2021年浙教版七下第三章 整式的乘除测试卷

合集下载

浙教版七年级下册数学第三章 整式的乘除含答案

浙教版七年级下册数学第三章 整式的乘除含答案

浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、下列计算正确的是( )A. a·a=aB. a+a=aC.( ab) =abD. a÷a=a2、下列运算正确的是()A.a 3+a 2=a 5B.a 2÷a 3=aC.2a 3•a 2=2a 5D.(2a 2)3=8a 53、下列计算结果正确的是()A. B. C. D.4、下列计算正确的是()A. B. C. D.5、下列各式中,能用平方差公式计算的是( )A. B. C. D.6、如果,则的值为()A. B. C. D.7、下列运算正确的是()A.a 2•a 5=a 10B.(π﹣3.14)0=0C. ﹣2 =D.(a+b)2=a 2+b 28、下列计算正确的是( )A. B. C.D.9、下列计算中正确的是()A.a 3•a 2=a 6B.(a 3)2=a 9C.a 6÷a 6=0D.a 3+a 3=2a 310、已知,.则的值是()A.9B.7C.5D.1311、下列计算正确的是()A.a+a=2a 2B.a 2•a=2a 3C.(﹣ab)2=ab 2D.(2a)2÷a=4a12、计算(-a3)²的值为( )A.a 5B.a 6C.-a 6D.-a 513、已知a,b,c为非零的实数,则的可能值的个数为()A.4B.5C.6D.714、下列计算正确的是()A.a 2•a 3=a 6B.a 6÷a 3=a 2C.(a 2)3=a 6D.(2a)3=6a 315、数字用科学记数法表示为()A. B. C. D.二、填空题(共10题,共计30分)16、22x+1+4x=48,则x=________.17、若是的因式,则p为=________.18、已知,则(1)=________;(2)=________.19、计算:的结果是________.20、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是________.21、据报道,我国中芯国际公司突破欧美技术封锁,计划年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为________.22、如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式________.23、一个矩形的面积为,若一边长为,则另一边长为________.24、计算:________.25、 ________.三、解答题(共5题,共计25分)26、计算:.27、计算:×﹣4××(1﹣)0.28、若a m=3,a n=5,求a2m+3n和a3m﹣2n的值.29、计算:①(2x)3•(﹣5xy2)②(3x+1)(x+2)③(4n﹣n)2④(x+2y﹣3)(x﹣2y﹣3)⑤先化简,再求值:[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y,其中x=5,y=2.30、化简求值:,其中.参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、C5、B6、C7、C8、B9、D10、C11、D12、B13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

整式的乘除 2020-2021学年浙教版七年级下册单元复习卷(含答案)

整式的乘除 2020-2021学年浙教版七年级下册单元复习卷(含答案)

浙教版七年级下册第3章《整式的乘除》单元复习卷一.选择题1.下列运算正确的是()A.x2•x3=x5B.(x2)3=x5C.6x6÷3x2=2x3D.x3+x3=2x62.下列计算中,能用平方差公式的是()A.(a+2)(﹣a﹣2)B.(﹣3b﹣c)(﹣3b+c)C.(x﹣)(y+)D.(2m+n)(m﹣2n)3.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±64.计算0.752020×(﹣)2019的结果是()A.B.﹣C.0.75D.﹣0.755.如果一个单项式与﹣5ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a3b2c D.ac6.若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6 7.已知a=(﹣3)0,b=,c=(﹣2)﹣2,那么a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b8.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.129.已知a2﹣5=2a,代数式(a﹣2)2+2(a+1)的值为()A.﹣11B.﹣1C.1D.1110.如图(1),在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个长方形,如图(2),此过程可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)2=(a﹣b)2+4ab二.填空题11.计算:(x+y)2﹣x2=.12.计算:(12a3+6a2﹣3a)÷3a=13.若(3m﹣2)0=1有意义,则m的取值范围是.14.已知a m=3,a n=5,则a m+n的值为.15.已知(x+1)(x﹣3)=x2+px﹣3,则p的值为.三.解答题16.(1)÷﹣(﹣2)﹣1+﹣(π﹣3)0;(2)(﹣2)6006×0.1252001;(3)a3•a3+(﹣2a3)2+(﹣a2)3;(4)[(3a﹣b)3]5•[(b﹣3a)2]4;(5)(3a3b2)4+(﹣a4)3•(﹣2b4)2;(6)(x3)2÷(x2)3+x6÷(﹣x2)2÷(﹣x).17.某同学化简(a+2b)2﹣(a+b)(a﹣b)的解题过程如下解:原式=a2+4b2﹣(a2﹣b2)(第一步)=a2+4b2﹣a2﹣b2(第二步)=3b2(第三步)(1)该同学的解答过程从第步开始出现错误.(2)请写出此题正确的解答过程.18.已知(x2+mx﹣3)(2x+n)的展开式中不含x2项,常数项是﹣6.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.19.(1)已知a+b=5,ab=,求下列各式的值:①a2+b2;②(a﹣b)2.(2)若x+y﹣2z+1=0,求9x•27y÷81z的值.20.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.21.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.参考答案一.选择题1.解:A、x2•x3=x5,此选项正确;B、(x2)3=x6,此选项错误;C、6x6÷3x2=2x4,此选项错误;D、x3+x3=2x3,此选项错误.选:A.2.解:A、原式=﹣(a+2)2,不能运用平方差公式进行计算,本选项不符合题意;B、原式=(﹣3b)2﹣c2,即能运用平方差公式进行计算,本选项符合题意;C、x和y不是同一个数,不能运用平方差公式进行计算,本选项不符合题意;D、2m和m不是同一个数,不能运用平方差公式进行计算,本选项不符合题意;选:B.3.解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,选:C.4.解:0.752020×(﹣)2019=====.选:D.5.解:设这个单项式为A,由题意得,A•(﹣5ab)=﹣a2bc,∴A=﹣a2bc÷(﹣5ab)=ac,选:B.6.解:已知等式整理得:x2+x﹣6=x2+ax+b,利用多项式相等的条件得:a=1,b=﹣6,选:D.7.解:a=1,b=3,c=,∴c<a<b,选:C.8.解:∵x﹣y=3,xy=3,∴(x+y)2=(x﹣y)2+4xy=32+4×3=21,选:C.9.解:由题意可知:a2﹣2a=5,原式=a2﹣4a+4+2a+2=a2﹣2a+6=5+6=11选:D.10.解:图(1)中阴影部分的面积为:a2﹣b2,图(2)中阴影部分的面积为(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),选:C.二.填空题11.解:(x+y)2﹣x2=x2+2xy+y2﹣x2=2xy+y2,答案为:2xy+y2.12.解:原式=4a2+2a﹣1.13.解:∵(3m﹣2)0=1有意义,∴3m﹣2≠0,解得:m≠,∴若(3m﹣2)0=1有意义,则m的取值范围:m≠.答案为:m≠.14.解:∵a m×a n=a m+n,∴a m+n=a m×a n=3×5=15.答案为:15.15.解:(x+1)(x﹣3)=x2﹣2x﹣3,∴p=﹣2,答案为:﹣2.三.解答题16.解:(1)÷﹣(﹣2)﹣1+﹣(π﹣3)0=1++4﹣1=4;(2)(﹣2)6006×0.1252001=(23)2002×0.1252001=82001×0.1252001×8=(8×0.125)2001×8=8;(3)a3•a3+(﹣2a3)2+(﹣a2)3=a6+4a6﹣a6=4a6;(4)[(3a﹣b)3]5•[(b﹣3a)2]4=(3a﹣b)15•(3a﹣b)8=(3a﹣b)23;(5)(3a3b2)4+(﹣a4)3•(﹣2b4)2=81a12b8﹣a12•4b8=81a12b8﹣4a12b8=77a12b8;(6)(x3)2÷(x2)3+x6÷(﹣x2)2÷(﹣x)=x6÷x6+x6÷x4÷(﹣x)=1﹣x.17.解:(1)该同学从第一步开始出现错误;答案为:一(2)原式=a2+4ab+4b2﹣(a2﹣b2)=a2+4ab+4b2﹣a2+b2=4ab+5b218.解:(1)原式=2x3+2mx2﹣6x+nx2+mnx﹣3n =2x3+2mx2+nx2+mnx﹣6x﹣3n=2x3+(2m+n)x2+(mn﹣6)x﹣3n,由于展开式中不含x2项,常数项是﹣6,则2m+n=0且﹣3n=﹣6,解得:m=﹣1,n=2;(2)由(1)可知:m=﹣1,n=2,∴原式=m3+n3=(﹣1)3+23,=﹣1+8=7.19.解:(1)①a2+b2=(a+b)2﹣2ab=25+=;②(a﹣b)2=(a+b)2﹣4ab=25+1=26;(2)∵x+y﹣2z+1=0,∴2x+3y﹣4z=﹣2,∴9x•27y÷81z=(32)x•(33)y÷(34)z=32x•33y÷34z=32x+3y﹣4z=3﹣2=20.解:(1)6x2y(﹣2xy+y3)÷xy2,=(﹣12x3y2+6x2y4)÷xy2=﹣12x2+6xy2,当x=2,y=﹣1时,原式=﹣12×22+6×2×(﹣1)2=﹣36;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y)=x2﹣4y2+x2﹣4xy+4y2﹣3x2+xy=﹣x2﹣3xy,当x=﹣2,y=时,原式=﹣(﹣2)2﹣3×(﹣2)×=﹣4+3=﹣1.21.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20.。

浙教版七年级数学下册第3章整式的乘除单元达标测试题(word解析版)

浙教版七年级数学下册第3章整式的乘除单元达标测试题(word解析版)

浙教版七年级数学下册《第3章整式的乘除》单元达标测试题(附答案)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列计算正确的是()A.(2a﹣1)2=4a2﹣1B.3a6÷3a3=a2C.(﹣ab2)4=﹣a4b6D.﹣2a+(2a﹣1)=﹣12.若m、n、p是正整数,则(x m•x n)p=()A.x m•x np B.x mnp C.x mp+np D.x mp•np3.下列各式运算正确的是()A.5a2﹣3a2=2B.a2⋅a3=a6C.(a10)2=a20D.x(a﹣b+1)=ax﹣bx4.若5x=a,5y=b,则52x﹣y=()A.B.a2b C.D.2ab5.计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab56.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④7.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或118.若2a=3,2b=5,2c=15,则()A.a+b=c B.a+b+1=c C.2a+b=c D.2a+2b=c9.若x+m与x+乘积的值不含x项,则m的值为()A.B.4C.﹣D.﹣410.下列计算中,正确的是()A.(﹣2a﹣5)(2a﹣5)=25﹣4a2B.(a﹣b)2=a2﹣b2C.(x+3)(x﹣2)=x2﹣6D.﹣a(2a2﹣1)=﹣2a3﹣a二、填空题(本题共计7小题,每题3分,共计21分,)11.已知2a2+2b2=10,a+b=3,则ab=.12.已知x+y=﹣4,x﹣y=2,则x2﹣y2=.13.已知(x﹣a)(x+a)=x2﹣9,那么a=.14.若n为正整数,且x2n=5,则(3x3n)2﹣45(x2)2n的值为.15.已知x﹣y=5,xy=3,则(x+y)2=.16.有9张边长为a的正方形纸片,9张边长分别为a,b(a<b)的长方形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长为.17.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(本题共计8小题,共计69分,)18.若(x﹣2)x+1=1,求x的值.19.若5x﹣3y+2=0,求(102x)3÷(10x•103y)的值.20.计算:(3x3y2z﹣1)﹣2•(5xy﹣2z3)2.21.计算(1)(﹣a2b3)3•(﹣2a2b)3;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)22.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2023.23.计算(×××…××1)10•(10×9×8×7×…×3×2×1)10.24.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.参考答案一、选择题(本题共计10小题,每题3分,共计30分,)1.解:A、原式=4a2﹣4a+1,不符合题意;B、原式=a3,不符合题意;C、原式=a4b8,不符合题意;D、原式=﹣2a+2a﹣1=﹣1,符合题意,故选:D.2.解:(x m•x n)p=(x m+n)p=x(m+n)p=x mp+np,故选:C.3.解:∵5a2﹣3a2=2a2≠2,故选项A错误;a2⋅a3=a5≠a6,故选项B错误;(a10)2=a20,故选项C正确;x(a﹣b+1)=ax﹣bx+x≠ax﹣bx,故选项D错误;故选:C.4.解:52x﹣y=52x÷5y=5x×5x÷5y已知5x=a,5y=b,所以上式=.故选:A.5.解:(ab2)3=a3b6.故选:A.6.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选:D.7.解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.8.解:∵2a×2b=2a+b=3×5=15=2c,∴a+b=c,故选:A.9.解:(x+m)(x+)=x2+(m+)x+m,∵乘积中不含x项,∴m+=0,即m=﹣.故选:C.10.解:A、(﹣2a﹣5)(2a﹣5)=25﹣4a2,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(x+3)(x﹣2)=x2+x﹣6,错误;D、﹣a(2a2﹣1)=﹣2a3+a,错误,故选:A.二、填空题(本题共计7小题,每题3分,共计21分,)11.解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.12.解:当x+y=﹣4,x﹣y=2时,原式=(x+y)(x﹣y)=﹣4×2=﹣8.故答案为:﹣8.13.解:根据平方差公式,(x﹣a)(x+a)=x2﹣a2,由已知可得,a2=9,所以,a=±=±3.故答案为:±3.14.解:当x2n=5时,原式=9x6n﹣45x4n=9(x2n)3﹣45(x2n)2=9×53﹣45×52=9×53﹣9×53=0.故答案为:0.15.解:将x﹣y=5两边平方得:(x﹣y)2=25,即(x+y)2=x2+y2+2xy=x2+y2﹣2xy+4xy=(x﹣y)2+4xy,把xy=3代入得:(x+y)2=(x﹣y)2+4xy=25+4×3=37.故答案为:37.16.解:假设正方形的边长为xa+yb,其中x、y为正整数.则(xa+yb)2≤9a2+9b2+10ab,x2a2+2xyab+y2b2≤9a2+9b2+10ab,即(9﹣x2)a2+(9﹣y2)b2+(10﹣2xy)ab≥0.∵a<b,∴9﹣y2≥0,y≤3.当y取最大值3时,由10﹣2xy≥0,得x≤1,即x取最大值1.∴拼成得正方形边长最长为:3b+a.故答案为:3b+a.17.解:a2﹣b2=(a+b)(a﹣b).三、解答题(本题共计9小题,共计69分,)18.解:①依题意得:x+1=0,且x﹣2≠0解得x=﹣1.②依题意得:x﹣2=1,即x=3时,也符合题意;③依题意得:当x﹣2=﹣1即x=1时,也符合题意.综上所述,x的值是﹣1或3或1.19.解:5x﹣3y+2=0则5x﹣3y=﹣2.原式=106x÷10x+3y=106x﹣x﹣3y=105x﹣3y=10﹣2=.20.解:原式=3﹣2x﹣6y﹣4z2•25x2y﹣4z6=(×25)•x﹣6+2•y﹣4﹣4•z2+6=.21.解:(1)(﹣a2b3)3•(﹣2a2b)3=﹣a6b9•(﹣8a6b3)=a12b12;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9=a10+a10﹣a10﹣a10=0;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)=2x+2+x2+2x﹣x2﹣5x+x+5=7.22.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x =(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=﹣2023时,原式=1+2023=2022.23.解:(×××…××1)10•(10×9×8×7×…×3×2×1)10=(×××…××1×10×9×8×7×…×3×2×1)10=110=1;24.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。

浙教版七年级下册 第3章 整式的乘除 章节综合测试【含答案】

浙教版七年级下册 第3章 整式的乘除 章节综合测试【含答案】

浙教版七年级下册 第3章 整式的乘除 章节综合测试一、单选题1.下列计算正确的是( )A .B .444326b b b⋅=53155315a a a⋅=C .D .224347a a a+=993322a a ÷=2.计算的结果是( ).20212020133⎛⎫-⨯ ⎪⎝⎭A .B .3C .D .3-13-133.下列运算正确的是( )A .B .C .D .325a a a⋅=235()a a =336a a a+=222()a b a b +=+4.下列运算不正确的是( )A .ab•a 2b =a 3bB .(a 2b 3)2=a 4b 5C .(ab )2=a 2b 2D .3a 2b 3÷ab =3ab 25.计算的符合题意结果是( )()234x -A .B .C .D .616x516x516x-68x6.下列式子,计算结果为的是( )2421x x +-A .B .()()73x x +-()()73x x -+C .D .()()73x x ++()()73x x --7.墨迹覆盖了等式“”中的运算符号,则覆盖的是( )3a()360a a a =≠A .+B .-C .×D .÷8.如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a >b ).把余下的部分剪拼成一个矩形;验证了一个等式,则这个等式是( )A .a 2﹣b 2=(a+b )(a﹣b )B .(a+b )2=a 2+2ab+b 2C .(a﹣b )2=a 2﹣2ab+b 2D .a 2﹣ab =a (a﹣b )9.已知,则( )1a aa a -÷=a =A .3B .1C .D .3或±11-10.如图,用不同的代数式表示图中阴影部分的面积,可得等式( )A .(a +b )2=a 2+2ab +b 2B .(a﹣b )2=a 2+2ab﹣b 2C .(a +b )(a﹣b )=a 2﹣b 2D .(a﹣b )2=a 2﹣2ab +b 2二、填空题11.计算(-2a 2)3÷a 3的结果是  .12.若,则  ,  .()()2530x x a x bx -+=-+a =b =13.若的乘积中不含项,则a 的值为  .()()215x x ax a +-+2x 14.已知,,则的值为 .3m x =9n x =3m nx-三、计算题15.直接写出计算结果:(1)x 2•x 5;(2)(x 3)2;(3)(a+b )(a﹣b ).16.()()222226633m n m n m m --÷-17.先化简,再求值:,其中,.()()3224843x y x y xy x x y -÷--2x =3y =四、解答题18.证明是13的倍数.2491-19.已知,求的值.21a b -=()()()()214a b a b b a a +-+---20.先化简,再求值:,其中,.21(2)4()()2x y x y x y y ⎛⎫⎡⎤+--+÷ ⎪⎣⎦⎝⎭2x =3y =五、综合题21.若且,m 、n 是正整数,则.利用上面结论解决下面的问题:(0m na a a =>1a ≠)m n =(1)如果,求x 的值;528162x x ÷⋅=(2)如果,求x 的值;212224x x +++=22.已知,.()24nm =()23m n a a a ÷=(1)求和的值;mn 2m n -(2)已知,求的值.22415m n -=m n +23.“平方差公式”和“完全平方公式”应用非常广泛,灵活利用公式往往能化繁为简,巧妙解题.请阅读并解决下列问题:(1)问题一:,()()()()x y z x y z A B A B +--+=+-则 ,  ;A =B =(2)计算:;()()2323a b a b -+-+(3)问题二:已知,()()2222x y x y P x y Q+=+-=-+则  ,  ;P =Q =(4)已知长和宽分别为,的长方形,它的周长为14,面积为10,如图所示,求a b 的值.22a b ab ++答案解析部分1.【答案】D【解析】【解答】解:A 、,故A 不符合题意;448326b b b ⋅=B 、,故B 不符合题意;5385315a a a ⋅=C 、,故C 不符合题意;222347a a a +=D 、,故D 符合题意;993322a a ÷=故答案为:D .【分析】利用单项式乘单项式、合并同类项及单项式除以单项式计算方法逐项判断即可。

浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案

浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案

浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案第三章整式的乘除单元检测卷姓名:__________ 班级:__________题号 评分一二三一、选择题(共 9 题;每小题 4 分,共 36 分)1.若(x2+px﹣q)(x2+3x+1)的结果中不含 x2 和 x3 项,则 p﹣q 的值为( A. 11 2.下列计算正确的是( A. (﹣2)3=8 B. 5 ) B. ( )﹣1=3 C. a4•a2=a8 ) D. 24 D. a6÷a3=a2 C. -11 ) D. -143.(mx+8)(2﹣3x)展开后不含 x 的一次项,则 m 为( A. 3 B. C. 124.下列关系式中,正确的是( ) A. B. C. D.5.下列运算正确的是( ) A. a2•a3=a6 B. a5+a5=a10 ) C. -7 ) D. 7 C. a6÷a2=a3 D. (a3)2=a66.若 a+b=﹣3,ab=1,则 a2+b2=( A. -11 B. 117.如图中,利用面积的等量关系验证的公式是(A. a2﹣b2=(a+b)(a﹣b) C. (a+2b)(a﹣b)=a2+ab﹣2b2 8.计算(﹣ A. 9.已知 A. 5 a4b2 a2b)3 的结果正确的是( ) B. ,则 B. 6 a6b3 的值是(B. (a﹣b)2=a2﹣2ab+b2 D. (a+b)2=a2+2ab+b2C. ﹣ )a6b3D. ﹣a5b3C. 8D. 9二、填空题(共 10 题;共 30 分)10.计算:an•an•an=________;(﹣x)(﹣x2)(﹣x3)(﹣x4)=________. 11.你能化简(x﹣1)(x99+x98+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手,然后归2 3 2 =x2﹣1; =x3﹣1; 纳出一些方法,分别化简下列各式并填空: (x﹣1) (x+1) (x﹣1) (x +x+1) (x﹣1) (x +x +x+1)=x4﹣1 …根据上述规律,可得(x﹣1)(x99+x98+…+x+1)=________ 请你利用上面的结论,完成下面问题:99 98 97 计算:2 +2 +2 +…+2+1,并判断末位数字是________12.如果(x+q)(x+)的结果中不含 x 项,那么 q=________.13.若 5x=12,5y=4,则 5x-y=________. 14.若 xn=4,yn=9,则(xy)n=________ 15.m(a﹣b+c)=ma﹣mb+mc.________. 16.若 x2+kx+25 是完全平方式,那么 k 的值是________. 17.若 x+2y﹣3=0,则 2x•4y 的值为________. 18.计算:(﹣π)0+2﹣2=________. 19.( ________ )÷7st2=3s+2t;(________ )(x﹣3)=x2﹣5x+6.三、解答题(共 3 题;共 34 分)20.解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5) 21.当 a=3,b=﹣1 时2 2 (1)求代数式 a ﹣b 和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系? (3)根据(1)(2),你能用简便方法算出 a=2008,b=2007 时,a ﹣b 的值吗? 22.已知:2x+3y﹣4=0,求 4x•8y 的值.2 2参考答案一、选择题 B B C B D D D C B 二、填空题 10. a3n;x10 13. 3 17. 8 三、解答题 20. 解:原不等可化为:x2﹣15x+54﹣x2+8x﹣7<14x﹣35, 整理得:﹣21x<﹣82, 解得:x> , . 14. 36 18. 11. x100﹣1;5 15. 正确 12. ﹣ 16. ±10 19. 21s2t2+14st3;x﹣2则原不等式的解集是 x>21. 解:(1)a2﹣b2=32﹣(﹣1)2=9﹣1=8(a+b)(a﹣b)=(3﹣1)(3+1)=8;2 2 (2)a ﹣b =(a+b)(a﹣b); 2 2 (3)a ﹣b =(a+b)(a﹣b)=(2008+2007)(2008﹣2007)=4015.22. 解:∵2x+3y﹣4=0, ∴2x+3y=4, ∴4x•8y=22x•23y=22x+3y=24=16, ∴4x•8y 的值是 16。

浙教新版七年级下学期《第三章整式的乘除》单元测试卷及答案

浙教新版七年级下学期《第三章整式的乘除》单元测试卷及答案

浙教新版七年级下学期《第三章整式的乘除》单元测试卷一.选择题(共10小题)1.计算(﹣2b)3的结果是()A.﹣8b3B.8b3C.﹣6b3D.6b32.下列计算中正确的是()A.a6÷a2=a3B.a6•a2=a8C.a9+a=a10D.(﹣a)9=a93.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab4.下列等式成立的是()A.(﹣1)0=﹣1 B.(﹣1)0=1 C.0﹣1=﹣1 D.0﹣1=15.如果x2+kxy+36y2是完全平方式,则k的值是()A.6 B.6或﹣6 C.12 D.12或﹣126.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6 B.4m+6 C.4m+12 D.2m+127.计算:=()A.B.C.D.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b 的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.52二.填空题(共10小题)11.已知2a=5,2b=3,求2a+b的值为.12.计算:(4x2y﹣2xy2)÷2xy=.13.已知m+2n+2=0,则2m•4n的值为.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=.15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.17.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.18.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有项,系数分别为;(2)(a+b)n展开式共有项,系数和为.20.一块长方形铁皮,长为(5a2+4b2)m,宽为6a4m,在它的四个角上都剪去一个长为a3m的小正方形,然后折成一个无盖的盒子,这个无盖盒子的表面积是m2.三.解答题(共6小题)21.计算:3a2b•(﹣a4b2)+(a2b)322.计算:(a+1)2﹣a(a﹣1)23.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.24.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.26.阅读下面的材料并填空:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×③(1﹣)(1+)=1﹣,反过来,得1﹣==利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)参考答案与试题解析一.选择题(共10小题)1.A2.B3.C4.B5.D6.C7.A8.C9.D10.B二.填空题(共10小题)11.15 12.2x﹣y.13.14.﹣5 15.10cm.16.3a2+4ab﹣15b217.﹣18.;k n+201719.(1)5;1,4,6,4,1;(2)n+1,2n.20.21a6+24a4b2m2.三.解答题(共6小题)21.解:原式=﹣2a6b3+a6b3=﹣a6b3.22.解:原式=a2+2a+1﹣a2+a=3a+1.23.解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.24.解:∵甲正确得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10 对应的系数相等,2b﹣3a=11,ab=10,乙错误的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.25.解:(1)图2大正方形的面积=(a+b)2;图2大正方形的面积=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,即a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,∵(x﹣2016)2+(x﹣2018)2=34,∴(a+1)2+(a﹣1)2=34,∴a2+2a+1+a2﹣2a+1=34,∴2a2+2=34,∴2a2=32,∴a2=16,即(x﹣2017)2=16.26.解:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=,②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×,③(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)=××××…××=.故答案为:,,(1﹣)(1+),.。

浙教版七年级下册数学第三章 整式的乘除 单元测试卷及答案

浙教版七年级下册数学第三章 整式的乘除 单元测试卷及答案

浙教版七年级下册数学第三章整式的乘除单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)若(a m b n)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;122.(3分)计算的结果是()A.B.C.D.3.(3分)若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣674.(3分)某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加()A.1.4a元B.2.4a元C.3.4a元D.4.4a元5.(3分)下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等6.(3分)如图,甲图是边长为a(a>1)的正方形去掉一个边长为1的正方形,乙图是边长为(a ﹣1)的正方形,则两图形的面积关系是()A.甲>乙B.甲=乙C.甲<乙D.甲≤乙7.(3分)若3m=5,3n=4,则32m﹣n等于()A.B.6C.21D.208.(3分)若(x+1)2=(x+2)0,则x的值可取()A.0B.﹣2C.0或﹣2D.无解9.(3分)已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.310.(3分)下列计算①(﹣1)0=﹣1;②;③;④用科学记数法表示﹣0.0000108=1.08×10﹣5;⑤(﹣2)2011+(﹣2)2010=﹣22010.其中正确的个数是()A.3个B.2个C.1个D.0个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:(π﹣3)0+()﹣1=12.(4分)若x2﹣2ax+16是完全平方式,则a=.13.(4分)若2m=a,2n=b,m,n均为正整数,则25m+n的值是.14.(4分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立,根据图乙,利用面积的不同表示方法,仿照上边的式子写出一个等式.15.(4分)已知x2+y2﹣2x+6y+10=0,则x+y=.16.(4分)《数书九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x =8时,多项式3x3﹣4x2﹣35x+8的值”,按照秦九韶算法,可先将多项式3x3﹣4x2﹣35x+8进行改写:3x3﹣4x2﹣35x+8=x(3x2﹣4x﹣35)+8=x[x(3x﹣4)﹣35]+8按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当x=8时,多项式3x3﹣4x2﹣35x+8的值1008.请参考上述方法,将多项式x3+2x2+x﹣1改写为:,当x=8时,这个多项式的值为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+|﹣2|﹣(π﹣1)0.18.(6分)若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.19.(8分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.20.(8分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均分成4个长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的边长是(用含a、b的式子表示);(2)若2a+b=7,且ab=3,求图2中阴影部分的面积;(3)观察图2,用等式表示出(2a﹣b)2,ab,(2a+b)2的数量关系是.21.(8分)【规定】=a﹣b+c﹣d.【理解】例如:=3﹣2+1﹣(﹣3)=5.【应用】先化简,再求值:,其中x=﹣2,y=﹣.22.(10分)张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你结合这些算式,解答下列问题:请观察以下算式:①32﹣12=8×1②52﹣32=8×2③72﹣52=8×3(1)请你再写出另外两个符合上述规律的算式;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?23.(10分)若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果2×8x×16x=222,求x的值;(2)如果(27x)2=38,求x的值.24.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.B2.A3.C 4.A5.A6.A7.A8.A9.D10.C 二.填空题(共6小题,满分24分,每小题4分)11.3 12.±4 13.a5b14.(a+b)(a+2b)=a2+3ab+2b2.15.﹣2 16.x[x(x+2)+1]﹣1;647三.解答题(共8小题,满分66分)17.解:()﹣1+|﹣2|﹣(π﹣1)0=2+2﹣1=3.18.解:∵(a m+1b n+2)(a2n﹣1b2n)=a5b3,∴,解得:,则m+n=4.19.解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.20.解:(1)图2的阴影部分的边长是2a﹣b,故答案为:2a﹣b;(2)由图2可知,阴影部分的面积=大正方形的面积﹣4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=(2a+b)2=49,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴阴影部分的面积=(2a﹣b)2=49﹣24=25;(3)由图2可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(2a+b)2﹣(2a﹣b)2=8ab.故答案为:(2a+b)2﹣(2a﹣b)2=8ab.21.解:=(3xy+2x2)﹣(2xy+y2)+(﹣x2+2)﹣(2﹣xy)=3xy+2x2﹣2xy﹣y2﹣x2+2﹣2+xy=2xy+x2﹣y2,当x=﹣2,y=﹣时,原式=2×(﹣2)×(﹣)+(﹣2)2﹣(﹣)2=2+4﹣=5.22.解:(1)92﹣72=8×4,112﹣92=8×5;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n故两个连续奇数的平方差是8的倍数.(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?不正确.解法一:举反例:42﹣22=12,因为12不是8的倍数,故这个结论不正确.解法二:设这两个偶数位2n和2n+2,(2n+2)2﹣(2n)2=(2n+2﹣2n)(2n+2+2n)=8n+4因为8n+4不是8的倍数,故这个结论不正确.23.解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22.解得x=3.(2)∵(27x)2=36x=38,∴6x=8,解得x=.24.解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.。

浙江七年级数学下第三章《整式的乘除》单元测试卷(解析版)

浙江七年级数学下第三章《整式的乘除》单元测试卷(解析版)

2020-2021学年浙江七年级数学下第三章《整式的乘除》单元测试卷 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共10小题,每小题3分,共30分)1.计算3(2)a -,结果正确的是( )A .32-aB .36a -C .38a -D .38a【答案】C【分析】 根据积的乘方法则,即可求解.【详解】原式=33(2)a -=38a -,故选C .【点睛】本题主要考查积的乘方法则,熟练掌握积的乘方等于各个因数的乘方的积,是解题的关键.2.计算:()433124a b ab -• 的值是( ) A .1374a b -B .874a b -C .1374a bD .874a b 【答案】C【分析】先计算积的乘方,再按照单项式乘以单项式的法则可得答案.【详解】解:()12433431371164.1244a b a b ab b b a a =•=-• 故选C .【点睛】本题考查的是单项式与单项式相乘,同时考查了积的乘方,掌握以上知识是解题的关键.3.如果()()232x x x px q -+=-+,那么p 、q 的值是( ) A .p=5, q=6B .p=-1, q=-6C .p=1, q=-6D .p=-5, q=-6【答案】C【分析】 先根据多项式乘以多项式的法则,将()()32x x -+展开,再根据两个多项式相等的条件即可确定p 、q 的值.【详解】∵()()32x x -+=26x x --,()()232x x x px q -+=-+,∵2x px q -+=26x x --,∵1p =,6q =-,故选:C .【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加,两个多项式相等时,它们同类项的系数对应相等.4.已知x 的二次三项式29x kx ++可以写成一个完全平方式,则k 的值是( )A .3B .3±C .6D .6±【答案】D【分析】 由22293x kx x kx ++=++,而()222363,x x x ±=±+ 从而可得答案.【详解】 解: 22293x kx x kx ++=++,而()222363,x x x ±=±+6.k ∴=±故选:.D【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点求解字母系数的值是解题的关键.5.若245a a +=,则代数式2(2)(1)(1)a a a a +-+-的值为( )A .1B .2C .4D .6【答案】D【分析】先化简代数式,利用整体代入求值即可得到答案.【详解】解:2(2)(1)(1)a a a a +-+- 22241a a a =+-+241,a a =++245a a +=,∴ 上式51 6.=+=故选D .【点睛】本题考查的是整式的化简,考查整体代入求值,掌握整式的乘法公式及合并同类项是解题的关键.6.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n )的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n 【答案】C【分析】多项式除以单项式的计算法则为:(a+b+c)÷m=a÷m+b÷m+c÷m ,根据计算法则即可得出答案.【详解】原式=()()()423222322284n 124n 44n 23mn m n m m n m m n m m n -÷-+÷--÷-=-+,故选C .【点睛】本题主要考查的是多项式除以单项式的法则,属于基础题型.掌握同底数幂的除法法则是解决这个问题的关键.7.已知2212a b +=,3ab =-,则2()a b +的值为( )A .3B .6C .12D .18【答案】B【分析】根据公式得出(a+b )2=a 2+b 2+2ab ,代入求出即可.【详解】解:∵a 2+b 2=12,ab=-3,∵(a+b )2=a 2+b 2+2ab=12+2×(-3)=6,故选:B .【点睛】本题考查了对完全平方公式的应用,注意:完全平方公式是:(a+b )2=a 2+2ab+b 2,(a -b )2=a 2-2ab+b 2.8.若2,32,,m n a b m n ==为正整数,则3102m n +的值等于( )A .32a bB .23a bC .32a b +D .32a b +【答案】A【分析】 根据同底数幂的乘法法则和幂的乘方法则的逆运用,即可求解.【详解】∵2,32m n a b ==,∵3102m n +=31022m n ⨯=()()31022n m ⨯=()()23232n m ⎡⎤⨯⎣⎦=32a b , 故选A .【点睛】本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.9.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-2020【答案】C【分析】 将220x x +-=变形为22x x =-+,22x x +=,代入3222016x x x +-+即可求解.【详解】解:∵220x x +-=,∵22x x =-+,22x x +=,∵3222016x x x +-+2222016x x x x =+-+()2222016x x x x =-++-+22016x x =++22016=+=2018.故选:C【点睛】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.10.已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个A .4B .5C .8D .10【答案】B先根据整式的乘法可得,16m a b ab =+=-,再根据“,a b 为整数”进行分析即可得.【详解】2()()()x a x b x a b x ab ++=+++,2216()x mx x a b x ab ∴+-=+++,,16m a b ab ∴=+=-,根据,a b 为整数,有以下10种情况:(1)当1,16a b ==-时,()11615m =+-=-;(2)当2,8a b ==-时,()286m =+-=-;(3)当4,4a b ==-时,()440m =+-=;(4)当8,2a b ==-时,()826m =+-=;(5)当16,1a b ==-时,()16115m =+-=;(6)当1,16a b =-=时,11615m =-+=;(7)当2,8a b =-=时,286m =-+=;(8)当4,4a b =-=时,440m =-+=;(9)当8,2a b =-=时,826m =-+=-;(10)当16,1a b =-=时,16115m =-+=-;综上,符合条件的m 的值为15,6,0,6,15--,共有5个,故选:B .本题考查了整式的乘法,依据题意,正确分情况讨论是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)11.已知6m a =,2n a =,则m n a -=__________.【答案】3【分析】根据同底数幂相除,底数不变,指数相减进行运算即可求解.【详解】解:由题意可知:623-=÷=÷=m n m n a a a ,故答案为:3.【点睛】本题考查同底数幂的除法运算法则,属于基础题,熟练掌握运算公式是解决本题的关键.12.如果24x kx ++恰好是另一个整式的平方,则k 的值为___.【答案】4±【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】解:∵x 2+kx+4恰好是另一个整式的平方,∵k=±4,故答案为:±4.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.计算:()2633x y xy xy +÷=_______________________.【答案】21x +【分析】直接利用多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加的法则计算.【详解】解:()2633x y xy xy +÷, 263+33=x y xy xy xy ÷÷,=2+1x .故答案为:21x +.【点睛】本题考查了多项式除以单项式运算,熟练掌握运算法则是解题的关键.14.多项式(8)(23)mx x +-展开后不含x 一次项,则m =________.【答案】12【分析】乘积含x 项包括两部分,∵mx×2,∵8×(-3x ),再由展开后不含x 的一次项可得出关于m 的方程,解出即可.【详解】解:(mx+8)(2-3x )=2mx -3mx 2+16-24x=-3mx 2+(2m -24)x+16,∵多项式(mx+8)(2-3x )展开后不含x 项,∵2m -24=0,解得:m=12,故答案为:12.【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.15.已知多项式()223(2)(1)x x a x x x --+--的值与x 的取值无关,则字母a 的值______.【答案】-6【分析】根据整式的混合运算法则计算,根据结果与x 的取值无关,求出a 的值即可.【详解】解:()223(2)(1)x x a x x x --+-- =322322362x x x x ax a x x +-----+=()62a x a ---∵结果与x 的取值无关,则-6-a=0,解得:a=-6,故答案为:-6.【点睛】此题考查了整式的混合运算,“值与x 的取值无关,就是x 的系数等于0”,把握住题目的关键语是解题的关键.16.记()()()()248(21)21212121n x =++++⋅⋅⋅+,且12812x +=,则n =__________.【答案】64【分析】先在前面添加因式(2-1),再连续利用平方差公式计算求出x ,然后根据指数相等即可求出n 值.【详解】解:(2+1)(22+1)(24+1)(28+1)…(2n +1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(2n +1)=(22-1)(22+1)(24+1)(28+1)…(2n +1)=(2n -1)(2n +1)=22n -1,∵x+1=22n -1+1=22n =2128,2n=128,∵n=64.故答案为:64.【点睛】本题考查了平方差公式,关键是乘一个因式(2-1)然后就能依次利用平方差公式计算. 17.已知(2016)(2019)1n n --=,则22(2016)(2019)n n -+-=________.【答案】7【分析】先设2016n a ,2019n b ,则(2016)(2019)1n n --=可化为1ab =,22(2016)(2019)n n 22a b =+22a b ab ,再将2016n a ,2019n b 代入,然后求出结果【详解】解:设:2016n a ,2019n b ,则(2016)(2019)1n n --=可化为:1ab =∵22(2016)(2019)n n22(2016)(2019)n n22a b =+()22a b ab =--将2016n a ,2019n b ,1ab =代入上式,则22(2016)(2019)n n 22016201921n n2327=【点睛】本题考查了对完全平方公式的应用,能熟记公式,并能设2016n a ,2019n b ,然后将原代数式化简再求值是解此题的关键,注意:完全平方公式为∵222()2a b a ab b +=++,∵222()2a b a ab b -=-+.三、解答题(本大题共6小题,共49分)18.计算(1)x 3•x 4•x 5(2)2321(6)(2)3xy xy x y --;(3)(﹣2mn 2)2﹣4mn 3(mn+1);(4)3a 2(a 3b 2﹣2a )﹣4a (﹣a 2b )2【答案】(1)x 12;(2)﹣12x 2y 3+2x 4y 3;(3)﹣4mn 3;(4)﹣a 5b 2﹣6a 3.【解析】【分析】(1)直接用同底数幂的乘法公式计算即可;(2)用单项式乘以多项式法则进行运算;(3)先乘方,再乘法,最后合并同类项;(4)先乘方,再乘法,最后合并同类项.【详解】(1)原式=x 3+4+5=x 12;(2)原式=(﹣6xy )×2xy 2+(﹣6xy )(﹣13x 3y 2)=﹣12x 2y 3+2x 4y 3; (3)原式=4m 2n 4﹣4m 2n 4﹣4mn 3=﹣4mn 3;(4)3a 5b 2﹣6a 3﹣4a×(a 4b 2)=3a 5b 2﹣6a 3﹣4a 5b 2=﹣a 5b 2﹣6a 3.【点睛】本题考查了同底数幂的乘法、单项式乘以多项式、积的乘方及合并同类项等知识点.题目难度不大,记住运算法则是关键.19.(1)先化简,再求值:2224)(5)(3)(3)x x x x +-+-+-( 其中x=-2(2)先化简,再求值:已知22008x y -=,求[](32)(32)(2)(52)8x y x y x y x y x +--+-÷的值【答案】(1) 616x + ,4;(2)12x y - ,1004. 【解析】 试题分析:(1)利用完全平方公式和平方差公式化简,再代入求值;(2)先化简,得出原式=12x y -,再将x -2y=2008当作一个整体,代入求值. 解:(1)原式=2x 2+16x+32-x 2-10x -25-x 2+9=6x+16,当x=-2时,原式=6×(-2)+16=4;(2)原式=(9x 2-4y 2-5x 2+2xy -10xy+4y 2)÷8x=(4x 2-8xy )÷8x=12x y -, ∵x -2y=2008,∵原式=110042x y -=. 20.若(x 2+mx -8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值【答案】317m n =⎧⎨=⎩ 【分析】首先根据多项式的乘法法则将多项式进行展开,然后进行合并同类项.根据不含哪一项,则哪一项的系数为零列出方程组,从而得出答案.【详解】解:原式=x 4+(m -3)x 3+(n -3m -8)x 2+(mn+24)x -8n ,根据展开式中不含x 2和x 3项得:30380m n m -=⎧⎨--=⎩, 解得:317m n =⎧⎨=⎩. 点睛:本题主要考查多项式的乘法计算法则,属于中等难度的题型.能够进行合并同类项是解决这个问题的关键.21.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【答案】(1)矩形的周长为4m ;(2)矩形的面积为33.【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m ﹣n ,矩形的宽为:m+n ,矩形的周长为:2[(m -n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.22.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∵()()2222440m mn nn n -++-+=, ∵()()2220m n n -+-=,∵()20m n -=,()220n -=,∵2n =,2m =.根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则a =__________,b =__________.(2)已知22228160x y xy y +-++=,求xy 的值.(3)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.【答案】(1)a=-3,b=1;(2)16(3)9【详解】(1)∵2262100a b a b ++-+=,∵()()2269210a a b b ++-+=+,∵()()22310a b ++-=,∵()230a +≥,()210b -≥,∵30a +=,3a =-,10b -=,1b =;(2)∵22228160x y xy y +-++=, ∵()()22228160x xy yy y -++++=, ∵()()2240x y y -++=,∵()20x y -≥,()240y +≥,∵0x y -=,x y =,40y +=,4y =-,∵4x =-,∵16xy =; (3)∵22248180a b a b +--+=,∵222428160a a b b -++-+=,∵()()222140a b -+-=,∵()210a -≥,()240b -≥,∵10a -=,1a =,40b -=,4b =,∵a b c +>,∵5c <,∵b a c -<,∵3c >,∵a 、b 、c 为正整数,∵4c =,∵ABC 周长=1449++=.23.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c 的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a 2+b 2+c 2的值.(3)如图3,将两个边长分别为a 和b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.【详解】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∵a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∵S阴影=a2+b2﹣12(a+b)•b﹣12a2=12a2+12b2﹣12ab=12(a+b)2﹣32ab=12×102﹣32×20=50﹣30=20.【点睛】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙港一中七年级数学(下)第三单元检测试题(20140329)
命题人:陈洪纺
一、选择填空(每小题3分,共30分)
1、计算
32
a (-2) 的结果是( ) A 、5
8a - B 、6
8a - C 、6
4a D 、6
64a 2、用科学记数法表示0.000 091 7 为( ).
A 、4
9.1710-⨯ B 、5
9.1710-⨯ C 、6
9.210-⨯ D 、7
91.710-⨯ 3、如果0
1
2
2014(2014),(0.01),(),2013
a b c --=-=-=-
那么,,a b c 三数的大小关系正确的为( )
A .a b c >>
B . c a b >>
C . a c b >>
D .c b a >> 4、若232,(3)3,x
y
x y
-=-=则 3 的值为 ( )
A 、
29 B 、92- C 、2
9
- D 、92 5、如果整式2
9x mx ++ 恰好是一个整式的平方,那么 m 的值是( ) A 、±3 B 、±4.5 C 、±6 D 、9 6、下列各式中,能用完全平方公式计算的是( )
22222222
14
1
4
①a +4ab+b ; ②4a -4ab+b ;
③4a +4ab+b ; ④a +ab+b
A 、①②
B 、①③
C 、②④
D 、③④
7、一个正方形的边长增加了2cm ,面积相应增加了322
c m ,则原正方形的边长为 ( ) A 、5cm B 、6cm C 、7cm D 、8cm 8、要使等式2
2
(2)(2)x y A x y -+=+ 成立,代数式A 应是( ) A 、4xy B 、4xy - C 、8xy D 、8xy - 9、下列运算中错误的是( ).
A 、2
2
3(2)5xy x xy xy x --=- B 、2
3
5(2)105x x y x xy -=- C 、2
2
5(231)10151mn m n m n mn +-=+- D 、2
2
34
22
()(2)2ab ab c a b a b c -=-
10、如果四个不同的正整数,,,m n p q 满足(5m)(5n)(5p)(5q)4----= ,则
m n p q +++等于( )
A 、4
B 、10
C 、12
D 、20
二、填空(每小题3分,共30分) 11、计算:2012
2011
1(2014)
()2014
-⨯-
= 12、二次三项式2
4x x k -+ 是一个完全平方式,则k 的值是 13、已知(2)A x y =-,(2)B x y =-- ,则A B •= 。

14、若(1)1m
m -= ,则m =
15、若5320x y --= ,则528x y
÷=
16、若0,0,a b >> 且3
2
5
2
,x a x b ==,则x 的值为
17、已知2A x = ,B 为多项式,在计算B+A 时,小明同学把B+A 看成了B ÷A ,结果为
21
2
x +
,则B+A= 18、若13x x -
= ,则221
x x
+= 19、若代数式2
32x x ++ 可以表示为2
(x 1)(x 1)b a -+-+ 的形式,则a b += ________
20、定义新运算“⊗”规定:2
143
a b a ab ⊗=-- 则3(1)⊗-= ___________
三、解答与计算题(21、22、23各题8分,24题6分,25题10分,总计40分) 21、(本题8分)计算与化简: (1)2014
2011(1)()()2 3.14
π--+--- (2)2(x y)(2x y)(2x)y ⎡⎤+-+÷-⎣⎦
22、(本题8分)解方程:
(1)2
x(2x 1)2(x 7)1--+=
(2)2
5(x 1)5(x 2)(x 2)x 3--+-=+
23、(本题8分)化简求值2
2
2
()()(2)(62)2x y x y x y x y xy y +-----÷ ,其中
2,1x y =-=- .
24、(本题6分)说明代数式2
(x y)(x y)(x y)(2)y y ⎡⎤--+-÷-+⎣⎦ 的值与y 的值无关。

25、(本题10分)乘法公式的探究及应用 (1)如图1所示,可以求出阴影部分面积是____________________(写成两数平方差的形式) (2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是______________________________(写成多项式乘法的形式)
(3)根据两图的阴影部分面积得到的乘法公式计算下列算式:
222222111111
(1)(1)(1)(1)(1)(1)2345
99100
-
----
-
参考答案
一、选择题
二、填空题 11.
2014- 12. 4 13. 224x y -+ 14. 02或 15. 4
16.
b a
17. 3
23x x + 18. 11 19. 11 20. 9 三、解答题
21.计算:(本题8分)
2(1)1(2)11414=+--=--=-解原式
(2)解原式()
222
22(2)x xy y xy y x =++--÷-
2(2)
1
2
x x x
=÷-=- 22222.(1)(21)2(7)122141
141
114
185
x x x x x x x x x --+=---=--=-=+=(本题分)解:
22222(2)5(1)5(2)(2)35(21)5(4)3
5105520310325
1122
2
x x x x x x x x x x x x x x x x --+-=+-+--=+-+-+=+--=--=-=解:
222222222222
22
23.=(44)(3)
4435532,1=5(1)5(2)(1)3(2)510182
7
x y x xy y x xy x y x xy y x xy y xy x x y ---+--=--+--+=-+-=-=--⨯-+⨯-⨯--⨯-=-+-=-解:原式当时,原本题分)式(
2222
224.=2()(2)(22)(62)y x xy y x y y y
xy y y y
x y y x
⎡⎤-+--÷-+⎣⎦=-+÷-+=-+=解:原式所以原代数式的值只与x 有关,与的(本题分)值无关。

25、(本题10分)乘法公式的探究及应用 (1)2
2
()a b - (2)()()a b a b -+ (3)2222
22
111111
(1)(1)(1)(1)(1)(1)234599100-
----
- 1111111111
(1)(1)(1)(1)(1)(1+)(1)(1+)(1)(1+)
2233449999100100
132435981009910122334499991001001324359810099101
223344999910010011012100101200
=-+-+---=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯
=⨯=原式
龙港一中七年级数学(下)第三单元检测试题答题卷
一、选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题(每题3分,共30分)
11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 三、解答与计算题(21、22、23各题8分,24题6分,25题10分,总计40分) 21、(本题8分)计算与化简: (1)2014
2011(1)()()2 3.14
π--+--- (2)2
(x y)(2x y)(2x)y ⎡⎤+-+÷-⎣⎦
22、(本题8分)解方程: (1)2
x(2x 1)2(x 7)1--+= (2)2
5(x 1)5(x 2)(x 2)x 3--+-=+。

相关文档
最新文档