(完整版)第一章《整式的乘除》复习测试题(答案)_(1)[1]

合集下载

北师大版七年级下册数学第一章 整式的乘除含答案(有一套)

北师大版七年级下册数学第一章 整式的乘除含答案(有一套)

北师大版七年级下册数学第一章整式的乘除含答案一、单选题(共15题,共计45分)1、已知2a=3,2b=6,2c=12,则a,b,c的关系为①b=a+1②c=a+2③a+c=2b④b+c=2a+3,其中正确的个数有()A.1个B.2个C.3个D.4个2、下列运算正确的是()A. B. C. D.3、下列运算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 5C.2a 2+3a 2=5a 6D.(a+2b)(a﹣2b)=a 2﹣4b 24、下列运算正确的是()A.(a 2)3=a 5B.a 4·a 2=a 8C.a 6÷a 3=a²D.(ab)3=a 3b 35、下列等式成立的是()A.x 2+3x 2=3x 4B.0.00028=2.8×10 -3C.(a 3b 2)3=a 9b6 D.(-a+b)(-a-b)=ab 2-a 26、下列运算不正确的是()A. a 2• a= a 3B.( a 3)2= a 6C.(2 a 2)2=4 a 4D. a 2÷ a 2= a7、计算﹣a2•a3的结果是()A.a 5B.﹣a 5C.﹣a 6D.a 68、下列运算正确的是()A.a 3+a 3=2a 6B.(x 2)3=x 5C.2a 6÷a 3=2a 2D.x 3•x 2=x 59、下列计算正确的是()A.a 3+a 3=a 6B.a 3•a 3=a 9C.a 6÷a 2=a 4D.(a 3)2=a 510、下列运算正确的是()A. B. C. D.11、生物学家发现了一种病毒,其长度约为0.0000000052mm,数据0.0000000052用科学记数法表示正确的是()A. B. C. D.12、下列运算正确的是()A. B. C. D.13、下列计算正确的是()A.b 6÷b 3=b 2B.b 3•b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 614、下列运算正确的是()A.(3x 2)3=9x 6B.a 6÷a 2=a 3C.(a+b)2=a 2+b 2D.2 2014﹣2 2013=2 201315、成人每天维生素D的摄入量约为0.0000046g.数据“0.0000046”用科学记数法表示为()A.46×10 ﹣7B.4.6×10 ﹣7C.4.6×10 ﹣6D.0.46×10 ﹣5二、填空题(共10题,共计30分)16、若,则的值________.17、若2m=a,32n=b,m,n为正整数,则23m+10n=________.18、据科学测算,肥皂泡的泡壁厚度大约为0.0007mm,用科学记数法表示0.0007=________.19、如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为________20、计算: ________.21、对于任意实数,规定的意义是=ad﹣bc.则当x2﹣3x+1=0时,=________ .22、计算:(x+2)(x-3)=________;23、已知三角形的底边是cm,高是cm,则这个三角形的面积是________ cm .24、计算:________.25、计算:=________.三、解答题(共5题,共计25分)26、计算:﹣2×(﹣4)﹣(﹣3)2+20170.27、已知:8•22m﹣1•23m=217,求m的值.28、将4个数a,b,c,d排成2行2列,两边各加一条竖线记成,定义=ad﹣bc,上述记号叫做二阶行列式,若=5x,求x的值.29、若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.30、若3x2﹣2x+b与x2+bx﹣1的和中不存在含x的项,试求b的值,写出它们的和,并证明不论x取什么值,它的值总是正数.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、D5、C6、D7、B8、D9、C10、A11、C12、B13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

北师大版七年级数学下册第一章 整式的乘除练习(含答案)

北师大版七年级数学下册第一章 整式的乘除练习(含答案)

第一章 整式的乘除一、单选题1.计算23()a a -⋅的结果正确的是( )A .6a -B .6aC .5a -D .5a2.下列计结果为a 10的是( )A .a 6+a 4B .a 11﹣aC .(a 5)2D .a 20÷a 23. 计算(x 3y)2的结果是( )A .x 3y 2B .x 6yC .x 5y2D .x 6y 24.下列运算正确的是( )A .842x x x ÷=B .347x x x ⋅=C .()32528x x -=-D .()32628x y x y -=-5.计算:23(2)a a •-=( )A .312a -B .27a -C .312aD .27a6.一个长方形的宽是a ,长是2a ,则这个长方形的周长是( )A .3aB .6aC .22aD .9a7.已知计算(2)(1)x p x --+的结果中不含x 的一次项,则p 等于是( )A .2-B .1-C .0D .18.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab 9.已知(m -n )2=8,(m+n )2=4,则m 2+n 2=( )A .32B .12C .6D .2 10.两个连续奇数的平方差是( ).A .6的倍数B .8的倍数C .12的倍数D .16的倍数二、填空题11.若10m =5,10n =4,则102m+n ﹣1=_____.12.若多项式223368x kxy y xy --+-不含xy 项,则k =______. 13.若a ﹣b =1,ab =2,那么a +b 的值为_____.14.计算3(22+1)(24+1)……(232+1)+1=___________.三、解答题15.计算(1)()()()523y y y y ---g g (2)2201920182020-⨯(3)222020404020192019-⨯+(4)()()2323x y z x y z +---16.若()()223x mx x x n +-+的展开式中不含2x 和3x 项,求m 和n 的值. 17.先化简再求值,2(1)(2)(2)(2)(2)ab ab a b a b b a +-+-++--,其中23a =,34b =-. 18.某同学在计算3(4+1)(24+1)时,把3写成(4﹣1)后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(24+1)=(4﹣1)(4+1)(24+1)=(24﹣1)(24+1)=216﹣1=255. 请借鉴该同学的经验,计算:2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 19.(1)比较下列两个算式的结果的大小(横线上选填"","">=或""<) ①2234___234+⨯⨯ ①22(2)(3)___2(2)(3)-+-⨯-⨯- ①221111()()___23434+⨯⨯ ①22(4)(4)___2(4)(4)-+-⨯-⨯- (2)观察并归纳(1)中的规律,用含,a b 的一个关系把你的发现表示出来.(3)若24a b +=,且,a b 均为正数,利用你发现的规律,求ab 的最大值答案1.D2.C3.D4.B5.C6.B7.A8.A9.C10.B11.1012.213.±3.14.26415.(1)原式=11y (2)原式=1 (3)原式=1 (4)原式=222496x y z xz -+- 16.m=3,n=917.2292--a b ab ,11418.2.19.(1)=>>>,,,;(2)22a 2b ab +≥;(3)2。

2023年北师大版七年级数学下册第1章《整式的乘除》检测卷附答案解析

2023年北师大版七年级数学下册第1章《整式的乘除》检测卷附答案解析

2023年七年级数学下册第1章《整式的乘除》检测卷(满分100分)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1C.−1D.326.4a7b5c3÷(-16a3b2c)18432等于()A.aB.1C.-2D.-17.已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.若a=(π-2023)0,b=20222-2021×2023,c=-23,则a-b-c的值为()A.2021B.2022C.8D.110.从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:−13×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)32+12−232·−12B2;(3)(2a2+5;(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-13+(-2)3;(2)2001×1999(运用乘法公式);(3)(x+y+3)(x+y-3).19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=13,y=-1.20.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(2)2的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c 变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.答案全解全析1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)18432=-14a4b3c218432=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2023)0=1,b=20222-(2022-1)×(2022+1)=20222-20222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米,第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab,∴租地面积变小了,故选A.11.3解析原式13×310113×3100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=32+12−232·14x2y2=34Ay+18yz−16x2y4.(3)(2a2+5=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2001×1999=(2000+1)(2000-1)=20002-1=3999999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y)=(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27,∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。

七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。

初中数学北师大版七年级下册第一章 整式的乘除1.6完全平方公式-章节测试习题(1)

初中数学北师大版七年级下册第一章 整式的乘除1.6完全平方公式-章节测试习题(1)

章节测试题1.【题文】化简求值.()求的值,其中.()若,求的值.【答案】(1)22;(2)6【分析】(1)根据平方差公式,单项式乘多项式的运算法则,进行运算,然后和合并同类项后把的值代入进行计算即可得解;根据完全平方公式,单项式乘多项式的运算法则进行运算,然后和合并同类项后,把已知式子的值整体代入即可得解;【解答】解:(),,,∵,∴原式,,.(),,,∵,∴,∴原式.2.【题文】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)²=a²+2ab+b².图1 图2 图3(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a²+b²+c²的值.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (a-b-c)2=a2+b2+c2-2ab-2ac+2bc 45【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,bc+ac+ab=38,作为整式代入即可求出.【解答】解:(1)根据题意,大矩形的面积为:小矩形的面积为:(2)由(1)得3.【题文】已知,求:(1)的值;(2)的值;(3)的值.【答案】(1)-30;(2);(3)【分析】(1)提公因式,然后将a+b=5和ab=-6整体代入求值;(2)将原式利用配方法转化为两根的和与两根的积来解答;(3)将原式利用配方法转化为两根的和与两根的积来解答.【解答】解:(1)∵,∴;(2);(3),故.4.【题文】利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.【答案】(a﹣b)2=a2﹣2ab+b2.【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:∵大正方形的面积= a2还可以表示为5.【题文】先化简,再求值:(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;(2)(m-n)(m+n)+(m+n)2-2m2,其中m、n满足方程组【答案】(1) -2x2-y,0;(2) 2mn,-6.【分析】(1)根据多项式除以单项式和平方差公式化简,然后代入求值;(2)根据完全平方公式和平方差公式化简,然后解方程组求出m、n的值后再代入求值.【解答】解:(1)原式=-3x2+4y2-y-4y2+x2=-2x2-y.当x=1,y=-2时,原式=-2+2=0.(2)①+②,得4m=12,解得m=3.将m=3代入①,得3+2n=1,解得n=-1.故方程组的解是(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn,当m=3,n=-1时,原式=2×3×(-1)=-6.6.【题文】已知a2+b2=1,a-b=,求a2b2与(a+b)4的值.【答案】【分析】把目标代数式化成包含已知代数式的形式.【解答】解:因为a2+b2=1,a-b=,所以(a-b)2=a2+b2-2ab.所以ab=- [(a-b)2-(a2+b2)]=.所以a2b2=(ab)2=.因为(a+b)2=(a-b)2+4ab.=,所以(a+b)4=[(a+b)2]2=.7.【题文】请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a-b 的值.【答案】(1)a2+b2=(a+b)2-2ab;(2)①9;②5.【分析】(1)两个阴影部分的面积可以用阴影部分面积相加和用总面积减去非阴影部分面积来表示。

整式的乘除测试题练习四套(含答案)

整式的乘除测试题练习四套(含答案)

整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

整式的乘除测试题(3套)及答案

整式的乘除测试题(3套)及答案

第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

5.⑴=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。

第一章整式的乘除单元检测试题(含答案)

第一章整式的乘除单元检测试题(含答案)

第一章 整式的乘除单元检测试题班级:__________姓名:__________ 一、单选题(共10题;共30分)1.下列计算错误的是( )A. =4 B. 32×3﹣1=3 C. 20÷2﹣2= D. (﹣(﹣3×3×10102)3=﹣2.7×2.7×101072.已知则 ( ) A. B. 50 C. 500 D. 无法计算无法计算3.若(x ﹣2)(x +3)=x 2+ax +b ,则a 、b 的值分别为(的值分别为( ) A.a =5,b =6 B.a =1,b =﹣6 C.a =1,b =6 D.a =5,b =﹣6 4.已知4y 2+my +9是完全平方式,则m 为( )A. 6 B. ±6 C. ±12 D. 12 5.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A. (2a 2+5a )cm 2 B. (3a +15)cm 2 C. (6a +9)cm 2 D. (6a +15)cm 26.下列计算正确的一项是( )A. a 5+a 5=2a 10 B. (a +2)(a ﹣2)=a 2﹣4 ;C. (a ﹣b )2=a 2﹣b 2 ;D. 4a ﹣2a =2 7.若x n =2,则x 3n 的值为(的值为( )A. 6 B. 8 C. 9 D. 12 8.如果(a -1)0=1成立,则(成立,则( )A. a ≠1≠1 B. a =0 C. a =2 D. a =0或a =2 9.若 , ,且满足,且满足 ,则,则 的值为( ). ). A. 1 B. 2 C. C. D. 10.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是( )A. (x +y )(x ﹣y )=x 2﹣y 2=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除
一、选择(每题2分,共24分)
1.下列计算正确的是( ).
A .2x 2·3x 3=6x 3
B .2x 2+3x 3=5x 5
C .(-3x 2)·(-3x 2)=9x 5
D .54x n ·25x m =12
x mn 2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ).
A .5y 3+3y 2+2y -1
B .5y 3-3y 2-2y -6
C .5y 3+3y 2-2y -1
D .5y 3-3y 2-2y -1
3.下列运算正确的是( ).
A .a 2·a 3=a 5
B .(a 2)3=a 5
C .a 6÷a 2=a 3
D .a 6-a 2=a 4
4.下列运算中正确的是( ).
A .12a+13a=15
a B .3a 2+2a 3=5a 5 C .3x 2y+4yx 2=7 D .-mn+mn=0 5.下列说法中正确的是( ). A .-
13xy 2是单项式 B .xy 2没有系数 C .x -1是单项式 D .0不是单项式
6.若(x -2y )2=(x+2y )2+m ,则m 等于( ).
A .4xy
B .-4xy
C .8xy
D .-8xy
7.(a -b+c )(-a+b -c )等于( ).
A .-(a -b+c )2
B .c 2-(a -b )2
C .(a -b )2-c 2
D .c 2-a+b 2
8.计算(3x 2y )·(-43
x 4y )的结果是( ). A .x 6y 2 B .-4x 6y C .-4x 6y 2 D .x 8
y
9.等式(x+4)0=1成立的条件是().
A.x为有理数B.x≠0 C.x≠4 D.x≠-4
10.下列多项式乘法算式中,可以用平方差公式计算的是().
A.(m-n)(n-m)B.(a+b)(-a-b)
C.(-a-b)(a-b)D.(a+b)(a+b)
11.下列等式恒成立的是().
A.(m+n)2=m2+n2B.(2a-b)2=4a2-2ab+b2
C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-9
12.若A=(2+1)(22+1)(24+1)(28+1),则A-2003的末位数字是().A.0 B.2 C.4 D.6
二、填空(每题2分,共28分)
13.-xy2的系数是______,次数是_______.
14.•一件夹克标价为a•元,•现按标价的7•折出售,则实际售价用代数式表示为______.
15.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.
16.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需_________.
17.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2
(a-b)2+______=(a+b)2
18.若x2-3x+a是完全平方式,则a=_______.
19.多项式5x2-7x-3是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3x m y5与0.4x3y2n+1是同类项,则m+n=______.
22.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.
23.若x2+kx+1
4
=(x-
1
2
)2,则k=_______;若x2-kx+1是完全平方式,则k=______.
24.(-16
15
)-2=______;(x-)2=_______.
25.22005×(0.125)668=________.
26.有三个连续的自然数,中间一个是x,则它们的积是_______.三、计算(每题3分,共24分)
27.(2x2y-3xy2)-(6x2y-3xy2)28.(-3
2
ax4y3)÷(-
6
5
ax2y2)·8a2y
29.(45a3-1
6
a2b+3a)÷(-
1
3
a)30.(
2
3
x2y-6xy)·(
1
2
xy)
31.(x-2)(x+2)-(x+1)(x-3)32.(1-3y)(1+3y)(1+9y2)33.(ab+1)2-(ab-1)2
四、运用乘法公式简便计算(每题2分,共4分)
34.(998)235.197×203
五、先化简,再求值(每题4分,共8分)36.(x+4)(x-2)(x-4),其中x=-1.
37.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25

六、解答题(每题4分,共12分)
38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.
39.已知2x+5y=3,求4x·32y的值.
40.已知a2+2a+b2-4b+5=0,求a,b的值.
附加题(10分)
1.下列每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案中的棋子总数为S,按下列的排列规律判断,•S 与n之间的关系式并求当n=6,10时,S的值.
2.设a(a-1)-(a2-b)=2,求
22
2
a b
-ab的值.
答案:
一、1.C 2.D 3.A 4.D 5.A 6.D
7.A 8.C 9.D 10.C 11.C 12.B
二、13.-1 3 14.0.7a元15.x n n-m a1216.4.8×102小时
17.2ab -•2ab 4ab 18.9
4
19.二三20.-5.9×10-8
21.5 22.±4 23.-1 ±2 24.225
256
x2-x+
1
4
•25.2 26.x3-x
三、27.-4x2y 28.10a2x2y229.-135a2+1
2
ab-9
30.1
3
x2y2-3x2y 31.2x-1 32.1-81x4 •33.4ab
四、34.996004 35.39991
五、36.x2-2x2-16x+32 45 37.-xy 2 5
六、38.略39.8 40.a=-1,b=2
附加题:1.S=4n-4,当n=6时,S=20;当n=10时,S=36 2.见疑难解析
2.∵a(a-1)-(a2-b)=2,进行整理a2-a-a2+b=2,得b-a=2,
再把
22
2
a b
+
-ab变形成
2
()22
2
a b ab ab
-+-
=2.。

相关文档
最新文档