. 三角函数的积分和微分。

七、三角函数的变换1. 三角函数的平移变换;2. 三角函数的伸缩变换;3. 三角函数的反转和反转。

八、三角函数的等价变形1. 三角函数的等价变形和化简;2. 三角函数的同角变形;3. 三角函数的双角变换。

九、常见的三角函数解法1. 三角函数的二次方程求解;2. 三角函数的绝对值求解;3. 三角函数的等差数列求和。

十、其它1. 三角函数的极限和级数;2. 三角函数的方程和不等式求解。

以上是三角函数中的一些重要知识点总结,希望对大家的学习有所帮助。

在复习备考时,建议大家要多做题、多总结、多练习,才能更好地掌握三角函数中的知识点。

同时,要善于归纳整理知识点,掌握三角函数的基本概念和相关规律,这样才能在考试中得心应手。

祝大家学习进步,考试顺利!。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。

下面我们来详细归纳一下三角函数的知识点和常见题型。

一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。

按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。

2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的制度叫做弧度制。

弧度与角度的换算公式为:180°=π 弧度。

3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。

4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。

二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。

例如:sin(π +α) =sinα,cos(π α) =cosα 等。

四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。

性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。

2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。

性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳一、三角函数的基本概念三角函数是数学中重要的函数类型,它们在几何、物理等领域有着广泛的应用。

首先,角的概念是基础。

我们把平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形叫做角。

角可以用弧度制或角度制来度量。

弧度制是用弧长与半径之比来度量角的大小,公式为:弧长\(l =r\theta\),其中\(r\)为半径,\(\theta\)为圆心角的弧度数。

接下来是三角函数的定义。

在平面直角坐标系中,设点\(P(x,y)\)是角\(\alpha\)终边上非原点的任意一点,\(r =\sqrt{x^2 +y^2}\),则有正弦函数\(\sin\alpha =\frac{y}{r}\),余弦函数\(\cos\alpha =\frac{x}{r}\),正切函数\(\tan\alpha =\frac{y}{x}(x \neq 0)\)。

二、三角函数的基本性质1、周期性正弦函数和余弦函数的周期都是\(2\pi\),正切函数的周期是\(\pi\)。

2、奇偶性正弦函数是奇函数,即\(\sin(\alpha) =\sin\alpha\);余弦函数是偶函数,即\(\cos(\alpha) =\cos\alpha\)。

3、单调性正弦函数在\(\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi(k \in Z)\)上单调递增,在\(\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi(k \in Z)\)上单调递减;余弦函数在\(2k\pi, \pi +2k\pi(k \in Z)\)上单调递减,在\(\pi + 2k\pi, 2\pi + 2k\pi(k \in Z)\)上单调递增;正切函数在\((\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)(k \in Z)\)上单调递增。

三角函数知识点梳理

三角函数知识点梳理

三角函数知识点梳理关键信息项:1、三角函数的定义正弦函数余弦函数正切函数余切函数正割函数余割函数2、三角函数的基本关系式平方关系商数关系倒数关系3、三角函数的诱导公式正弦诱导公式余弦诱导公式4、三角函数的图像和性质正弦函数图像和性质余弦函数图像和性质正切函数图像和性质5、三角函数的周期性周期的定义常见三角函数的周期6、三角函数的最值和值域正弦函数的最值和值域余弦函数的最值和值域正切函数的最值和值域7、三角函数的和差公式正弦和差公式余弦和差公式正切和差公式8、三角函数的倍角公式余弦倍角公式正切倍角公式9、三角函数的半角公式正弦半角公式余弦半角公式正切半角公式11 三角函数的定义111 正弦函数:在直角三角形中,锐角的正弦等于其对边与斜边的比值。

即 sinA = a/c,其中 A 为锐角,a 为 A 的对边,c 为斜边。

112 余弦函数:锐角的余弦等于其邻边与斜边的比值。

即 cosA =b/c,其中 b 为 A 的邻边。

113 正切函数:锐角的正切等于其对边与邻边的比值。

即 tanA =a/b。

114 余切函数:锐角的余切等于其邻边与对边的比值。

即 cotA =b/a。

115 正割函数:斜边与邻边的比值。

即 secA = c/b。

116 余割函数:斜边与对边的比值。

即 cscA = c/a。

12 三角函数的基本关系式121 平方关系:sin²A + cos²A = 1,1 + tan²A = sec²A,1 + cot²A = csc²A。

122 商数关系:tanA = sinA / cosA,cotA = cosA / sinA。

123 倒数关系:sinA × cscA = 1,cosA × secA = 1,tanA × cotA =1。

13 三角函数的诱导公式131 正弦诱导公式:sin(2kπ + A) = sinA,sin(π + A) = sinA,sin(A) = sinA 等。

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。

三角函数常考题型及解题方法

直线和圆的位置关系知识点补充知识点1:判断直线和圆的位置关系:(1)利用圆心到直线的距离等于半径。

(2)直线过一定点,此定点在圆内,则直线和圆相交。

知识点2 圆),(,00222y x r y x 经过圆上点=+的切线方程为200r yy xx =+;点),(00y x 为圆,)()(222r b y a x =-+-上一点,则过该点的切线方程为200))(())((r b y b y x x a x =--+--知识点 3 ;过圆外一点可作出圆的两条切线,求切线方程时,通常),(,00222y x r y x 经过点=+设切线的点斜式方程,若求出的k 只有一个,则说明还有一条切线必垂直于x 轴(无斜率),。

应补上。

三角函数的图象和性质知识点1 :只要求三角函数的周期,对称轴,对称中心,单调区间,值域,一般是将三角函数化为同角一次,在此使用辅助角公式。

)sin(ϕ+=wx A y ,使用对三角函数的整体思想去做。

知识点2 三角函数的两种图象平移:(1)先伸缩后平移;(2)先平移后伸缩知识点3 三角函数周期的求解方法(1)利用求解周期的定义(2)利用公式wT w T ππ==,2 (3)对于较为复杂的三角函数转化为)sin(ϕ+=wx A y +k 求解知识点4 确定三角函数的单调区间函数)sin(ϕ+=wx A y (A>0,w>0)的单调区间的确定:基本思路是讲ϕ+wx 看做一个整体,由函数名称对于的原单调区间求解对于的x 的范围若0<w ,方式(1)通过诱导公式将负号诱导,原函数的增区间变为减区间,减区间变为增区间。

(2)利用复合函数的单调性。

知识点5 已知函数图象上的点求解析式)sin(ϕ+=wx A y 的方法(1)绘出图象确定解析式)sin(ϕ+=wx A y 的题型,有时从寻找“五点法”的第一个零点()0,wϕ-作为突破口,要从图象的升降情况找准第一个零点的位置。

(2)已知函数图象求函数)sin(ϕ+=wx A y ()0,0>>w A 的解析式时,常用的解题方法是待定系数法,由图中的最大值或者最小值确定A ,由周期确定w 的取值,由适合解析式的点的坐标来确定ϕ,但由图象求得的)sin(ϕ+=wx A y )0,0(>>w A 的解析式一般不唯一,只有限定了也的取值范围,才能得出唯一解,否则ϕ的值就不确定,解析式也就不唯一。

三角函数例题和知识点总结

三角函数例题和知识点总结一、三角函数的基本概念在数学中,三角函数是一类重要的函数,它们描述了三角形中边与角之间的关系。

首先,我们来了解一下角度的度量。

角度可以用度(°)或弧度来表示。

一个完整的圆周对应的角度是 360°,而用弧度表示则是2π 弧度。

接下来,我们认识一下常见的三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan)。

正弦函数sinθ 表示在直角三角形中,对边与斜边的比值;余弦函数cosθ 表示邻边与斜边的比值;正切函数tanθ 则是对边与邻边的比值。

二、三角函数的基本公式1、同角三角函数的基本关系sin²θ +cos²θ = 1tanθ =sinθ /cosθ2、诱导公式例如:sin(π θ) =sinθ ,cos(π θ) =cosθ 等三、三角函数的图像和性质1、正弦函数 y = sin x 的图像是一个周期为2π 的波形,其值域为-1, 1,在 x =π/2 +2kπ (k 为整数)时取得最大值 1,在 x =3π/2 +2kπ (k 为整数)时取得最小值-1。

2、余弦函数 y = cos x 的图像也是一个周期为2π 的波形,值域同样为-1, 1,在 x =2kπ (k 为整数)时取得最大值 1,在 x =π +2kπ (k 为整数)时取得最小值-1。

3、正切函数 y = tan x 的图像其周期为π,定义域为x ≠ π/2 +kπ (k 为整数),值域为 R 。

四、三角函数的例题例 1:已知sinθ = 08,且θ 在第一象限,求cosθ 和tanθ 的值。

因为sin²θ +cos²θ = 1,所以cosθ =√(1 sin²θ) =√(1 08²) =06 。

tanθ =sinθ /cosθ = 08 / 06 = 4 / 3 。

例 2:求函数 y = 2sin(2x +π/3) 的周期和振幅。

三角函数的概念(基础知识+基本题型)(含解析)

5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。

拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结一、三角函数的基本定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦:对边与斜边的比值,即sinθ =对边/斜边。

余弦:邻边与斜边的比值,即cosθ =邻边/斜边。

正切:对边与邻边的比值,即tanθ =对边/邻边。

二、三角函数的性质1、周期性正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin(x),cos(x +2π) = cos(x);正切函数的周期是π,即 tan(x +π) = tan(x)。

2、奇偶性正弦函数是奇函数,即 sin(x) = sin(x);余弦函数是偶函数,即cos(x) = cos(x)。

3、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R(全体实数)。

4、单调性正弦函数在π/2 +2kπ, π/2 +2kπ 上单调递增,在π/2 +2kπ, 3π/2 +2kπ 上单调递减(k∈Z)。

余弦函数在2kπ, π +2kπ 上单调递减,在π +2kπ, 2π +2kπ 上单调递增(k∈Z)。

正切函数在(π/2 +kπ, π/2 +kπ) 上单调递增(k∈Z)。

三、三角函数的应用例题例 1:已知一个直角三角形的一个锐角为 30°,斜边为 2,求这个直角三角形的两条直角边的长度。

解:因为一个锐角为 30°,所以 sin30°= 1/2,cos30°=√3/2。

设 30°角所对的直角边为 a,邻边为 b,则:a = 2×sin30°= 2×(1/2) = 1b = 2×cos30°= 2×(√3/2) =√3例 2:求函数 y = 2sin(2x +π/3) 的最大值和最小值,并求出取得最值时 x 的值。

解:因为正弦函数的值域为-1, 1,所以 2sin(2x +π/3) 的值域为-2, 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
A
B C

20P
A
B C

20
(第14题图)
一.选择题
1、如图,已知:ο
ο90
45<
<A,则下列各式成立的是()
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA
2.Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,那么c等于()
A.cos sin
a A
b B
+ B.sin sin
a A
b B
+
C.
sin sin
a b
A B
+ D.
cos sin
a b
A B
+
3、如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木
桩向上运动,已知楔子斜面的倾斜角为︒
20,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了( )
A、︒
20
tan
8B、

20
tan
8
C、︒
20
sin
8D、︒
20
cos
8
4、如图所示,在数轴上点A所表示的数x的范围是()
A、︒
<
<
︒60
sin
30
sin
2
3
x,B、︒
<
<
︒45
cos
2
3
30
cos x
C、︒
<
<
︒45
tan
30
tan
2
3
x D、︒
<
<
︒30
cot
45
cot
2
3
x
1、如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m. 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).
2、如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.
第17题图 B
C l
D
A 第19题图
3、如图,自来水厂A 和村庄B 在小河l 的两侧,现要在A ,B 间铺设一知输水管道.为了
搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东24.5°方向,前行1200m ,到达点Q 处,测得A 位于北偏东49°方向,B 位于南偏西41°方向.
(1)线段BQ 与PQ 是否相等?请说明理由; (2)求A ,B 间的距离.(参考数据cos41°=0.75)
4、如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰
角是30°,然后在水平地面上向建筑物前进了100m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m ,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m )

(第23题)
5、某建筑物BC 上有一旗杆AB ,小明在与BC 相距12m 的F 处,由E 点观测到旗杆顶部A 的仰角为52°、底部B 的仰角为45°,小明的观测点与地面的距离EF 为1.6m . ⑴求建筑物BC 的高度; ⑵求旗杆AB 的高度.
(结果精确到0.1m .参考数据:2≈1.41,sin52°≈0.79,tan52°≈1.28)
6、某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.
图7
A B
C E
F
A
C
D
B
E
F β α
G。

相关文档
最新文档