圆锥的体积 圆柱与圆锥PPT精品课件
合集下载
《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)

V=sh
S h
教学新知
教学新知
试一试:一个圆柱形零件,底面半径是5厘米,高是8厘米。 这个零件的体积是多少立方厘米?
V=sh=5²π×8=628(cm³)
教学新知
练一练:
1.计算圆柱的体积。(单位:cm)
V=sh=4²π×8=401.92(cm³) V=sh=3²π×6=169.56(cm³)
V=sh=1.5²π×0.5×2=7.065(m³)
8.两个底面积相等的圆柱,一个高是4.5分米,体积是81立方分米。另 一个高是3分米,它的体积是多少立方分米?
s=V1÷h1=81÷4.5=18(dm²) V2=sh2=18×3=54(m³)
课堂练习
9.把3个高相等、底面半径都是10厘米的圆柱形盒子叠放在 一起,如图 所示,拿走1个盒子,表面积就减少314平方厘米。每个盒子的体积是 多少立方厘米?
个近似的长方体。拼成的长方体的底面积等于圆柱的(底面积), 高就是圆柱的( 高 )。 (2)用字母V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高, 圆柱的体积公式可以写成(V=sh)。 (3)一个圆柱的底面积是0.6平方分米,高是3.5分米,体积是(2.1)立 方分米。
课后习题
2.—根木料如图所示,求这根木料的体积。(单位:m)
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
体积/m3
圆 柱
0.6
1.2
0.25
3
0.72 0.75
《圆柱与圆锥——圆锥的体积》数学教学PPT课件(2篇)

等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
等底等高
通过实验我知道了:圆柱 的体积等于和它等底等高 的圆锥的体积的 3 倍。
圆柱体的体积是与它等底等高的圆锥体体积的3倍,圆锥体的体积是与 它等底等高的圆柱体体积的三分之一。 那么圆锥体积的计算公式: 圆锥体积=底面积×高×13
V=1/3sh=1/3×3.6×2=2.4(m³) h=2.4÷4÷2=0.3(m)
8.将一个底面直径是20cm,高为10cm的金属圆锥体,全部浸没在直径 是40cm的圆柱形水槽中,水槽水面会升高多少cm?
V=1/3sh=1/3×100×3.14×10=3140/3(cm³) h=V÷s=3140/3÷20²÷3.14=5/6(cm)
2.把一个底面直径是2分米,高是3分米的圆柱体削成一个最大 的圆锥体削去(6.28)立方分米。
3.一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆 柱体的高6厘米,那么圆锥体的高是 ( 18 )厘米。
课后习题
4.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的
体积是(24)立方米,圆锥的体积是( 8 )立方米。
装满一车沙,卸后沙堆成—个高是5米的圆锥形,它的底面积是多
少平方米?
V长方体=4×1.5×4=24(m³)
S=V长方体÷h÷1/3=14.4(m²)
2.—堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重
1.5吨。这堆沙重多少吨?
V=⅓sh=⅓×(25.12÷6.28)²×3.14×1.5=25.12(m³)
V圆柱=sh=3²×3.14×5=141.3(dm³)
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
圆柱和圆锥的体积

长方体的底面积等于圆柱体的底面积 长方体的高等于圆柱体的高
长方体的体积=长×宽×高 圆柱的体积=底面积×高 V=Sh V=πr ² h
20厘米 25厘米
20)2=314(cm2) (1)水桶的底面积:3.14×( 2 3 (2)水桶的容积: 314×25=7850(cm )
4分米 10分米
把一个棱长是6厘米的正方体木 块,加工成一个最大的圆锥体, 圆锥的体积是多少立方厘米?
0.8米
求各圆柱的 体积。
0.5分米
求下面各圆柱的体积。
1、底面半径3cm,高5cm。 2、底面直径8m,高10m。 3、底面周长25.12dm,高2dm。
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积= 底面积
高
高
圆柱体积=底面积 圆锥体积= 底面积
高
高
1 3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的三分之一 等底底面周 长31.4米,高15米,这个玻璃罩的容积 是多少立方米?(玻璃厚度忽略不计)
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
一个圆柱的高是15厘米,底面半 径是5厘米,它的表面积是多少?
苏教版小学六年级下册数学课件 《圆柱的体积》圆柱和圆锥PPT(第3课时)

0.314m³ 中单位
不一致,要将结
果立方 7.把一块长、宽、高分别是5厘d米m改、写3.1为4立dm方、2dm的长
方体铁块,熔铸成
米。
一个底面半径是2dm的圆柱形铁块,这个圆柱形铁块
的高是多少分2米.5?dm
提示:长方体体 积与圆柱体积相
等。
课堂练 习
8.一根圆柱形钢材长2米,截成3段小圆柱后,
试一试:一个圆柱形水杯的容积是1.6升,从里面量, 平方分米。用这个水杯装3/4杯水,水面高多少分米?
先算出3/4杯水的体积是多少。所以:
V=¾×1.6=1.2(l) 高等于体积除以底面积,所以:
h=V÷s=1.2÷1.2=1(dm)
教学新 知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了4厘米, 能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么? 计算出这个圆钢的体积? (3)这题还可以怎样思考?
试一试:一个圆柱形水池,从里面量,底面直径是8
米,深3.5米。
(1)水池里最多能蓄水多少吨?(1立方米水重1吨)
(2)在水池的底面和四周抹上水泥,抹水泥部分的
(面积1)是V多=少s?h=4²π×3.5=175.84(m³)175.84m³=17 (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新 知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米, 横截面是一个半径 2米的(半1)圆搭形建。这个大棚大约要用多少平方米的塑料薄膜?
S=πrh+πr²=3.14×2×15+3.14×2²=106.76(m
圆柱和圆锥的体积

01
02
03
底面形状相同
圆柱和圆锥的底面都是圆 形。
高与底面垂直
圆柱和圆锥的高都与底面 垂直,且都位于底面的中 心。
侧面展开图相似
圆柱和圆锥的侧面展开图 都是长方形或扇形。
圆柱和圆锥的体积关系公式
圆柱体积公式
$V_{cylinder} = pi r^2 h$
圆锥体积公式
$V_{cone} = frac{1}{3} pi r^2 h$
这个公式是由圆的面积公式和高度相 乘得到的。
圆柱体积公式的推导
首先,我们知道圆的面积公式是:A = πr²。 然后,将这个公式乘以高度h,得到圆柱体的体积公式:V = πr²h。
02 圆锥的体积
圆锥体积的定义
圆锥体积是指圆锥所占空间的大小。 圆锥体积可以通过底面积和高来计算。
圆锥体积的公式
圆锥体积的公式为:V = (1/3)πr²h,其中r为底面半径,h为高。
圆柱和圆锥的体积
contents
目录
• 圆柱的体积 • 圆锥的体积 • 圆柱和圆锥的体积关系 • 圆柱和圆锥的体积的应用
01 圆柱的体积
圆柱体积的定义
01
圆柱体积是指圆柱体所占空间的 大小。
02
圆柱体积是高度和底面积的乘积 。
圆柱体积的公式
圆柱体积的公式是:V = πr²h,其中r 是Байду номын сангаас面半径,h是高。
体积关系
$V_{cylinder} = 3V_{cone}$
圆柱和圆锥体积关系的证明
证明方法一:利用几何图形推导
1. 将圆锥的底面平放在桌面上, 使其与桌面紧密接触。
2. 将圆锥的侧面展开成扇形, 并连接扇形的弧边与圆锥的顶点。
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,
圆柱圆锥圆台体积和表面积.ppt

1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)所铺公路的长度 23.55÷10÷0.02
=2.355÷0.02 =117.75(m) 答:能铺117.75m。
四、布置作业
作业:第35页练习六,第7题。 第36页练习六,第8题。
• • • • • •
• • • • • • •
● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 ──爱因斯坦 ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有 益。──高尔基 ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列 宁 ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 ● 完成工作的方法,是爱惜每一分钟。──达尔文 ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
三、知识应用
(二)解决问题
1. 填空 (1)一个圆柱的体积是75.36m³ ,与它等底等高的圆锥的体积是( 25.12)m³ 。 1 75.36× =25.12(m³) 3 (2)一个圆锥的体积是141.3m³ ,与它等底等高的圆柱的体积是(423.9)m³ 。 141.3×3=423.9(m³ )
三、知识应用
2. 一个圆柱与一个圆锥的底面积和体积分别相等。 已知圆柱的高是4dm,圆锥的高是多少?
想一想,当一个圆柱与一 个圆锥的底面积和体积分 别相等时,圆锥的高与圆 柱的高又是什么关系呢?
4×3=12(dm) 答:圆锥的高是12dm 。
三、知识应用
3. 一个圆锥形沙堆,底面积是28.26m2,高是2.5m。用这堆 沙在10m宽的公路上铺2cm厚的路面,能铺多少米? 2cm=0.02m (1)沙堆的体积: 转换前后沙子的体积不变,所 1 以铺成的公路路面的体积等于 请你想一想,转换前后沙子 ×28.26×2.5 3 圆锥形沙堆的体积。 的体积是否发生变化? =9.42×2.5 =23.55(m³ )
二、探究新知
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆 沙子的体积大约是多少?如果每立方米沙子重1.5t,这堆沙 子大约重多少吨?(得数保留两位小数。) (1)沙堆底面积: 4 2 3.14 ×( )=3.14×4=12.56(m2) 2 就要先求出这堆沙的体积, (2)沙堆的体积: 要求出这堆沙子大约重多少吨, 也就是圆锥的体积。 1 ×12.56×1.2=5.024≈5.02(m³ ) 就要先求什么? 3 (3)沙堆重: 5.02×1.5=7.53(t) 答:这堆沙子大约重7.53吨。
圆柱与圆锥
圆锥的体积 (例2、例3)
一、复习旧知
我们已经学会计算圆柱的体积,请你 回忆一下如何计算圆柱的体积?
二、探究新知
你能猜测一下等底、等 高的圆柱和圆锥的体积 圆锥的体积与圆柱的体积有 之间的关系吗? 没有关系呢? 圆柱的底面是圆,圆锥的底面也是圆。 如何计算圆锥的体积呢?
Байду номын сангаас
二、探究新知
4m
1.2m
三、知识应用
(一)做一做
1. 一个圆锥形的零件,底面积是19cm2,高是12cm, 这个零件的体积是多少? 1 ×19 ×12=76(cm³ ) 3 答:这个零件的体积是76cm³ 。
三、知识应用
(一)做一做
2. 一个用钢铸造成的圆锥形铅锤,底面直径是4cm, 高5cm。每立方厘米钢大约重7.8g。这个铅锤重 多少克?(得数保留整数) (1)铅锤底面积: 4 2 3.14×( )=3.14×4=12.56(cm2) 2 (2)铅锤的体积: 1 ×12.56×5≈21(cm3) 3 (3)铅锤的质量: 21×7.8≈163(g) 答:这个铅锤大约重163克 。
下面就让我们通过实验, 探究一下圆锥与圆柱体积 之间的关系。
(1)各组准备好等底、等高的圆柱、圆锥形容器。
(2)用倒沙子或水的方法试一试。
二、探究新知
我把圆柱装满水, 再往圆锥里倒。 三次正好装满。 正好倒了三次。
(3)通过实验,你发现圆锥的体积与同它等底、等高的 圆柱的体积之间的关系了吗? 1 1 V圆锥 = V圆柱 = Sh 3 3