2020年全国初中数学竞赛试题汇编及参考答案-《数学周报》杯二
2020年七年级数学竞赛试卷及答案解析

第 1 页 共 11 页2020年七年级数学竞赛试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A .10b +aB .baC .100b +aD .b +10a2.(3分)设x 为有理数,若|x |=x ,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数3.(3分)某地区一天三次测量气温如下,早上是﹣8℃,中午上升了4℃,半夜下降了14℃,则半夜的气温是( ) A .﹣15℃B .2℃C .﹣18℃D .﹣26℃4.(3分)关于x 的方程2x ﹣4=3m 和x +2=m 有相同的解,则m 的值是( ) A .10B .﹣8C .﹣10D .85.(3分)当3≤m <5时,化简|2m ﹣10|﹣|m ﹣3|得( ) A .13+mB .13﹣3mC .m ﹣3D .m ﹣136.(3分)计算:3+(﹣2)结果正确的是( ) A .1B .﹣1C .5D .﹣57.(3分)观察图中的数轴:用字母a ,b ,c 依次表示点A ,B ,C 对应的数,则1ab,1b−a,1c的大小关系是( )A .1ab<1b−a<1cB .1b−a<1ab<1cC .1c<1b−a<1abD .1c<1ab<1b−a8.(3分)平面内3条直线最多可以把平面分成( ) A .4部分B .5部分C .6部分D .7部分9.(3分)一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是( ) A .20m m−20小时 B .20mm+20小时 C .m−2020m小时 D .m+2020m小时10.(3分)如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是( )。
2020-2021学年全国初中数学竞赛试题(多份)及答案

保证原创精品 已受版权保护2020年全国初中数学竞赛试题(多份)及答案一、选择题1.设a <b <0,a 2+b 2=4ab ,则b a ba 的值为【 】A 、3B 、6C 、2D 、32.已知a =2020x +2020,b =2020x +2020,c =2020x +2020,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于【 】A 、65B 、54C 、43D 、32ABC DEF G保证原创精品 已受版权保护4.设a 、b 、c 为实数,x =a 2-2b +3,y =b 2-2c +3,z =c 2-2a +3,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于05.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72<a <52 B 、a >52 C 、a <72 D 、112<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】A 、22b a B 、22b ab a C 、b a 21D 、a +b二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则bc c a 的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
2020年七年级数学竞赛初赛试卷及答案解析

第 1 页 共 8 页2020年七年级数学竞赛初赛试卷一.填空题(共11小题)1.我们知道:1+2+3=3×(3+1)2=6,1+2+3+4=4×(4+1)2=10,那么1+2+3+…+100= . 2.计算:(−2007)5×(−3.25)5×(−23)5×(−1446)5×(−413)5= .3.设四位数abcd 满足a 3+b 3+c 3+d 3+1=10c +d ,则这样的四位数的个数为 .4.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为 .5.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个.6.已知关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是一整数,那么符合条件的整数a 有个.7.如图,在一个4×4的方格棋盘的A 格里放一枚棋子,如果规定棋子每步只能向上、下或左、右走一格,那么这枚棋子走28步后 到达B 处.(填“一定能”或“一定不能”或“可能”)8.观察下列各等式:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…根据上述等式反映出的规律直接写出第四个等式为 ;猜想第n 个等式(用含n 的代数式表示)为 .9.观察下列一组数,按规律在横线上填写适当的数,−12,36,−512,720,……,第7个数是 .10.满足25{x }+[x ]=25的所有实数x 的和是 (其中[x ]表示不大于x 的最大整数,{x }=x ﹣[x ]表示x 的小数部分).11.两个多位正整数,若它们各数位上的数字之和相等,则称这两个多位数互为调和数”例如:49与76,因为4+9=7+6=13,所以49与76互为“调和数”;又如:225与18,因。
2020年全国初中数学联赛(初三组)初赛试卷含答案

F第2题图EDBAC第2题图2020年全国初中数学联赛(初三组)初赛试卷(考试时间:2020年3月4日下午3:00—5:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)1、已知实数a 、b 满足31|2||3|=+-+-+-a a b a ,则b a +等于( ) A 、1-B 、2C 、3D 、52、如图,点D 、E 分别在ABC ∆的边AB 、AC 上,BE 、CD 相交于点F ,设四边形EADF 、BDF ∆、BCF ∆、CEF ∆的面积分别为1S 、2S 、3S 、4S ,则31S S 与42S S 的大小关系为( )A 、4231S S S SB 、4231S S S S =C 、4231S S S SD 、不能确定3、对于任意实数a ,b ,c ,d ,有序实数对(a ,b )与(c ,d )之间的运算“*”定义为:()*b a ,()=d c ,()bc ad bd ac +-,.如果对于任意实数m ,n 都有()*n m ,()=y x ,()m n -,,那么()y x ,为( )A 、(0,1)B 、(1,0)C 、(-1,0)D 、(0,-1)4、如图,已知三个等圆⊙1O 、⊙2O 、⊙3O 有公共点O ,点A 、B 、C 是这些圆的其他交点,则点O 一定是ABC ∆的( )A 、外心B 、内心C 、垂心D 、重心5、已知关于x 的方程()0|2|422=----k x x 有四个根,则k 的范围为( ) A 、01 k -B 、04 k -C 、10 kD 、40 k6、设在一个宽度为w 的小巷内搭梯子,梯子的脚位于P 点,小巷两边的墙体垂直于水平的地面。
将梯子的顶端放于一堵墙的Q 点时,Q 离开地面的高度为k ,梯子的倾斜角为︒45,将该梯子的顶端放于另一堵墙的R 点时,R 离开地面的高度为h ,梯子的倾斜角为︒75,则小巷的宽度w 等于( )A 、hB 、kC 、hkD 、2kh + 二、填空题(本大题满分28分,每小题7分) 7、化简3232-++的值为 .8、如果关于x 的实系数一元二次方程()033222=++++k x k x 有两个实数根α、β,那么()()2211-+-βα的最小值是 .9、设四位数abcd 满足b d c a d +++=101001000103,则这样的四位数有 个. 10、如图,MN 是⊙O 的直径,2=MN ,点A 在⊙O 上,︒=∠30AMN ,B 为⌒AN 的中点,P 是直径MN 上一动点,则PB PA +的最小值为 .三、(本大题满分20分)11、设实数a ,b ,c 满足:0≠abc 且()()22223214c b a c b a ++=++,求bcac ab c b a ++++22232的值。
2020-2021学年全国初中数学竞赛试题(含答案)

2020年全国初中数学竞赛试题(含答案)考试时间 2020年4月2日上午 9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A )36 (B )37 (C )55 (D )902.已知21 m ,21 n ,且)763)(147(22 n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )93.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y 上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2(D )h >24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2020 (B )2020 (C )2020 (D )20205.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QA QC的值为( )(A )132 (B )32(C )23 (D )23 二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2020,c -a =2020.若a <b ,则a +b +c 的最大值为 .7.如图,面积为c b a 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则b ca 的值等于 .8.正五边形广场ABCDE 的周长为2020米.甲、乙两人分别从A 、C 两点同时出发,沿A !’B !’C !’D !’E !’A !’…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a <1,且满足183029302301 a a a ,则 a 10的值等于 .( x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分)11.已知a bx,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312 x .试写出一个满足条件的x ;(1)(第7题图)ABCDGFE求所有满足条件的x .(2)12.设a ,b ,c 为互不相等的实数,且满足关系式14162222 a a c b ①542 a a bc ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE·AC=CE·KB .A14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2020年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
数学周报杯全国初中数学竞赛试题及答桉

数学周报杯全国初中数学竞赛试题及答桉数学周报杯全国初中数学竞赛试题及答案第一题:(本题20分)请在横线上填入一个整数,使等式成立。
8 ÷ 4 + 2 × 3 - 6 = ______解答:为了计算这个等式,我们必须按照特定的顺序进行运算。
根据数学中的运算法则,乘法和除法具有高于加法和减法的优先级。
所以我们首先计算乘法和除法,然后再进行加法和减法。
按照这个顺序,我们可以解答这道题目。
首先,计算8 ÷ 4得到2。
然后,计算2 × 3得到6。
最后,计算6 -6得到0。
因此,空格应填入整数0。
第二题:(本题25分)如果a = 3, b = 4, c = 5,请判断下列等式的真假。
(a + b) × c = a × c + b × c解答:根据等式,我们可以将等式两边展开计算。
左边的等式为 (3 + 4) × 5 = 7 × 5 = 35。
右边的等式为 3 × 5 + 4 × 5 = 15 + 20 = 35。
由此可见,左边的等式等于右边的等式,所以等式成立,答案为真。
第三题:(本题30分)某班有26个学生,其中男生和女生的比例为5:7。
求这个班级中男生的人数。
解答:题目给出男生和女生的比例为5:7,我们知道比例是可以化简的,所以我们可以将5和7都除以它们的最大公约数(即5)得到1和7/5。
这表示男生和女生的实际人数的比例为1:7/5。
根据题目,这个班级总共有26个学生,所以我们可以设男生的人数为x。
然后根据比例,女生的人数为7/5x。
根据题目条件,男生人数x和女生人数7/5x的和等于总人数26。
所以我们可以列出方程:x + 7/5x = 26我们先将7/5这个分数转化为小数,得到7/5 = 1.4。
现在我们将方程改写为:x + 1.4x = 26合并同类项,得到:2.4x = 26再将26除以2.4,得到:x ≈ 10.83由于人数必须是整数,所以男生的人数应该是最接近10.83的整数,即11人。
初中数学“《数学周报》杯”全国初中数学竞赛考试题

xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:设,则代数式的值为( ).(A)-6 (B)24 (C)(D)试题2:在同一直角坐标系中,函数()与()的图象大致是(A)(B)(C)(D)试题3:在等边三角形ABC所在的平面内存在点P,使⊿PAB、⊿PBC、⊿PAC都是等腰三角形.请指出具有这种性质的点P的个数()(A)1 (B)7 (C)10 (D)15评卷人得分若,,且满足,则的值为( ).(A)1 (B)2 (C)(D)试题5:设,则的整数部分等于( ).(A)4 (B)5 (C)6 (D)7试题6:若a是一个完全平方数,则比a大的最小完全平方数是 . 。
试题7:若关于的方程有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则的取值范围是 .试题8:一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是 .试题9:如图,点为直线上的两点,过两点分别作y轴的平行线交双曲线()于两点. 若,则的值为 .如图,在Rt△ABC中,斜边AB的长为35,正方形CDEF内接于△ABC,且其边长为12,则△ABC的周长为 .试题11:已知:不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,试求a、b的值。
试题12:已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值. 试题13:如图,点为轴正半轴上一点,两点关于轴对称,过点任作直线交抛物线于,两点.(1)求证:∠=∠;(2)若点的坐标为(0,1),且∠=60º,试求所有满足条件的直线的函数解析式.试题14:如图,△ABC中,,.点P在△ABC内,且,求△ABC的面积.试题15: A.试题1答案: -6试题2答案: C.试题3答案: C.试题4答案: C试题5答案: A试题6答案:试题7答案: 3<m≤4.试题8答案: 1/9试题9答案: 6试题10答案:84试题11答案:解:设方程的两个根为,其中为整数,且≤,则方程的两根为,由题意得,两式相加得,即,所以或解得或又因为所以;或者,故,或29.试题12答案:解:(1)如图,分别过点作轴的垂线,垂足分别为.设点的坐标为(0,),则点的坐标为(0,-).设直线的函数解析式为,并设的坐标分别为,.由得,于是,即.于是又因为,所以.因为∠∠,所以△∽△,故∠=∠.(2)设,,不妨设≥>0,由(1)可知∠=∠,=,=,所以=,=.因为∥,所以△∽△.于是,即,所以.由(1)中,即,所以于是可求得将代入,得到点的坐标(,).再将点的坐标代入,求得所以直线的函数解析式为.根据对称性知,所求直线的函数解析式为,或. 试题13答案:解:如图,作△ABQ,使得则△ABQ∽△ACP .由于,所以相似比为2.于是..由知,,于是.所以,从而.于是.故.试题14答案:11试题15答案:1。
“数学周报杯”2020-2021学年全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2020年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.方程组12,6x y x y的解的个数为( ).(A )1 (B ) 2(C ) 3 (D )4答:(A ).解:若x ≥0,则12,6,x y x y于是6y y ,显然不可能.若0x ,则 12,6,x y x y于是18y y ,解得9y ,进而求得3x .所以,原方程组的解为,9,3y x 只有1个解.故选(A ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ).(A ) 14 (B ) 16 (C )18 (D )20答:(B ).解:用枚举法:红球个数 白球个数 黑球个数 种 数5 2,3,4,5 3,2,1,0 44 3,4,5,6 3,2,1,0 43 4,5,6,7 3,2,1,0 42 5,6,7,8 3,2,1,0 4所以,共16种.故选(B ).3.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心答:(B ).解: 如图,连接BE ,因为△ABC 为锐角三角形,所以BAC ,ABE 均为锐角.又因为⊙O 的半径与△ADE的外接圆的半径相等,且DE 为两圆的公共弦,所以BAC ABE .于是,2BEC BAC ABE BAC.若△ABC 的外心为1O ,则12BO C BAC ,所以,⊙O 一定过△ABC 的外心.故选(B ).4.已知三个关于x 的一元二次方程02 c bx ax ,02 a cx bx ,02 b ax cx 恰有一个公共实数根,则222a b c bc ca ab 的值为( ).(A ) 0 (B )1 (C )2 (D )3答:(D ).解:设0x 是它们的一个公共实数根,则0020 c bx ax ,0020 a cx bx ,0020 b ax cx .把上面三个式子相加,并整理得200()(1)0a b c x x .因为22000131()024x x x ,所以0a b c .于是222333333()a b c a b c a b a b bc ca ab abc abc3()3ab a b abc.故选(D ).5.方程323652x x x y y 的整数解(x ,y )的个数是( ). (A )0 (B )1 (C )3 (D )无穷多答:(A ).解:原方程可化为2(1)(2)3(1)(1)2x x x x x y y y (),因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的.所以,原方程无整数解.故选(A).二、填空题(共5小题,每小题6分,满分30分)6.如图,在直角三角形ABC 中,90ACB ,CA =4.点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB 分成两部分,则这两部分面积之差的绝对值是 .答:4.解:如图,设AC 与BP 相交于点D ,点D 关于圆心O 的对称点记为点E ,线段BP 把图形APCB 分成两部分,这两部分面积之差的绝对值是△BEP 的面积,即△BOP 面积的两倍.而1122222BPO S PO CO .因此,这两部分面积之差的绝对值是4.7.如图, 点A ,C都在函数0)y x 的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为.答:(,0).解:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E ,F .设OE =a ,BF =b , 则AE,CF,所以,点A ,C 的坐标为(a),(2a +bb ),所以2(2)a a b解得a b 因此,点D的坐标为(0).8.已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数233y x a x 的图象与线段AB 恰有一个交点,则a 的取值范围是 .答:1 ≤12a ,或者3a 解:分两种情况:(Ⅰ)因为二次函数 233y x a x 的图象与线段AB 只有一个交点,且点A ,B 的坐标分别为(1,0),(2,0),所以032)3(231)3(122 a a ,得112a .由031)3(12 a ,得1a ,此时11 x ,32 x ,符合题意;由032)3(22 a ,得12a ,此时21 x ,232 x ,不符合题意.(Ⅱ)令 2330x a x ,由判别式0,得3a .当3a时,12x x,不合题意;当3a12x x ,符合题意.综上所述,a 的取值范围是1 ≤12a,或者3a9.如图,90A B C D E F G n ,则n = . 答:6.解:如图,设AF 与BG 相交于点Q ,则AQG A D G ,于是A B C D E F GB C E F AQGB C E F BQF540690 .所以,n =6.10.已知对于任意正整数n ,都有312n a a a n L ,则 23100111111a a aL .答:33100.解:当n ≥2时,有3121n a a a a n n ,3121(1)n a a a n L ,两式相减,得 2331n a n n ,所以 ),111(31)1(3111n n n n a n,4,3,2 n 因此 23100111111a a a L 11111111(1)(()32323399100 L 1133(1)3100100 .三、解答题(共4题,每小题15分,满分60分)11(A ).已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线214y x 上的一个动点.(1)判断以点P 为圆心,PM 为半径的圆与直线1y 的位置关系;(2)设直线PM 与抛物线214y x 的另一个交点为点Q ,连接NP ,NQ ,求证:PNM QNM .解:(1)设点P 的坐标为2001(,)4x x ,则PM20114x ;又因为点P 到直线1y 的距离为220011(1)144x x ,所以,以点P 为圆心,PM 为半径的圆与直线1y 相切.…………5分(2)如图,分别过点P ,Q 作直线1y 的垂线,垂足分别为H ,R .由(1)知,PH =PM ,同理可得,QM=QR .因为PH ,MN ,QR 都垂直于直线1y ,所以,PH ∥MNQM MP RN NH ,所以QR PH RN HN ,因此,Rt △PHN ∽Rt △QRN .于是HNP RNQ ,从而PNM QNM .…………15分12(A ).已知a ,b 都是正整数,试问关于x 的方程21()02x abx a b 是否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.解:不妨设a ≤b ,且方程的两个整数根为12,x x (1x ≤2x ),则有1212,1(),2x x ab x x a b 所以 12121122x x x x a b ab ,124(1)(1)(21)(21)5x x a b .…………5分因为a ,b 都是正整数,所以x 1,x 2均是正整数,于是,11x ≥0,21x ≥0,21a ≥1,21b ≥1,所以12(1)(1)0,(21)(21)5,x x a b 或.1)12)(12(,1)1)(121b a x x ( (1)当12(1)(1)0,(21)(21)5x x a b 时,由于a ,b 都是正整数,且a ≤b ,可得a =1,b =3,此时,一元二次方程为2320x x ,它的两个根为11x ,22x .(2)当12(1)(1)1,(21)(21)1x x a b 时,可得a =1,b =1,此时,一元二次方程为210x x ,它无整数解.综上所述,当且仅当a =1,b =3时,题设方程有整数解,且它的两个整数解为11x ,22x . ……………15分13(A ).已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B 相切.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作AB 的垂线,垂足分别为,E F ,则CE ∥DF .因为AB 是⊙O 的直径,所以90ACB ADB .在Rt △ABC 和Rt △ABD 中,由射影定理得22PA AC AE AB ,22PB BD BF AB .……………5分两式相减可得22PA PB AB AE BF ,又22()()PA PB PA PB PA PB AB PA PB ,于是有 AE BF PA PB ,即 PA AE PB BF ,所以PE PF ,也就是说,点P 是线段EF 的中点.因此,MP 是直角梯形CDFE 的中位线,于是有MP AB ,从而可得MP 分别与⊙A 和⊙B 相切.……………15分14(A ).(1)是否存在正整数m ,n ,使得(2)(1)m m n n ?(2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得()(1)m m k n n ?解:(1)答案是否定的.若存在正整数m ,n ,使得(2)(1)m m n n ,则22(1)1m n n ,显然1n ,于是2221(1)n n n n ,所以,21n n 不是平方数,矛盾. ……………5分(2)当3k 时,若存在正整数m ,n ,满足(3)(1)m m n n ,则2241244m m n n ,22(23)(21)8m n ,(2321)(2321)8m n m n ,(1)(2)2m n m n ,而22m n ,故上式不可能成立.………………10分当k ≥4时,若2k t (t 是不小于2的整数)为偶数,取22,1m t t n t ,则 2242()()()m m k t t t t t t ,2242(1)(1)n n t t t t ,因此这样的(m ,n )满足条件.若2k t +1(t 是不小于2的整数)为奇数,取222,22t t t t m n ,则 224321()(21)(22)224t t t t m m k t t t t t , 2243221(1)(22)224t t t t n n t t t t ,因此这样的(m ,n )满足条件.综上所述,当3k 时,答案是否定的;当k ≥4时,答案是肯定的.……………15分注:当k ≥4时,构造的例子不是唯一的.11(B ).已知抛物线1C :234y x x 和抛物线2C :234y x x 相交于A ,B 两点. 点P 在抛物线1C 上,且位于点A 和点B 之间;点Q 在抛物线2C 上,也位于点A 和点B 之间.(1)求线段AB 的长;(2)当PQ ∥y 轴时,求PQ 长度的最大值.解:(1)解方程组2234,34,y x x y x x 得 112,6,x y 222,6,x y 所以,点A ,B 的坐标分别是(-2,6),(2,-6).于是AB .…………5分(2)如图,当PQ ∥y 轴时,设点P ,Q 的坐标分别为)43,(2 t t t , )43,(2 t t t , 22t ,因此 PQ22(4)t ≤8,当0t 时等号成立,所以,PQ 的长的最大值8.……………15分12(B ).实数a ,b ,c 满足a ≤b ≤c ,且0ab bc ca ,abc =1.求最大的实数k ,使得不等式a b≥k c恒成立.解:当a b,c 时,实数a ,b ,c 满足题设条件,此时k ≤4. ……………5分下面证明:不等式a b ≥4c 对满足题设条件的实数a ,b ,c 恒成立.由已知条件知,a ,b ,c 都不等于0,且0c .因为2110,0ab a b c c ,所以a ≤b 0 .由一元二次方程根与系数的关系知,a ,b 是一元二次方程22110x x c c的两个实数根,于是414c c ≥0,所以 3c ≤14.……………10分因此21()a b a b c ≥44c c . ……………15分13(B ).如图,点E ,F 分别在四边形ABCD 的边AD ,BC 的延长线上,且满足DE AD CF BC .若CD ,FE 的延长线相交于点G ,△DEG 的外接圆与△CFG 的外接圆的另一个交点为点P ,连接PA ,PB ,PC ,PD .求证:(1)AD PD BC PC ;(2)△PAB ∽△PDC .证明:(1)连接PE ,PF ,PG ,因为PDG PEG,所以PDC PEF .又因为PCG PFG ,所以△PDC ∽△PEF ,于是有 ,PD PE CPD FPE PC PF ,从而 △PDE ∽△PCF ,所以PD DE PC CF .又已知DE AD CF BC ,所以,AD PD BC PC . ………………10分(2)由于PDA PGE PCB ,结合(1)知,△PDA ∽△PCB ,从而有,PA PD PB PC DPA CPB ,所以APB DPC ,因此△PAB ∽△PDC . ………………15分14(Bu ,v 满足1≤u v.证明:设任意△ABC 的三边长为a ,b ,c ,不妨设a b c.若结论不成立,则必有a b,b c .………………5分记,b c s a b t c s t ,显然,0s t ,代入得cs t c s,11s t c c s c,令,s t x y c c ,则11x y x.由a b c ,得c s t c s c ,即t c ,于是1t y c .由得1b c s x c c,由,得y≥1(1)x1 ,此式与1 y 矛盾.从而命题得证.………………15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国初中数学竞赛试题汇编及参考答案
《数学周报》杯二
一、选择题(共5小题,每小题6分,满分30分.每小题均给出了代号
为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)
(1)已知实数x y ,满足 42424233y y x x ,,则444y x 的值为( A
).
(A )7 (B )1132 (C )713
2 (D )5
解:因为20x ,2
y ≥0,由已知条件得212444311384x 2114311322
y ,所以444y x 22233y x 2226y x 7.
(2)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先
后投掷2次,若两个正面朝上的编号分别为n m ,,则二次函数
2y x mx n 的图象与x 轴有两个不同交点的概率是( C ).
(A )512 (B )49 (C )1736 (D )1
2解:基本事件总数有6×6=36,即可以得到36个二次函数.
由题意知 =24m n >0,即2m >4n .
通过枚举知,满足条件的m n ,有17对. 故
1736P .
(3)有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则
这6个点可以确定的不同直线最少有( B ).
(A )6条 (B ) 8条 (C )10条 (D )12条
解:如图,大圆周上有4个不同的点A ,B ,C ,D ,
两两连线可以确定6条不同的直线;小圆周上的两个
点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD
的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同
于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直
线不少于8条.当这6个点如图所示放置时,恰好可以确
定8条直线.所以,满足条件的6个点可以确定的直线最
少有8条.
(4)已知AB 是半径为1的圆O 的一条弦,
且1AB a .以AB 为一边在圆O 内作正△ABC ,
点D
为圆O 上不同于点A 的一点,且DB AB a ,DC 的
延长线交圆O 于点E ,则AE 的长为( B ).
(A 52 (B )1
(C 3
2(D )a
解:如图,连接OE ,OA ,OB . 设D ,
则120ECA EAC .又因为
1160180222ABO ABD 120 ,所以ACE △≌ABO △,于是1AE OA .
(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其
中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法
有( D ).
(A )2种 (B )3种 (C )4种 (D )5种
解:设12345a a a a a ,是1,2,3,4,5的一个满足要求的排列.
首先,对于
1234a a a a ,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.
又如果i a (1≤i ≤3)是偶数,1i a 是奇数,则2i a 是奇数,
这说明一个偶数后面一定要接两个或两个以上的奇数,
除非接的这个奇数是最后一个数.
所以12345a a a a a ,只能是:偶,奇,奇,偶,奇,有如下5种情形满
足条件:
2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;
4,3,1,2,5; 4,5,3,2,1.
二、填空题(共5小题,每小题6分,满分30分)
(6)对于实数u ,v ,定义一种运算“*”为:u v uv v .若关于x 的方程
1()4x a x
有两个不同的实数根,则满足条件的实数a 的取值范围是
.【答】0a ,或1a .
解:由1()4x a x ,得21(1)(1)04a x a x ,
依题意有 210(1)(1)0a a a ,,解得,0a ,或1a .
(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3
分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路
公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.
【答】4.
解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶
的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则s y x 66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x 33. ②
由①,②可得 x s 4 ,所以 4 x s .
即18路公交车总站发车间隔的时间是4分钟.。