一元二次方程一题多解

合集下载

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。

一元二次方程计算题及答案解析

一元二次方程计算题及答案解析

6X²-7X+1=06X²-7X=-1X²-﹙7/6﹚X+﹙7/12﹚²=-1/6﹢﹙7/12﹚²﹙X-7/12﹚²=25/144∴X-7/12=±5/12∴X1=1,X2=1/65X²-18=9X5X²-9X=18X²-1.8X=3.6﹙X-0.9﹚²=4.41∴X-.9=±2.1∴X1=3,X2=-1.24X²-3X=52解:X²-﹙3/4﹚X=13﹙X-3/8﹚²=13∴X-3/8=±29/8∴X1=4,X2 =-13/45X²=4-2X5X²+2X=4X²+0.2X=0.8﹙X+0.1﹚²=0.81X+0.1=±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x^2-9x+8=0 答案:x1=8 x2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(42)x^2+10x+24=0 答案:x1=-6 x2=-4(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(46)x^2+7x+6=0 答案:x1=-6 x2=-1(47)x^2+16x+28=0 答案:x1=-14 x2=-2(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(71)x^2-24x+140=0 答案:x1=14 x2=10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(75)x^2-2x-99=0 答案:x1=11 x2=-9(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(95)x^2+6x-91=0 答案:x1=7 x2=-13(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6 (101)x^2+17x+72=0 答案:x1=-8 x2=-9 (102)x^2+13x-14=0 答案:x1=-14 x2=1 (103)x^2+9x-36=0 答案:x1=-12 x2=3 (104)x^2-9x-90=0 答案:x1=-6 x2=15 (105)x^2+14x+13=0 答案:x1=-1 x2=-13 (106)x^2-16x+63=0 答案:x1=7 x2=9 (107)x^2-15x+44=0 答案:x1=4 x2=11 (108)x^2+2x-168=0 答案:x1=-14 x2=12 (109)x^2-6x-216=0 答案:x1=-12 x2=18 (110)x^2-6x-55=0 答案:x1=11 x2=-5。

《一元二次方程》经典60题

《一元二次方程》经典60题

中考数学提分冲刺真题精析:一元二次方程一、解答题(共60小题)1.(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)2.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.3.(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k 的值.4.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.(2014•无锡)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.6.(2014•乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)7.(2014•遂宁)解方程:x2+2x﹣3=0.8.(2014•随州)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y 与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)9.(2014•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.10.(2014•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.11.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.12.(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.13.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.14.(2014•黄石)解方程:.15.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.16.(2014•葫芦岛)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)17.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.18.(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.19.(2014•防城港)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)20.(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.21.(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.22.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.23.(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.24.(2013•漳州)解方程:x2﹣4x+1=0.25.(2013•义乌市)解方程(1)x2﹣2x﹣1=0(2)=.26.(2013•徐州)(1)解方程:x2﹣2x=1;(2)解不等式组:.27.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.28.(2013•无锡)(1)解方程:x2+3x﹣2=0;(2)解不等式组:.29.(2013•上海)解方程组:.30.(2013•山西)解方程:(2x﹣1)2=x(3x+2)﹣7.31.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.32.(2013•日照)(1)计算:.(2)已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.33.(2013•南充)关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?34.(2013•乐山)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC 是等腰三角形时,求k的值.35.(2013•兰州)(1)计算:(﹣1)2013﹣2﹣1+sin30°+(π﹣3.14)0(2)解方程:x2﹣3x﹣1=0.36.(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为任何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.37.(2013•黄石)解方程组:.38.(2013•杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.39.(2013•广州)解方程:x2﹣10x+9=0.40.(2013•防城港)已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.41.(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2;②选取二次项和常数项配方:,或③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出x2﹣8x+4的两种不同形式的配方;(2)已知x2+y2+xy﹣3y+3=0,求x y的值.42.(2013•北京)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.43.(2012•淄博)一元二次方程的某个根,也是一元二次方程的根,求k的值.44.(2012•永州)解方程:(x﹣3)2﹣9=0.45.(2012•无锡)(1)解方程:x2﹣4x+2=0(2)解不等式组:.46.(2012•温州)(1)计算:;(2)解方程:x2﹣2x=5.47.(2012•遂宁)解方程:x2+4x﹣2=0.48.(2012•绵阳)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.49.(2012•乐山)已知关于x的一元二次方程(x﹣m)2+6x=4m﹣3有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,求代数式x1•x2﹣x12﹣x22的最大值.50.(2012•黄石)解方程组:.51.(2012•菏泽)(1)先化简,再求代数式的值.,其中a=(﹣1)2012+tan60°.(2)解方程:(x+1)(x﹣1)+2(x+3)=8.52.(2012•巴中)解方程:2(x﹣3)=3x(x﹣3).53.(2012•安徽)解方程:x2﹣2x=2x+1.54.(2011•武汉)解方程:x2+3x+1=0.55.(2011•无锡)(1)解方程:x2+4x﹣2=0;(2)解不等式组.56.(2011•遂宁)解方程:x(2x+1)=8x﹣3.57.(2011•上海)解方程组:.58.(2011•清远)解方程:x2﹣4x﹣1=0.59.(2011•聊城)解方程:x(x﹣2)+x﹣2=0.60.(2011•黄石)解方程:.真题精析:一元二次方程参考答案与试题解析一、解答题(共60小题)1.(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提取公因式(x﹣2),对等式的左边进行因式分解.解答:解:由原方程,得(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得x1=﹣,x2=2.点评:本题考查了解一元二次方程﹣﹣因式分解法.因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.2.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.考点:一元二次方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的3倍”,列出不等式求解即可;(2)根据“自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,且总集资额为20000元”列出方程求解即可.解答:解:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,根据题意得:30000﹣x≥3x,解得:x≤7500.答:最多用7500元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1﹣a%)=20000整理得:a2+10a﹣3000=0,解得:a=50或a=﹣60(舍去),所以a的值是50.点评:本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.3.(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)×=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用.专题:应用题.分析:设AB的长度为x,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.解答:解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5.(2014•无锡)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.考点:解一元二次方程-因式分解法;解一元一次不等式组.专题:计算题.分析:(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)方程变形得:(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1;(2),由①得:x≥3;由②得:x>5,则不等式组的解集为:x>5.点评:此题考查了解一元二次方程﹣因式分解法,以及一元一次不等式组,熟练掌握运算法则是解本题的关键.6.(2014•乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)考点:一元二次方程的应用;一元一次不等式的应用.专题:增长率问题.分析:(1)设每月的增长率为x,那么2月份的生产收入为100(1+x),三月份的生产收入为100(1+x)2,根据1至3月份的生产收入累计可达364万元,可列方程求解.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,根据不等关系可列不等式求解.解答:解:(1)设每月的增长率为x,由题意得:100+100(1+x)+100(1+x)2=364,解得x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,依题意有364+100(1+20%)2(y﹣3)﹣640≥(90﹣5)y,解得y≥12.故使用新设备12个月后,该厂所得累计利润不低于使用旧设备的累计利润.点评:本题考查理一元二次方程的应用和解题能力,关键是找到1至3月份的生产收入累计可达100万元和不等量关系可列方程和不等式求解.7.(2014•遂宁)解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.8.(2014•随州)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y 与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)考点:一元二次方程的应用;分段函数.专题:销售问题.分析:(1)根据分段函数可以表示出当0<x≤5,5<x≤30时由销售数量与进价的关系就可以得出结论;(2)由销售利润=销售价﹣进价,由(1)的解析式建立方程就可以求出结论.解答:解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.点评:本题考查了分段函数的运用,一元二次方程的解法的运用,解答时求出分段函数的解析式是关键.9.(2014•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.专题:判别式法.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.10.(2014•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.考点:一元二次方程的解;一次函数综合题;正方形的性质;相似三角形的判定.专题:综合题.分析:(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,即可得到A、B两点的坐标;(2)先在Rt△AOB中利用勾股定理求出AB==10,根据线段垂直平分线的性质得到AC=AB=5.再由两角对应相等的两三角形相似证明△ACD∽△AOB,由相似三角形对应边成比例得出=,求出AD=,得到D点坐标(﹣,0),根据中点坐标公式得出C(3,4),然后利用待定系数法即可求出直线CD的解析式;(3)分两种情况进行讨论:①当点Q与点B重合时,先求出BM的解析式为y=x+8,设M (x,x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点Q与点A重合时,先求出AM的解析式为y=x﹣,设M(x,x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.解答:解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);(2)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB==10,∵线段AB的垂直平分线CD交AB于点C,∴AC=AB=5.在△ACD与△AOB中,,∴△ACD∽△AOB,∴=,即=,解得AD=,∵A(6,0),点D在x轴上,∴D(﹣,0).设直线CD的解析式为y=kx+b,由题意知C为AB中点,∴C(3,4),∵D(﹣,0),∴,解得,∴直线CD的解析式为y=x+;(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长.∵AC=BC=AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点Q与点B或点A重合.分两种情况:①当点Q与点B重合时,易求BM的解析式为y=x+8,设M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点Q与点A重合时,易求AM的解析式为y=x﹣,设M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=10,∴M3(2,﹣3),M4(10,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(10,3).点评:本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,相似三角形的判定与性质,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.11.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.考点:根与系数的关系;根的判别式.专题:代数综合题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)根据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,根据根与系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解答:解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.掌握根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.12.(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解;根与系数的关系.专题:判别式法.分析:(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.解答:解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.13.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.14.(2014•黄石)解方程:.考点:高次方程.专题:计算题.分析:先把方程组的第二个方程进行变形,再代入方程组中的第一个方程,即可求出x,把x的值代入方程组的第二个方程,即可求出y.解答:解:,由方程x﹣2y=2得:4y2=15x2﹣60x+60(3),将(3)代入方程5x2﹣4y2=20,化简得:x2﹣6x+8=0,解此方程得:x=2或x=4,代入x﹣2y=2得:y=0或,即原方程组的解为或.点评:本题考查了解高次方程的应用,解此题的关键是能得出关于x定的一元二次方程,题目比较好,难度适中.15.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根与系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m 的值;(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.点评:此题考查根与系数的关系,一元二次方程的根的判别式△=b2﹣4ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.16.(2014•葫芦岛)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)考点:解一元二次方程-配方法.专题:阅读型.分析:(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.解答:解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.点评:本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.17.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设这两年的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果.解答:解:设这两年的年平均增长率为x,根据题意得:5000(1+x)2=7200,即(1+x)2=1.44,开方得:1+x=1.2或x+1=﹣1.2,解得:x=0.2=20%,或x=﹣2.2(舍去).答:这两年的年平均增长率为20%.点评:考查了一元二次方程的应用,本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.18.(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法.专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.(2014•防城港)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)考点:一元二次方程的应用;一元一次不等式的应用.专题:增长率问题.分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴[(10﹣1)+x](1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆;。

一元二次方程(含答案)

一元二次方程(含答案)

第十六期:一元二次方程一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。

题型多样,一般分值在6-9分左右。

知识点1:一元二次方程及其解法例1:方程0232=+-x x 的解是( )A .11=x ,22=xB .11-=x ,22-=xC .11=x ,22-=xD .11-=x ,22=x思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法.此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x -1)(x -2)=0,所以x -1=0或x -2=0,解得x 1=1,x 2=2.故此题选A.例2:若220x x --= )A .3B .3C D 3思路点拨:本题考查整体思想,即由题意知x 2-x=2, 所以原式=3323123222=+-+,选A. 练习:1.关于x 的一元二次方程2x 2-3x -a 2+1=0的一个根为2,则a 的值是( )A .1BC .D .2.如果1-是一元二次方程230x bx +-=的一个根,求它的另一根. 3.用配方法解一元二次方程:x 2-2x -2=0. 答案:1.D. 2.解:1-是230x bx +-=的一个根,2(1)(1)30b ∴-+--=.解方程得2b =-. ∴原方程为2230x x --=分解因式,得(1)(3)0x x +-=11x ∴=-,23x =.3.移项,得x 2-2x=2. 配方x 2-2x+12=2+12, (x -1)2=3. 由此可得x -1=±3, x 1=1+3,x 2=1-3. 最新考题1.(2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.(2009年山西省)请你写出一个有一根为1的一元二次方程: .3.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=答案:1.1; 2.答案不唯一,如21x = 3. B 知识点2:一元二次方程的根与系数的关系例1:如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为:(A )-1 (B )2 (C )21- (D )21+ 思路点拨:本题考查一元二次方程02=++c bx ax 的根与系数关系即韦达定理,两根之和是a b -, 两根之积是ac,易求出两根之和是2。

例谈一元二次方程的一题多解

例谈一元二次方程的一题多解
・ 。 .
解: ( 3 z +1 ) 7 , . - . 2 一1 =± , . ・ . : ห้องสมุดไป่ตู้
: ,







b ̄
— —

e  ̄


4 a e
解: 采 用 十字 交叉 法将 原方 程改 写 为下式 :
( 一 2 ) ( 一 3 ) = 0 , 贝 0 可 以得 出 : 一 3 = 0或 一 2= 0



; 如 果 △< 0 , 则方 程无 解 。
二Ⅱ
因而 该方 程 的解为 : I = 3 , 2 = 2 例3 : 解 方 程 +1 . 5=一 3 x 解该 题 的重点 、 难 点在 于对 题 目进 行 分析 。在 本 题 的解 答 过 解: 首 先将 原方 程化 成一般 形式 : + 3 + 1 . 5= O 程, 我 们 复习 了求 解一 元二 次方 程 的解 题方 法 , 通 过 横 向 比较 , 我 a= 1, 6=3, c: 1 . 5 们 找到 了既简单 叉 高效 的解题 方法 。本 例题体 现 了数 学思 维 的多 b 一4口 c=3 一4 ×1× 1 . 5 =3>0 向性 、 变通 性等特 点 。在 初 中教 学 中, 探索 一体 多解 不 是我 们 教学 3± 3± 2×1 — 2 的真正 目的 , 不是 单纯 的 向学 生 罗列 解题 方法 , 而 是要 引导 学生 主 动积极 地开拓 自己 的思 维 , 培养 学生综合 运用所 学知识 的能力 。 原方 程 的解为 。 = 二 , : = 二 . ( 三) 一题 多解 有 助于 培养 学生 的创新 思维 例6 : 有 一根 2 0 m长 的绳 子 , 怎 样用 它 围成 以面 积 为 2 4 m 的 上 述三 种解 题方 法是初 中教 学 中最 常 用 的解 题 方 法 , 公 式 法 矩形? 是解 题 的基 础方 法 , 适 用 于求 解 所 有 的 一元 二次 方 程 ; 直 接 开 平 分析: 假设矩 形宽 为 x n l , 那 么矩形 的 长就为 ( 1 2一 ) n l 。因 而 方适 用性 最差 ; 配 方和 因式分 解法 的解 题原 理都 是 “ 降次 ” , 需 要 我 们就 可 以列 出该 题 的一 元二 次方 程 ( 1 2一 ) = 2 4 , 其 一般 形式 根据 方程 的特 点进 行 因地制 宜地 变换 。 二、 一题 多解 示例 及意义 ( 一) 一题 多解有 助于 打破 学生思 维定 势

50道一元二次方程带解题过程

50道一元二次方程带解题过程

(1)x(x-2)+x-2=0;




(2)5x²-2x- =x²-2x+ .
解:(1)因式分解,得
(2)移项、合并同类项,得
(x-2)(x+1)=0.
于是得
x-2=0或x+1=0,
4x²-1=0
因式分解,得 (2x+1)(2x-1)=0.

2x+1=0或2x-1=0,
解得
解得
x1=2,x2=-1.
用配方法解下列方程:
解:(1)移项,得
x2+10x=-9.
(1)x²+10x+9=0 ;
配方,得
x2+10x+5²=-9+5²,
(2)x²+6x-4=0;
(3)x²+4x+9=2x+11.
(x+5)²=16.
由此可得
x+5=±4,
x1=-1,x2=-9.
随堂练习
用配方法解下列方程:
解:(2)移项,得
(3)3x²-6x=-3;
因式分解,得
(4)4x²-121=0;
( x-4-5 + 2x )( x-4 + 5-2x ) = 0.
(5)3x(2x+1)=4x+2;
则有 3x-9 = 0 或 1-x = 0 ,
(6)(x-4)²=(5-2x)².
x1 = 3, x2 = 1.
练习
快速回答:下列各方程的根分别是多少?
之间有什么关系?


( )²
4.x²+px+____=(x+__)²
.

一元二次方程100道计算题练习附答案

一元二次方程100道计算题练习附答案

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

一元二次方程应用题

一元二次方程应用题
20
练习:
mn% 1、浓度为m% 的盐酸n千克,含纯盐酸--------mn 千克;若再加p千克水,此时浓度为 n p % 。
2、将一升水加入到硫酸和水的混合液中, 得到新的混合液含硫酸20%,再将一升硫酸 加入到新的混合液中,如果使混合液含硫酸 1 33 %,在原混合液中含硫酸的百分比25% 。 3
资金增长 河南省中考题 率问题
2、某商店从厂家以每件21元的价格购进一 批商品,该商品可以自行定价。若每件商品 售价为a元,则可卖出(350-10a)件,但物价 局限定每件商品加价不能超过进价的20%。 商店计划要赚400元,需要卖出多少件商品? 每件商品应售价多少元?
x 2 52 x 100 0, x1 503、建造成一个长方体形的水池,原计划水 池深3米,水池周围为1400米,经过研讨,修 改原方案,要把长与宽两边都增加原方案中的 宽的2倍,于是新方案的水池容积为270万米3, 求原来方案的水池的长与宽各是多少米?
例3、有一个两位数,十位数字比个位数 字大3,而此两位数比这两个数字之积的 二倍多5,求这个两位数。
解:设个位上的数为x,则十位上的数为 x+3,根据题意得:
10(x+3)+x-2x(x+3)=5
解得: x1=5 ∴ x+3=8 x2=- 5/2(舍去)
答:所求两位数为85.
三、课堂练习:
1、两个连续整数的积是210,则这两个 数是 14,15或 -4,-15 。 2、已知两个数的和等于12,积等于32, 则这两个数是 4,8 。 3、一个六位数,低位上的三个数字组成的 三位数是a ,高位上的三个数是b,现将a,b 互换,得到的六位数是_____________。 1000a+b 4、三个连续整数两两相乘后,再求和,得 362,求这三个数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档