初中数学计算中10个错误例题解析

合集下载

初中数学错题分类整理与分析(含学习方法技巧、例题示范教学方法)

初中数学错题分类整理与分析(含学习方法技巧、例题示范教学方法)

初中数学错题分类整理与分析在初中数学教学中,错题整理与分析是提高学生数学素养的重要环节。

通过对错题的深入剖析,学生可以更好地掌握数学知识,提升解题能力。

本文将从分类整理和分析的角度,探讨初中数学错题的处理策略。

一、错题分类1.概念性错误:学生对数学概念理解不透彻,导致解题过程中出现偏差。

例如,分不清有理数和无理数,将导致有关根号的题目解答错误。

2.计算性错误:学生在计算过程中,由于疏忽、马虎等原因,出现算术错误。

例如,简单的加减乘除运算错误,或者在小数点和分数运算中出现失误。

3.逻辑性错误:学生在解题过程中,逻辑思维不严密,导致解答不完整或者答案错误。

例如,在解一元一次方程时,忽略检验解的正确性。

4.应用题错误:学生在解决应用题时,不能正确将数学知识运用到实际问题中,或者对题目的理解出现偏差。

例如,在解决几何问题时,不能准确运用面积公式。

5.构图错误:学生在作图过程中,不能准确地根据题目要求绘制图形,导致解题思路混乱。

例如,在解几何证明题时,作图不准确,导致无法找到关键证明步骤。

二、错题整理1.建立错题本:学生应养成建立错题本的的习惯,将每次考试、练习中出现的错题记录下来。

2.归纳错题类型:学生在记录错题时,应注意归纳错题的类型,以便于后续分析和复习。

3.标注错题原因:学生在整理错题时,应在每道错题旁边标注出错的原因,以便于查找和改正。

4.定期复习:学生应定期复习错题本,巩固已掌握的知识点,避免重复犯错。

三、错题分析1.自我分析:学生应对错题进行自我分析,找出自己在解题过程中的不足之处,如概念理解不深、计算不准确等。

2.寻求帮助:学生在分析错题时,如有遇到困难,可以向老师、同学请教,以便更好地掌握知识点。

3.总结经验:学生应总结错题解析过程中的经验教训,提高解题能力。

4.反馈调整:学生应对错题进行分析总结后,对自己的学习方法、复习计划等进行调整,以提高学习效果。

四、教学建议1.注重概念教学:教师应加强对数学概念的教学,让学生充分理解并掌握基本概念。

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.3.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.4.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A .【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,2020D 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A .B .C .D .【答案】A【解析】【分析】 火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.12.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.13.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x xy x xx x⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C选项符合题意.故选:C.【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A .B .C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.17.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG 的面积y 最小时和最大时分别对应的x 值,从而确定AB ,EG 的长度,求出等边三角形EFG 的最小面积.【详解】由图2可知,x =2时△EFG 的面积y 最大,此时E 与B 重合,所以AB =2,∴等边三角形ABC∴等边三角形ABC由图2可知,x =1时△EFG 的面积y 最小,此时AE =AG =CG =CF =BG =BE ,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为4, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE --=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+- 解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应。

初中数学错题原因解析

初中数学错题原因解析

初中学生数学习题错误原因及对策一、知识性错误及对策1、知识性错误的概念知识性错误是指对概念及性质的认识模糊不清导致的错误;忽视公式,定理,法则的使用条件而导致的错误;忽视隐含条件导致错误;遗漏或随意添加条件导致的错误.2、对策:正确看待学生的习题错误,合理利用学生习题错误资源错题和知识点是现象和本质的关系。

纠错是学习中不可缺少的一个环节,通过纠错可以帮助学生不断完善认识和理解概念,提高其解题的“免疫"力。

一个正确的认识、念头和做法,无不经历多次与错误的周旋,所以在学习中要为学生开辟好纠错的各种途径。

①在教学中要宽容学生的错误,重视错解中合理成分的提取和激活,使学生在心理上认同和接受“纠错",并自觉对自己的想法和做法作出修正和调整。

案例1:计算2222--+x x 学生小A 的解法:原式=284242)2(2)2(-=---=+--x x x x显然有误,有学生在下面轰笑.小A 很尴尬。

我问:“错在哪?”生答:“张冠李戴了,把分式运算当成了解方程。

”小A 是一个对数学不太敏感的女生,为了树立小A 学习数学的信心,我决定帮她挽回一点面子。

我说:“小A 把分式运算当成了解方程,显然是错的,但给我们一个启示,能否考虑利用解方程的方法来解它呢?”学生经过思考、讨论,最后终于形成了以下解法: 设A x x =--+2222 去分母得:)2)(2()2(2)2(2-+=+--x x A x x解得:)2)(2(8)2)(2()2(2)2(2-+-=-++--=x x x x x x A 错误是极佳的学习契机, 教师既要引导学生发现解题过程中的错误,让学生提出不同解法并进行比较,又要指出这种错误解题过程中的合理成分,使产生这种错误的学生在实事求是的激励性下接受帮助。

让学生主动参与找错、议错、评错、赏错,对学生来讲是一种可贵的成功体验.有时课堂上的一些错误反而会给课堂注入新的生命力。

学生产生的错误是宝贵的教学资源,只有善待学生的错误,给学生说理的机会,才能充分挖掘错误的根源,引领学生走向成功.这种教育的效果远远胜于直接告诉学生一个正确的结论。

初中数学常见计算错误的解析及处理方法

初中数学常见计算错误的解析及处理方法

教育观察初中数学常见计算错误的解析及处理方法高洁本文立足于中学生数学学习中出现的计算问题,对普遍现象及问题进行具体分析。

根据教学经验和长期积累、观察,我搜集了学生在数学运算中常见的问题及错误现象,总结过后,将主要从以下四个方面进行详细论述,探究问题产生的原因,并在此基础上提出教改措施,通过理论分析反映一定的实践效果,并最终提出解决该类问题的方法,帮助学生解决特定类型中计算方法不扎实的弊病。

1 常见的计算错误及分析1.1 代数运算——“概念混淆,运用不当”对于代数运算,应该说是每位学生从刚接触数学起便不断在反复练习的计算内容,是所有数学应用的基础。

中学的代数式,归根结底,即为研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支。

而对有理数、无理数、整式、分式等的区分,还是需要以概念作为落脚点。

在教学过程中,不难发现,教材的灵活性对能力较强的学生而言是如鱼得水,而对能力偏弱的学生来说则是一头雾水。

以有理数的减法及代数和为例,在有理数的减法中,10-3被看成是一道减法题,3之前的符号的含义是两个数相减的意思;但学到代数和,学生又被灌输新的概念:10-3看成10+(-3)的意思,因此这里3前面的符号应该看作是“负号”,而绝非“减号”了。

这样,对于数学思维强、吸收速度快的学生来说,是举一反三,能够透过现象看本质,但对于学习能力薄弱的学生而言,对概念的把握没有前者如此清晰,这种理解上的偏差很容易导致做题时“想太多”,不知应该是“减号”还是“负号”了。

再比如,平方和和平方差公式。

两者虽一字之差,结果却是千差万别,在做题中,如果没有对二者清楚的记忆和理解,写错、写反都是常有的情况。

1.2 方程运算——“系数、符号是难题”对于方程类的题目而言,最重要的是解题思路,但除此以外,计算同样是解题的关键。

不论是一元一次方程还是二元一次方程,重要的都是要将“元”解出来。

但是,这其中涉及到了许多解方程的便捷方法,甚至隐藏着许多计算陷阱。

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析◆题型一:直线定点和代数式的值和某字母无关一次函数y=mx+m-1过定点【解析】一次函数过定点问题和整式中和某字母取值无关是同一类题:一次函数过定点实质上指的是和m的取值无关。

按照这种思路过可以解决很多的定点问题。

把一次函数解析式变形:y=m(x+1)-1,我们把(x+1)看作m的系数,若和m的取值无关,则系数(x+1)=0,即x=1,此时y=-1.因此,此一次函数过定点(-1,-1)。

1. 2022·江苏泰州·三模)小明经探究发现:不论字母系数m 取何值,函数()224365y x m x m =−+++的图像恒过一定点P ,则P 点坐标为______. 【答案】3,142⎛⎫− ⎪⎝⎭【分析】根据不论字母系数m 取何值图像恒过一定点P ,取值与m 无关,则字母m 的系数为0,进而可得答案.【详解】解:()224365y x m x m =−+++()224635y x x m x =+−++当46=0x +,即32x =−时,14y =, 所以无论字母系数m 取何值时,图像恒过一定点P 3,142⎛⎫− ⎪⎝⎭. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m 的系数为0时,才与m 的取值无关.2. 整式(ax 2+bx -1)-(4x 2+3x )的最后结果与x 的取值无关,求a ,b 的值。

解:由(1)(ax 2+bx-1)-(4x 2+3x )化简的结果是(a-4)x 2+(b-3)x-1,得a=4,b=3.1.(2022·重庆八中二模)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x-y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +B +E 的值一定是正数;②存在实数x ,y ,使得A+D+2E 的值为-2;③若关于x 的多项式M =3(A −B)+m ⋅B ⋅C (m 为常数)不含x 的一次项,则该多项式M 的值一定大于-3.上述结论中,正确的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据整式的四则运算法则逐个运算即可判断.【详解】解:对于①:B ⋅C +A +B +E =(x +1)(−2x)+2x 2+x +1+2x −y =x −y +1,显然当x =−100,y =1时代入化简后的式子中结果为负数,故①错误;对于②:A +D +2E =2x 2+y 2+2(2x −y)=2x 2+y 2+4x −2y =−2时,整理得到:2(x +1)2+(y −1)2−1=0,显然当x =−1,y =2时代入化简后式子中满足,故②正确;对于③:M =3(A −B)+m ⋅B ⋅C =3(2x 2−x −1)+m(x +1)(−2x)=(6−2m)x 2−(3+2m)x −3, ∵不含x 的一次项,∴320m +=,解出m =−32,此时M =9x 2−3≥−3,即M 的值一定大于等于-3,故③错误;故选:B .【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握整式的四则运算法则是解题的关键. 2.(2022·重庆市育才中学二模)已知多项式A =x 2+2y +m 和B =y 2−2x +n (m ,n 为常数),以下结论中正确的是( )①当2x =且m +n =1时,无论y 取何值,都有A +B ≥0;②当m =n =0时,A ×B 所得的结果中不含一次项;③当x y =时,一定有A ≥B ;④若m +n =2且A +B =0,则x y =;⑤若m =n ,A −B =−1且x ,y 为整数,则|x +y |=1.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且m +n =1时,A+B=4+2y +m +y 2−4+n =y 2+2y +1=(y +1)2,∵无论y 取何值,总有(y +1)2≥0,∴无论y 取何值,都有A +B ≥0,故①正确;②当m =n =0时,A ×B =(x 2+2y )(y 2−2x )=x 2y 2−2x 3+2y 3−4xy ,∴A ×B 所得的结果中不含一次项;故②正确;③当x y =时,A −B =x 2+2y +m −(y 2−2x +n )=x 2+2x +m −x 2+2x −n =4x +m −n , 其结果与0无法比较大小,故③错误;④若m+n=2且A+B=0,则A+B=x2+2y+m+y2−2x+n=x2+y2+2y−2x+2=0,变形得:(x−1)2+(y+1)2=0,∴x=1,y=-1,∴x=-y,故④错误;⑤若m=n,A−B=−1且x,y为整数,则A−B=x2+2y+m−(y2−2x+n)=x2+2y−y2+2x=−1x2−y2+2x+2y+1=0变形得:(x+1)2−(y−1)2=−1,因式分解得:(x+y)(x−y+2)=−1,∵x,y为整数,则必有|x+y|=1.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.3.(2022·江苏泰州·三模)小明经探究发现:不论字母系数m取何值,函数y=2x2+(4m−3)x+6m+5的图像恒过一定点P,则P点坐标为______.,14)【答案】(−32【分析】根据不论字母系数m取何值图像恒过一定点P,取值与m无关,则字母m的系数为0,进而可得答案.【详解】解:y=2x2+(4m−3)x+6m+5y=2x2+(4x+6)m−3x+5时,y=14,当4x+6=0,即x=−32,14).所以无论字母系数m取何值时,图像恒过一定点P(−32【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m的系数为0时,才与m的取值无关.4.(2021·河北唐山·一模)老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,则甲同学给出a 、b 的值分别是a =_______,b =_______;(2)乙同学给出了a =5,b =-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果. 【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x2-3x-1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.【详解】(1)解:(ax2+bx-1)-(4x2+3x )=ax2+bx-1-4x2-3x=(a-4)x2+(b-3)x-1,∵甲同学给出了一组数据,最后计算的结果为2x2-3x-1,∴a-4=2,b-3=-3,解得a=6,b=0,故答案为:6,0;(2)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∴当a=5,b=-1时,原式=(5-4)x2+(-1-3)x-1=x2-4x-1,即按照乙同学给出的数值化简整式结果是x2-4x-1;(3)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.5.(2021·河北唐山·一模)定义:若A−B=m,则称A与B是关于m的关联数.例如:若A−B=2,则称A与B是关于2的关联数;(1)若3与a是关于2a的关联数,则a=__________.(2)若(x−1)2与x+1是关于-2的关联数,求x的值.(3)若M与N是关于m的关联数,M=2mn−n+3,N的值与m无关,求N的值.【答案】(1)1(2)x1=1,x2=2(3)2.5【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m的方程,将M=3mn+n+3代入,用m、n的式子表示出N,再利用N的值与m无关进行计算即可.(1)解:∵3与a是关于2a的关联数,∴3-a=2a,∴a=1,故答案为:1(2)解:(x−1)2−(x+1)=−2,整理得x2−3x+2=0则(x−2)(x−1)=0解得:x1=1,x2=2.∴x的值为1或2;(3)解:(2mn−n+3)−N=m,N=2mn−m−n+3=m(2n−1)−n+3,∵N的值与m无关,∴2n−1=0,∴n=0.5,∴N=2.5.【点睛】本题考查了新型定义题型,解一元一次方程、解一元二次方程,整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.6.(2021·浙江·杭州育才中学二模)已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当|x−1|+(y−2)2=0,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【答案】(1)M=2(2)y=2【分析】(1)先化简M,进而根据非负数的性质求得x,y的值,进而代入求解即可;(2)根据(1)中M的化简结果变形,令含x项的系数为0,进而求得y的值【详解】(1)解:M=(2x2+3xy+2y)−2(x2+x+yx+1)=2x2+3xy+2y−2x2−2x−2yx−2=xy+2y−2x−2|x−1|+(y−2)2=0∴x=1,y=2原式=1×2+2×2−2×1−2=2(2)∵M=xy+2y−2x−2=(y−2)x+2y−2与字母x的取值无关,∴y−2=0解得y=2【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.◆题型二:特殊代数式求值①若m,n是方程2x2−4x−7=0的两个根,则2m2−3m+n的值为【解析】一次代入无法求得结果,出现这种情况,我们可以从先代高次再代低次!把2m2=4m+7代入,原式=m+n+7,然后用韦达定理即可求值。

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)一、选择题1.现规定一种运算,a*b=ab-a+b,计算(-3*5)等于多少?()A.-7 B.-15 C.2 D.7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A.【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.2.9万亿1388900000000008.8910==⨯,故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.23+23+23+23=2n,则n=()【答案】C【解析】【分析】 原式可化为:23+23+23+23=4×23235222=⨯=,之后按照有理数乘方运算进一步求解即可.【详解】∵23+23+23+23=4×23235222=⨯=∴5n =,所以答案为C 选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为( )【答案】C【解析】 试题分析:(a+2b )(a+b )=2232a ab b ++,则C 类卡片需要3张.考点:整式的乘法公式.8.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.2017年常州市实现地区生产总值约6622亿元,将6622用科学记数法表示为( ) A .40.662210⨯B .36.62210⨯C .266.2210⨯D .116.62210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将6622用科学记数法表示为:36.62210⨯.故选B.【点睛】本题考查科学计数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值.10.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km【答案】B【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】科学记数法表示:384 000=3.84×105km故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( )A .1.361×104B .1.361×105C .1.361×106D .1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D .【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.13.随着垃圾数量的不断增加,宁波从2013年开始启动生活废弃物收集循环利用示范目,总投资约为15.26亿元,以下用科学记数法表示15.26亿正确的是()A .815.2610⨯B .81.52610⨯C .90.152610⨯D .91.52610⨯【答案】D【解析】【分析】先把15.26亿写成1526000000的形式,再根据科学记数法的法则,把15.26亿用科学计数法表示成10n a ⨯的形式即可.【详解】解:15.26=1526000000∵1526000000有10位整数,∴可以确定指数n=10-1=9,即用科学记数法表示为91.52610⨯,故答案为D.【点睛】本题主要考查了科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

初中数学错题分析与应对(含学习方法技巧、例题示范教学方法)

初中数学错题分析与应对(含学习方法技巧、例题示范教学方法)

初中数学错题分析与应对第一篇范文在初中数学教学过程中,学生常常会遇到各种困难,导致在解题时出现错误。

为了提高学生的数学学习效果,教师需要对学生的错题进行分析,找出错误产生的原因,并采取相应的应对策略。

本文将从心理、教学、学生个体差异等方面对初中数学错题进行分析,并提出相应的应对措施。

一、错题分析1. 知识性错误知识性错误主要是由于学生对基本数学概念、定理、公式等掌握不牢固导致的。

学生在解题过程中,可能会出现概念混淆、公式使用错误等情况。

例如,在解一元二次方程时,学生可能会忘记移项、合并同类项等基本步骤,导致解题结果错误。

2. 逻辑性错误逻辑性错误主要是学生在解题过程中,推理不严谨、论证不充分导致的。

这类错误可能体现在学生对题目的理解不准确,或者在解题过程中跳跃性思维过大,导致答案不完整或错误。

例如,在解决几何问题时,学生可能会忽略某些条件,导致论证不充分,从而得出错误的结论。

3. 计算性错误计算性错误是学生在解题过程中,由于运算规则掌握不牢固、粗心大意等原因导致的。

这类错误在数学学习中非常常见,如加减乘除运算错误、小数点位置错误等。

这些错误往往会导致解题结果与正确答案相差甚远。

4. 策略性错误策略性错误主要是学生在解题过程中,选用不当的解题方法或策略导致的。

这类错误可能源于学生对题目的分析不准确,或者在解题过程中缺乏灵活变通的能力。

例如,在解决应用题时,学生可能会固定思维,无法找到最合适的解题方法,导致解题过程复杂化或错误。

二、应对措施1. 加强基础知识教学针对知识性错误,教师需要加强对基本数学概念、定理、公式等知识的教学。

可以通过举例子、讲解应用场景等方式,帮助学生加深对知识点的理解。

同时,教师要注重知识点的巩固,通过布置相关的练习题,让学生在实践中掌握知识。

2. 培养逻辑思维能力针对逻辑性错误,教师需要培养学生的逻辑思维能力。

可以在教学过程中,引导学生进行有条理的推理和论证。

同时,教师要教会学生如何分析题目,抓住关键条件,避免跳跃性思维。

初中数学整式运算中常见错误分析与对策

初中数学整式运算中常见错误分析与对策

初中数学整式运算中常见错误分析与对策整式是初中数学中重要的章节,它的掌握程度直接影响到整个数学学科的发展。

然而,在整式运算中,由于一些经常出现的错误,很多学生经常会陷入迷惑中。

本篇论文将着重探讨初中数学整式运算中常见的错误分析与对策,并通过具体的事例来进行解析。

一、常见错误分析1. 乘法分配律的错误运用。

在整式乘法运算中,由于学生自己的理解,经常会犯乘法分配律的错误运用。

例如:(1) (a+b)^2=a^2+b^2;(2) (a+b)(a^2+b^2)=a^3+b^3。

这两个例子中,学生分别忘记了乘法分配律中的加法运算。

2. 相似项的错误处理。

在整式的合并同类项过程中,如果没有正确地处理相似项,就会出现错误的结果。

例如:(1) 2x+3y-5x+7y=5y-3x(2) a^2b+ab^2-a^3b-a^2b^2=-a^3b-a^2b^2+ab(a-b)这两个例子都是由于没有正确合并相似项而导致的答案错误,需要将相似项合并,化简最终结果。

3. 代数符号混淆。

代数符号的混淆是整式中的另一个常见错误。

例如:(1) 3a^2b^3和3b^3a^2被视为不同的项;(2) 2a(a+b)-2b(a-b)=2ab-2ab=0。

这两个例子都是由于代数符号的混淆而导致的错误。

在整式运算中,应该清楚地区分代数符号的次序,以确保正确性。

4. 式子的错误展开。

有时候,学生在展开式子的时候,会出现漏项或未展开的项,导致了错误的结果。

例如:(1) (x+1)^3=x^3+1(2) (a+b)^2=a^2+b^2。

这两个例子都是由于展开不完整而导致的错误。

在展开式子过程中,应该注意所有项的正确展开。

二、对策分析1. 理解乘法分配律的含义。

在乘法分配律的运用中,学生应该理解加法运算的意义,并清楚地应用到整式乘法运算中,以避免因为不适当的乘法分配皇运用造成的错误。

举例来说,在(1)中的(a+b)^2应正确快速展开,得到a^2+2ab+b^2,避免了忘记了乘法分配律中的加法运算的错误,最后得到正确的答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学计算中10个错误例题解析
计算,是初中数学的硬功夫。

计算能力差,就算再会解题,也很难得高分。

结合同学们在试卷及作业中出现的问题,颜老师为大家总结了“数学计算十大易错点实例精析”,希望同学们在以后的计算中,“对号入座”,避免此类错误的发生。

刚开始接触有理数计算,有的同学往往将-1+(-5)写成-1+-5,-x写成-1x,这些基本的书写规范要注意。

甚至有同学常犯“抄错”的毛病,上行到下行、卷子到答题卡抄错,这些都属于我们熟悉的“低级”错误。

例如,下面是某同学答题过程,你们有没有中枪呢?
针对这种情况,老师建议:做题时,要细心;眼盯住,手别慌(一定要认真)!
有些同学计算时,喜欢跳跃思维,不按“套路”解题,往往导致结果错误。

做题时,一定要按步骤去计算,不能急于求成,要循序渐进,在保证正确率的前提下、熟练之后,才可以省略一些非关键的步骤。

针对这种情况,老师建议:做题时,按步骤,不着急,不跳步!
下面这位同学,没有按照运算法则的顺序进行计算,导致了失分。

运算顺序:括号优先,先乘方,再乘除,最后加减。

加减法为一级运算,乘除为二级运算,乘方、开方(以后会学到)为三级运算
同级运算从左到右,不同级运算,应该先三级运算,然后二级运算,最后一级运算
如果有括号,先算括号里的,先算小括号,再算中括号,最后大括号。

以上运算顺序可以简记为:“从小(括号)到大(括号),从高(级)到低(级),(同级)从左到右”。

针对这种情况,老师建议:牢记口诀多练习,认真计算没问题!
对于计算题,老师发现同学们去括号时,最容易犯错!同学们去括号时,一定要注意括号前面的系数和符号。

去括号时,当括号前面有“-”,括号内的符号要发生改变;当括号前面有系数时,括号内的每一项都要与其相乘。

例如,同学们在去括号时,经常会出现将5-(4-3)去括号变成5-4-3(应是5-4+3),将5(x+6)去括号变成5x+6(少乘一项)。

这类问题很常见,不知道你是否中招了呢?
针对这种情况,老师建议:去括号要两看,一看系数,二看符号!
解方程和不等式时,经常涉及到去分母,等号两边同时乘以分母的最小公倍数时,同学们一定要注意不要漏乘!大家经常犯的错误是忘记漏乘常数项。

例如下面这种情况:
针对这种情况,老师建议:去分母,要遍乘,常数项,不遗漏!。

相关文档
最新文档