整式的乘除测试题(提高)

合集下载

整式的乘除测试题练习8套(含答案)

整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

整式的乘除 提高测试(二)选择题(每小题 2 分,共计 16 分)13.计算(-a )3·(a 2)3·(-a )2 的结果正确的是……………………………() (A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………()(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是……………………………………………………………………( ) (A )22(m +n ) (B )16mn (C )4mn (D )16m +n 16.若 a 为正整数,且 x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………()5 (A )5(B )(C )25 (D )10217. 下列算式中, 正确的是 ……………………………………………………………… ( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )( 1 )-2=1= 13329(C )(0.00001)0=(9999)0(D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题 5 分,共 10 分) 23.9972-1001×999.1111122.(1-22 )(1-32 )(1-42 ) (1)92 )(1-102)的值.(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1 =2,求 x 2+ 1 x x 2,x 4+ 1x4 的值.a 2b 2 24.已知(a -1)(b -2)-a (b -3)=3,求代数式-ab 的值.225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.⎨26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题 5 分,共 10 分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1 =10002+6000+9-10002+.【答案】-5990.1 1 1 1 1 22.(1-22)(1-32)(1-42 ) (1)92)(1-102)的值.【提示】用平方差公式化简,1 1 11 1 1 11原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1-)(1+)=21 32 4 32339 10 11 1 9 910101111 · · · · …· ··= ·1·1·1·…·. 【答案】.2 23 3 48 9 102 1020(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1=2,求 x 2+ 1x x 2,x 4+ 1x4 的值.【提示】x 2+ 1 x2 =(x + 1)2-2=2,x 4+ 1 xx 4=(x 2+ 1x2 )2-2=2.【答案】2,2.(a - b )2 124.【答案】由已知得 a -b =1,原式== ,或用 a =b +1 代入求值.2225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.【答案】4.【提示】将 x 2+x -1=0 变形为(1)x 2+x =1,(2)x 2=1-x ,将 x 3+2x 2+3 凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值. 【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3 项系数应为零,得⎧ p - 2 = 0 ⎩q - 2 p - 3 = 0.∴ p =2,q =7.。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

(完整版)整式的乘除提高练习题(精准校对-课后练习)

(完整版)整式的乘除提高练习题(精准校对-课后练习)

(完整版)整式的乘除提高练习题(精准校对-课后练习)整式的乘除提高练习题一、填空1.若2a +3b=3,则9a ·27b 的值为_____________.2.若x 3=-8a 9b 6,则x=______________.3.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.4.用科学记数法表示0.000 507,应记作___________.5.a 2+b 2+________=(a+b )2 a 2+b 2+_______=(a -b )2(a -b )2+______=(a+b )26.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)7.设是一个完全平方式,则=_______。

8.已知,那么=_______。

9.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.二.计算:(本题8分)(1)(2)(3))(2x 2y -3xy 2)-(6x 2y -3xy 2)(4)(-32ax 4y 3)÷(-65ax 2y 2)·8a 2y(5)(45a 3-16a 2b+3a )÷(-13a )(6)(23x 2y -6xy )·(12xy )(7)(x -2)(x+2)-(x+1)(x -3)(8)(1-3y )(1+3y )(1+9y 2)12142++mx x m 51=+x x 221xx +()()02201214.3211π--??? ??-+--()()()()233232222x y x xy y x ÷-+-?(9)(ab+1)2-(ab -1)2 (10)(998)2 (11)197×203(12) a 3÷a ·a 2; (13)(-2a )3-(-a )·(3a )2(14)t 8÷(t 2·t 5);(15)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.(16)0.252008×(-4)2009 (17)(a -b) 2·(a -b) 10·(b -a );(18)2(a 4) 3+(a 3) 2·(a 2) 3+a 2a 10 (19)x 3n+4÷(-x n+12) 2÷x n .(20)2202211(2)()()[(2)]22----+---+--;(21)32236222()()()()x x x x x ÷+÷-÷-(22) 333)31()32()9(?-?-;(23) 19981999)532()135(?-.(24)21012()1(3)3π--+---- (25)[5xy 2(x 2-3xy)+(3x 2y 2)3]÷(5xy)2(26)(2m+1)(2m-1)—m ·(3m-2) (27)10002-998×1002 (简便运算)(28) (-2y 3)2+(-4y 2)3-(-2y)2·(-3y 2)2 (29)(3y+2)(y-4)-3(y-2)(y-3)三(本题8分)先化简,再求值:(1),其中,。

整式的乘除提高训练题

整式的乘除提高训练题

整式的乘除提高训练题(总4页) -本页仅作为预览文档封面,使用时请删除本页-一.填空题 1.若代数式1)42(2---x 在取得最大值时,代数式)]12([42----x x x 的值为________2.已知二次三项式2x 2+bx +c =2(x-3)(x +1),则b =_________,c =_________.3.计算1993+9319的个位数字是___________4. 若8919+=+=+c b a ,则()()()=-+-+-222a c c b b a . 5.若代数式1)42(2---x 在取得最大值时,代数式)]12([42----x x x 的值为________6.已知二次三项式2x 2+bx +c =2(x-3)(x +1),则b =_________,c =_________.7.若m 2+m -1=0, 则m 3+2m 2+2001= .8.若x =2m +1,y =3+4m ,则用x 的代数式表示y 为 .9.用科学记数法表示: ._________000302.0=- 10.︱x ︱=(x -1)0 ,则x = .11.若c bx ax x x ++=--2)25)(32(,则=a ,=b ,=c12.如图,在一个长方形花园ABCD 中,若AB=a,AD=b,花园中建有一条长方形道路LMPQ 及一条平行四边形道路RSKT,若LM=RS=c,则长方形花园中除道路外可绿化部分的面积为________________二.选择题1.12+m a 可写成( ).A .12+⋅m a aB .a m a +2C .m a a 2⋅ D. m a a ⋅22.32)()(c a b c b a --+-⋅等于( ).A .2)(c b a +-B .5)(c a b --C .5)(c b a +--D .5)(c a b ---3.下列题中不能用同底数幂的乘法法则化简的是( )A .(x +y)(x +y)2B .(x-y)(x +y)2C .-(x-y)(y-x)2D .(x-y)2·(x-y)3·(x-y) 4.已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A. 奇数B. 偶数C. 正整数D. 整数5.(101)2+(101)0+(101)-2计算后其结果为( ) A .1 B .201 C .1011001 D .10010016.()2a a b c -+-与()2a a ab ac --+的关系是( )A .相等B .互为相反数C .前式是后式的a -倍D .前式是后式的a 倍7.若()1520=-x ,则x 的取值是( ) A .25>x B .x≥—25 C . x >—25 D .x≠25 8.计算:100101)2()2(-+- 的结果是( )A .1002-B . 2-C .2D .10029.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( ) A .()12--nc B .nc 2- C .n c 2- D .n c 2 10. 当1-=a 时,n 为整数,则)63(112321n n n n n a a a a a +---++++的值是( ).3 C11、两整式相乘的结果为122--a a 的是 ( )A 、()()43-+a aB 、()()43+-a aC 、()()26-+a aD 、()()26+-a a12.如果32=-b a ,那么b a 426+-的值是( )A. 3B. 2C. 1D. 013.若))(3(152n x x mx x ++=-+,则m 的值为( )A 、-5B 、5C 、-2D 、214.古希腊著名的毕达哥拉斯学派把1、3、6、10 …… 这样的数称为“三角形数”,而把1、4、9、16 …… 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C . 36=16+20D .49=21+28三.解答题1.已知 n x m x ==53,用含有n m 、的代数式表示14x .2.若125512=+x ,求x x +-2015)2(的值3.试确定20162015273⨯的个位数。

(完整版)整式的乘除提高练习(最新整理)

(完整版)整式的乘除提高练习(最新整理)

《整式的乘除》技巧性习题训练一、逆用幂的运算性质1. .2005200440.25⨯=2.( )2002×(1.5)2003÷(-1)2004=________。

233.若,则 .23n x =6n x =4.已知:,求、的值。

2,3==n m x x n m x 23+n m x 23-5.已知:,,则=________。

a m =2b n =32n m 1032+二、式子变形求值1.若,,则 .10m n +=24mn =22m n +=2.已知,,求的值.9ab =3a b -=-223a ab b ++3.已知,求的值。

0132=+-x x 221x x +4.已知:,则= .()()212-=---y x x x xy y x -+2225.的结果为 .24(21)(21)(21)+++6.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________。

7.若则210,n n +-=3222008_______.n n ++=8.已知,求的值。

099052=-+x x 1019985623+-+x x x9.已知,则代数式的值是_______________。

0258622=+--+b a b a ba ab -10.已知:,则_________,_________。

0106222=+++-y y x x =x =y 11.已知:,,,20072008+=x a 20082008+=x b 20092008+=x c 求的值。

ac bc ab c b a ---++222三、式子变形判断三角形的形状1.已知:、、是三角形的三边,且满足,则a b c 0222=---++ac bc ab c b a 该三角形的形状是_________________________.2.若三角形的三边长分别为、、,满足,则这个三a b c 03222=-+-b c b c a b a 角形是___________________。

整式的乘除复习试题(3套)

整式的乘除复习试题(3套)

整式的乘除过关测试A一、(时间: 40分钟, 总分: 80分) 选择题(共12小题, 每小题3分, 共36分) )可写成(13.1+m a()()a a D aa C aa a B aa A m m m m ⋅++⋅+3333....()6223124355126663)5(;1243)4(;)3(;)2(;2)1(.2y x xy b b b c c c a a a a a a n n n ==⋅=⋅=+=⋅下列计算:中正确的个数为( )A.0B.1C.2D.3 )(324,0352.3=⋅=-+y x y x 则若A.32B.16C.8D.4())的结果为(计算200920088125.0.4⨯-A.8B.-8C.-1D.无法计算)的是(下列等式中运算不正确.5()()2223243322232442.51025.842.63)2(3.y xy x y x D xy x y x x C b a ab b a B y x y x xy x xy A ++=--=-=⋅-=-()()()()的值为、,则若a a M 10M 102105108.626⨯=⨯⨯⨯ 105M 108M 92M 88M ========a D a C a B a A ,、,、,、,、()()()等于则若m n n x x mx x -++=-+,315.72 251.251.25.25.--D C B A()()()的关系是与的一次项,则展开后不含要使多项式q p x q x px x -++2.822.1.0..===+=pq D pq C q p B q p A()的值是,那么已知ab b a b a 2,3.922=-=+A.-0.5B.0.5C.-2D.2 10.计算: 得( )A.0B.1C.8.8804D.3.960111.现有纸片: 4张边长为a 的正方形, 3张边长为b 的正方形, 8张宽为a 、长为b 的长方形, 用这15张纸片重新拼出一个长方形, 那么该长方形的长为( )A.2a+3bB.2a+bC.a+3bD.无法确定()的最小值是则如果多项式p b a b a p ,2008422.1222++++= A.2005 B.2006 C.2007 D.2008 填空题(共6小题, 每小题3分, 共18分)()()=-⋅-322323.13a a 计算 。

《整式的乘除》测试题

《整式的乘除》测试题

《整式的乘除》测试题班级: 姓名: 得分一、选择题:( 本题共7小题, 每小题2分,共14分)1、计算下列各式结果等于45x 的是( )A 、 225x x •B 、 225x x +C 、 x x +35D 、x x 354+ 2、下列式子可用平方差公式计算的式子是( )A 、))((a b b a --B 、)1)(1(-+-x xC 、))((b a b a +---D 、)1)(1(+--x x3、下列各式计算正确的是( )A 、66322)(b a b a =-B 、5252)(b a b a -=- C 、12443)41(b a ab =- D 、4622391)31(b a b a =- 4、)()(32m m -•- 所得的结果是( )A 、 6m -B 、 6mC 、 7m -D 、 7m5、下列多项式中,没有公因式的是( )A 、)()(y x y x a ++和B 、)()(32b a b a +-+和C 、)(2)(3y x y x b --和D 、 )(6)33(a b b a --和6、把4224y x y x -分解因式,其结果为( ) A 、 ))((2222xy y x xy y x -+ B 、 )(2222y x y x -C 、))((22y x y x y x -+D 、 ))((22xy y x y x xy -+7、当mn m n 6)6(-=- 成立时,则( )A 、 m 、n 必须同时为正奇数B 、 m 、n 必须同时为正偶数C 、 m 为奇数D 、 m 为偶数二、填空题:( 本题共15小题, 每小题2分,共30分)1、••3a a m ( )= 22+m a ; =-•2232])()[(a a2、•+)2(n m ( )=224m n - ; 10010101••-m m =3、若3=x a ,则=x a 2 ; =-•19991999)8()125.0(4、若代数式1322++a a 的值为6 ,则代数式5962++a a 为5、代数式2)(7b a +-的最大值是 ,当代数式取最大值时,a 与b 的关系为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学幕的运算测试卷(提高卷)
、选择题(每题3分,共15分) 1 .下列各式中(n 为正整数),错误的有 ① a n +a n =2 a 2n :② a n • a n =2a 2n ; A . 4 个 B . 3 个 C 2 .下列计算错误的是 2 3 A . ( — a ) •( — a )= — a B
C . a 7- a 7=i
D
2n a ;
2n
2个 D
. 1个
2 2 2 4
(xy ) =x y
4
2
2a • 3a =6a A
5
.x B
45
.x
4
计算(2
)2011
(2 严
12
((-1) 2009 3 2
2
3
A
B
.3
'2
15 3 3 . x - x 等于 :■、填空题(每题
3分,共21
分) 6 .计算:a 2 • a • a 3 = ______ ( )
12
18
C
. x
D
.x
的结果是
()
2
3
C
. —
D
3
2
z 2、3
2、2
.;(x )- (x • x )= .
4
7 .计算:[(—n 3)] 2= __________ ; 92X 9X 81 — 310= __________ 8 .若 2a +3b=3,则 9a • 27b 的值为 __________________ 9 . 若 x 3=— 8 a 9b 6,贝U x= ____________ 10 .计算:[(m 2)3
•(—卅)3 ]十(m •吊)2 十 m i 2 ________________________ 11 .用科学记数法表示 0 . 000 507,应记作
_____________ 、解答题(共64分)
13 .(本题满分12分)计算: 3 2
(2)(
— 2a )— ( — a ) • (3a )
(3)t 8rt 2
・ t 5
);
(4)x
5 3 7 2
6 4 4
• x — x • x+x • x +x •
X .
14.(本题满分16分)计算:
2008 2009
(1)0 . 25 X ( —4) (2)(
2
a —b) • ( a —b)
10
• (b —
a);
4 3 3 2 2 3 2 10 (3)2( a ) +(a ) • (a)+aa (4)x 3n+4 n+12 2
r—x )
15.(本题满分16分)计算:
_2 1 _2 1 0 2 -2
⑴•(-2)(-1 -e-) [-(-2)];
2 2
⑵(x3)2 - (x2)3 x6 - (-X2)2 - (-X)2
17.(本题满分4分)一般地,我们说地震的震级为 10级,是指地震的强度是1010
, 震的
震级为8级,是指地震的强度是 108
. 1992年4月,荷兰发生了 5级地震,其后 天加利福尼亚发生了 7级地震•问加利福尼亚的地震强度是荷兰地震强度的多少倍

m n 2 m- n m+n
6分)已知5 =2, 5 =4,求5 和25 的值.
19.(本题满分4分)观察、分析、猜想并对猜想的正确性予以说明. 2 2 2
1 X 2X 3 X 4+1 =5
2 X 3X 4 X 5+1=11
3 X 4X 5X 6+ 仁19
4 X 5X 6 X 7+ 仁292
n(n+1)(n+2)(n+3)+1= ________ (n 为整数).
(3)
3
2 3 1 3
(-9)3 (-3)3(3)3;
(4)
(5 )
1999 (
一召
3)1998
) 5

12 18.(本题满分。

相关文档
最新文档