整式的乘除提高(附答案)

合集下载

(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)

整式的乘除 提高测试(二)选择题(每小题 2 分,共计 16 分)13.计算(-a )3·(a 2)3·(-a )2 的结果正确的是……………………………() (A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………()(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是……………………………………………………………………( ) (A )22(m +n ) (B )16mn (C )4mn (D )16m +n 16.若 a 为正整数,且 x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………()5 (A )5(B )(C )25 (D )10217. 下列算式中, 正确的是 ……………………………………………………………… ( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )( 1 )-2=1= 13329(C )(0.00001)0=(9999)0(D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题 5 分,共 10 分) 23.9972-1001×999.1111122.(1-22 )(1-32 )(1-42 ) (1)92 )(1-102)的值.(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1 =2,求 x 2+ 1 x x 2,x 4+ 1x4 的值.a 2b 2 24.已知(a -1)(b -2)-a (b -3)=3,求代数式-ab 的值.225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.⎨26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题 5 分,共 10 分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1 =10002+6000+9-10002+.【答案】-5990.1 1 1 1 1 22.(1-22)(1-32)(1-42 ) (1)92)(1-102)的值.【提示】用平方差公式化简,1 1 11 1 1 11原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1-)(1+)=21 32 4 32339 10 11 1 9 910101111 · · · · …· ··= ·1·1·1·…·. 【答案】.2 23 3 48 9 102 1020(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1=2,求 x 2+ 1x x 2,x 4+ 1x4 的值.【提示】x 2+ 1 x2 =(x + 1)2-2=2,x 4+ 1 xx 4=(x 2+ 1x2 )2-2=2.【答案】2,2.(a - b )2 124.【答案】由已知得 a -b =1,原式== ,或用 a =b +1 代入求值.2225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.【答案】4.【提示】将 x 2+x -1=0 变形为(1)x 2+x =1,(2)x 2=1-x ,将 x 3+2x 2+3 凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值. 【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3 项系数应为零,得⎧ p - 2 = 0 ⎩q - 2 p - 3 = 0.∴ p =2,q =7.。

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题及答案)知识像烛光,能照亮一个人,也能照亮无数的人。

——XXX整式的乘除(题)例1:计算(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)。

操作步骤】1)观察结构划部分:(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)2)有序操作依法则:辨识运算类型,依据对应的法则运算。

第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算。

3)每步推进一点点。

过程书写】解:原式=4x^6y^2·(-2y)+(4x^6y^3-2)/(-2x^2)8x^6y^3+4x^6y^3-24x^6y^3-2巩固练1.①-5a^3b^2·(-ab^2)=5a^4b^4;②(-m)^3·(-2m^2n^2)=2m^4n^2;③(-2x^2)^3·(-3x^3y)^2=36x^7y^6;④3b^3·(-2ac)·(-2ab)^2=12a^2b^7c。

2.①3xy^2·(2xz^2+3x^2y)=6x^2y^3z^2+9x^3y^3;②-4xy·(y^3-2)/2=-2xy·(y^3-2);③(ab^2c-3a^2b)·abc/3=ab^3c^2-3a^3b^2c;④(2ab^2)^2·(2a^2-b)=8a^5b^4-8a^3b^2;⑤-a·(3a^3+2a^2-3a-1)=-3a^4-2a^3+3a^2+a。

3.①(x+3y)(x-3y)=x^2-9y^2;②(a-2b)(a+2b+1)=a^2-4b^2-1;③(-2m-3n)(2m-4n)=-4m^2+2mn+12n^2;④(x+2y)^2=x^2+4xy+4y^2;⑤(a-b+c)(a+b+c)=a^2-b^2+c^2.4.若长方形的长为(4a^2-2a+1),宽为(2a+1),则这个长方形的面积为8a^3-4a^2+2a-1.5.若圆形的半径为(2a+1),则这个圆形的面积为4πa^2+4πa+π。

浙教版七下数学第三章:整式的乘除能力提升测试试题答案

浙教版七下数学第三章:整式的乘除能力提升测试试题答案

第三章:整式的乘除能力提升测试试题答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:A 解析:()()()103433223248323y y y y y y y -=-⨯⨯=-⋅-⋅故选择A2.答案:C解析:∵22222,2,2,2b b a a n n mm=∴==∴= ,∴222222222b a n m nm =⨯=+,故选择C3.答案:B解析:∵()b a M ab b a 57152122+-=÷-∴()ab ba b a ab b a ab b a M 35757357152122-=+-+--=+--=故选择:B4.答案:D解析:∵()222223636126y kxy x y xy x y x ++=+±=±∴12±=k ,故选择D5.解析:∴nx 21+=,ny -+=21,∴12-=x n ,112-=y n, ∴11=-x ,∴=x y6,答案:C解析:如果(x +6)x +1=1成立,则x +1=0或x +6=1或﹣1, 即x =﹣1或x =﹣5或x =﹣7, 当x =﹣1时,(x +6)0=1, 当x =﹣5时,1﹣4=1,当x =﹣7时,(﹣1)﹣6=1,故选:C .7.答案:B解析:∵()()517652156521322++=+++=++x x x x x x x ,故选择:B8.答案:D解析:∵()()()()()p x pq x q p x q x qx x p x x 4123434323422+-+-++-+=+-++乘积中不含2x 与3x 项, ∴⎩⎨⎧=-+=-03403q p q 解得:⎩⎨⎧==35q p ,∴835=+=+q p ,故选择D9.答案:D解析:根据题意得:(2a+b )(a+b )=2a 2+2ab+ab+b 2=2a 2+3ab+b 2; ∵A 、B 、C 三类卡片的面积分别为ab 、b 2、a 2 , ∴所以A 、B 、C 三类卡片分别为3张,1张,2张. 故答案为:D.解析:①(–12a 3b –6ab )÷(6ab )=122--a ,故错误;②(–2020)01==(2–103)0,故正确;③()166623=÷=÷---x x x x ,故正确;④0.0000168=1.68×510-,故错误;⑤1)71(--=-7,故正确;⑥5a -2=≠25a251a ,故错误。

初一数学七年级下册第一章整式的乘除强化练习+答案

初一数学七年级下册第一章整式的乘除强化练习+答案

第一章整式的乘除复习答案一、知识点1、幂的意义:a n =a ×a ×⋯⋯×a ×a ,举例:35=3×3×3×3×32、同底数幂的乘法:a n ∙a m =a n+m举例:35∙37=3123、幂的乘方:(a m )n =a m+n举例:(35)7=3354、积的乘方:(ab)n =a n ∙b n举例:(35∙27)3=315∙2215、同底数幂相除:a m ÷a n =a m−n 规定:a 0=1(a ≠0) ,a −n =1a n 举例:35÷37=3−2 (−21)0=1 (4)−2=142 (23)−3=(32)3 6、整式的乘法{ 单项式与单项式相乘单项式与多项式相乘多项式与多项式相乘7、平方差公式:a 2−b 2=(a +b)(a −b)8、完全平方公式:(a +b)2=a 2+2ab +b 2;(a −b)2=a 2−2ab +b 29、整式除法 二、例题同底数幂的乘法例1、计算:(1). x 4∙x 7 (2). x 5∙(−x)3 (3). (1x )4∙(1x )7 (4). a x ∙a 2x+7解:(1)x 4∙x 7=x 4+7=x 11(2). x 5∙(−x )3=−x 5∙x 3=−x 5+3=−x 8(3). (1x )4∙(1x )7=(1x )4+7=(1x )11 (4). a x ∙a 2x+7=a x+2x+7=a 3x+7幂的乘方例2、计算:(1). (a b)3(2). −(y4)x(3). (−5x)6(4). [(a5)3 ]x解:(1). (a b)3=a3b(2). −(y4)x=−y4x(3). (−5x)6=56x(4). [(a5)3]x=(a5)3x积的乘方例3、计算:(1). (3a b)3(2). −(ab4)x(3). (−a y b x)6(4). [(a5)3 b]x解:(1). (3a b)3=33a3b=27a3b(2). −(ab4)x=−a x b4x(3). (−a y b x)6=a6y b6x(4). [(a5)3b]x=(a5)3xb x同底数幂相除例4、计算:(1). a13÷a6(2). (ab)x÷(ab)y(3). (−a)6÷a3(4). (−a)11÷(−a)3解:(1). a13÷a6=a13−6=a7(2). (ab)x÷(ab)y=(ab)x−y(3). (−a)6÷a3=a6÷a3=a6−3=a3(4). (−a)11÷(−a)3=(−a)11−3=(−a)8=a8例5、科学记数法:(1). 0.00001 (2). 0.0000135 (3). 0.00000000094解:(1) 0.00001=10−5(2). 0.0000135=1.35×10−5(3). 0.00000000094=9.4×10−10整式乘法:单项式与单项式相乘例6、计算:3a2∙2ab3解:3a2∙2ab3=(3×2)(a2×a)b3=36a3b3整式乘法:单项式与多项式相乘例7、计算:3x2∙(12x4y3−2xy+6)解:3x2∙(12x4y3−2xy+6)=3x2∙12x4y3−3x2∙2xy+3x2∙6=36x6y3−6x3y+18x2整式乘法:多项式与多项式相乘例8、计算:(3x2+2y3)∙(12x4y3−6)解:(3x2+2y3)∙(12x4y3−6)=3x2×12x4y3−3x2×6+2y3×12x4y3−2y3×6=36x6y3−18x2+24x4y6−12y3平方差公式例9、计算:(1). a2−4b2(2). (2x+3y)(2x−3y)(3). −a2+25b2(4). (a−b)(b+a)−2a2+b2解:(1). a2−4b2=(a+2b)(a−2b)(2). (2x+3y)(2x−3y)=4x2−9y2(3). –a2+25b2=25b2–a2=(5b+a)(5b−a)(4). (a−b)(b+a)−2a2+b2=a2−b2−2a2+b2=−a2完全平方公式例10、计算:(1). (3a−2b)2(2). (2x+5y)2−(5x−2y)2(3). a2+b2+2ab (4). 9a2+16b2−24ab解:(1). (3a−2b)2=9a2−12ab+4b2(2). (2x+5y)2−(5x−2y)2=(4x2+20xy+25y2)−(25x2−20xy+4y2)=−21x2+40xy+21y2(3). a2+b2+2ab=(a+b)2(4). 9a2+16b2−24ab=(3a)2−2∙3a∙4b+(4b)2=(3a−4b)2整式除法例11、计算:(1). 3abc÷15ab(2). 42a4b8c÷6a2c(3). (3a2b−8ab2)÷(−2ab) (4). (9a2+16b2−24ab)÷(3a−4b)c解:(1). 3abc÷15ab=15(2). 42a4b8c÷6a2c=7a2b8a+4b(3). (3a2b−8ab2)÷(−2ab)=−32(4). (9a2+16b2−24ab)÷(3a−4b)=(3a−4b)2÷(3a−4b)=3a−4b三、强化练习一、填空题1、102×105=___107___;2、a4·a6=____ a10_____;3、x·x3·x11=____ x15___;4、-y·y7·y8=___-y16__;5、(-1) 2003=___-1___;6、(102)3=____106___;7、t·t11=__ t12__;8、(-s)2·(-s)5=___(-s)7__;9、(xy)2·(xy)3=__(xy)5__;10、(a+b)2·(a+b)6=_(a+b) 8__;11、a6·a2=___ a8__;12、x6·x·x7=__ x14__;13、t2·(t3)2=__ t8__;14、8x6-2(x2)3=__6x6__;15、(x·x2·x3)4=_ x24__;16、[(y2)2]4=_ y16__;17、a8+(a2)4=___2 a8__;18、[(n2)3·(n4)2]2=__ n28__;19、―(―ab)3=__(ab) 3_;20、(2x2)3=____8x6_;21、x2·(xy)3=__ x5 y3_;22、x3y· (xy)3=_ x5 y4_;23、x6y4+(x3y2)2=__2 x6y4_;24、(-6a2)·3a=__-18a3_;25、(-7x5yz2)·(-4xz4)=__ 28x6yz6__;26、(-5a3y)·(-3ayc)=_ 15a4y2c _;27、(-a)2·5a3b =___-5a5b __;28、(2a)2·(-3a2)=___ -6a4__;29、(-3x)(2xy-6) =_-6x2y+18x__;30、x(x2-x)+2x2(x-1)=_ 3x3-3x2;31、(-2a3)·(2a2b-4ab2)=_ -4a5b+8a4b2 __;32、(3x)2( x3― x2―2)=_ 9x5― 9x4―18 x2_;33、(x-1)(x+1)-x2=__-1__;34、(2x-y)(2x+y)=___4x2-y2____;35、(3x+5y)(3x-2y) = __ 9x2+9xy-10y2___;36、(x+11)(x-20)=_ x2-9x-220__;37、(x-5)(2x+3)=__ 2x2-7x-15__;38、(a-1)(a+1)=__ a2-1__;39、(m-2)(m+2)=__ m2-4___;40、(2n-3)(2n+3)=___ 4n2-9___;41、99×101=(_100_-_1_)×(_100_+_1_) =(100)2-( 1 )2=__9999__;42、2003×1997=(2000_-_3_)×(_2000_+_3_) =(2000)2-(3)2=_3999991_;43、(a-bc)(a+bc)=_ a2-(bc)2__;44、198×202=__39996__;45、(m-30)(m+30)=_ m2-900__;46、(t-0.5) (t+0.5 )=__ t2-0.25___;47、(2x-9)(2x+9)=__ 4x2-81__;48、(x-y)(x+ y)=__ x2-y2___;49、(2x-3t)(2x+3t)=_ 4x2-9 t2_;50、(3x-7)(3x+7)=_ 9x2-49__;51、(-2m+n)(n+2m)=_ n2-4m2_;52、(-5p-3)(5p-3)=__ 9-25p2__;53、(x2-y)(x2+y)=__ x4-y2__;54、(y+12)2=__ y2+24y+144_;55、(2a+3)2=__ 4a2+12a+9__;56、(3x-4)2=__ 9x2-24x+16___;57、(3a-2b)2=_ 9a2-12ab+4b2__;58、(4x+5y)2=_ 16x2+40xy+25y2__;59、(ab-4c)2=_ (ab)2-8abc+16c2__;60、(3a-1)2=__ 9a2-6a+1__;61、(2x+5y)2=_ 4x2+20xy+25y2_;62、(ab-12)2=__ (ab)2-24ab+144__;63、(-a2+b2)=_(b+a)(b-a)__;64、(2a-4b) 2=__ 4a2-16ab+16b2_;65、a(x-y)2=__ax2+2axy+ay2__;66、(y2-3x) 2=_y2-6xy+9x2_;67、5y2+10y+5=__5(y+1)2__;68、36x2-12x+1=(_6x-1_)2;69、x2+22x+121=(__x+11__)270、如果x2-mx+16=(x-4)2,那么m=__8___.71、x3-10x2+25x=x(_x-5_)2.二、选择题72、计算-a3·(-a)4的结果是(C)A、a7B、-a12C、-a7D、a1273、下列运算中正确的是(C)A、2m2n-2n2m=0B、3x2+5x3=8x5C、(-y)2·(-y)5=-y7D、(-x)2·x3=-x574、下列运算中,错误的是(B)A、x2+x2=2x2B、x2·x2=2x2C、(a2)4=(a4)2D、(x6)5=x3075、下列运算中,正确的是(B)A、(x4)4=x8B、x·(x2)3=x7C、(x·x2)3=x6D、(x10)10=x2076、计算(-3a4b2)3的结果是(D)A、-9a12b6B、-27a7b5C、9a12b6D、-27a12b677、计算5a·5b的结果是(A)A、25abB、5abC、5a+bD、25a+b78、下列计算中正确的是(B)A、x3·x3=2x3B、x10+x10=2x10C、(xy2)3=xy6D、(x3)2=x979、下列计算中错误的是(C)A、x(x-1)=x2-xB、(-x)(2-x)=-2x+x2C、(-x)2(x-3)= -x3+3x2D、m(m2-n2)=m3-mn280、给出下列四个算式:⑴a(a2-1)=a3-1;⑴x2+x2=2x2⑴-x(x-3)=-x2+3x⑴x2-x(x-1)=x,其中正确的有(C)A、1个B、2个C、3个D、4个81、下列计算正确的是(B)A、(x+y)(x+y)=x2+y2B、(x+1)(x-1)=x2-1C、(x+2)(x-3)=x2+x-6D、(x-1)(x+6)=x2-682、下列计算中正确的是(C)A、(-a+b)(b-a)=b2-a2B、(2x-3y)(2x+3y)=2x2-3y2C、(-m-n)(m-n)=-m2+n2D、(a+b)(a-2b)=a2-2b283、下列计算中错误的是(B)A、(-3x2y)2=9x4y2B、(x3-2y)(x3+2y)=x9-4y2C、(4-2x)(4+2x)=16-4x2D、(a2+b2)(a2-b2)=a4-b484、下列从左到右的变形正确的是(A)A、(x+y)(x-y)=x2-y2B、2(x-4y)=2x-4yC、x(x2-x+1)= x3-x+1D、(a-b)(a+b)= b2-a2三、计算题85、(-3ab)2·(-2ab2);86、x(x-y)+x(y-x);87、(x+2)(x+3);=6a2b4=0 =x2+5x+688、(x-2)(x+3);89、(x+2)(x-3);90、(x-2)(x-3);=x2+x-6 = x2-x-6 =x2-5x+691、(3a-4b)(2a-5b) 92、(x+2y)(x-2y) 93、(5x-4y)(2x-3y)=6a2-23ab+20b2= x2-4y2=10x2-23xy+12y294、(3x+4y)(3x-4y) 95、(2a-3b)(3a+2b) 96、(2n+5m)(6n-3m)=9x2-16y2= 6a2-5ab-6b2=12n2+24xy-15m297、(3x -y)(3x -y) 98、(6x -y)(6x+y) 99、(2x+y)(-2x -y)=9x 2-6xy+y 2 = 36x 2-y 2 =-4x 2-4xy -y 2100、(x -5)(x+5); 101、(3y -10)(3y+10); 102、(8-5b )( +5b);=x 2-25 = 9y 2-100 =40b -25b 2103、(xy 3)xy 104、(x -5)(x+5); 105、(3y -10)(3y+10);=x 2 y 4 = x 2-25 =9y 2-100106、(a -5b )(a +5b); 107、(xy -3)(xy+3); 108、(a -bc)(a+bc);=a 2 -25b 2 = (xy)2-9 =a 2-(bc) 2109、(a+2b)(2b -a); 110、 (3x -y)(y+3x); 111、4x 2-(2x -9)(2x+9);=4b 2 -a 2 = 9x 2-y 2 =81112、(-7m+1)(-7m -1); 113、(-x -5)(-x+5); 114、(x 2-2)(x 2+2);=49m 2 -1 = x 2-25 =x 4-4115、(ab -3)(ab+3); 116、(4y -3x)(3x+4y); 117、(x+1)(x -1)-x 2;=(ab)2 -9 =16y 2-9x 2 =-1118、(3y -1)(3y+1)-(2y+2)(2y -2); 119、( a -b)( a+ b);=5y 2 +3 = a 2-b 2120、(-3m 2+1)(-3m 2-1); 121、(-2x -11y)(2x -11y);=9m 4 -1 = 121y 2-4x 2122、(4+2x)(2-x) 123、-a 2+b 2; 124、(5x -2y)2+20xy=8-2x 2 = (b + a)(b -a) =25x 2+4y 2125、(a -2b)(a+2b)-(a -2b)2; 126、3x 2-3y 2; 127、6(x+y)-2(x+y);=-8b 2+4ab =3 (x +y)(x -y) =4x -4y128、(x+y)2-4yx ; 129、x(x -y)-y(y -x); 130、b(a+b)-a(a+b);=(x -y)2 = x 2 -y 2 =b 2-a 2131、 (a -b)-5(a -b); 132、(x -y)2-(x 2-y 2); 133、3(2x+y)2+2(2xy);=-4 (x -y)2 =-2xy+2y 2 =12x 2+16xy+3y 2134、先化简再求值(x −1)(x +1)−(x −2)2,当x =14时,求此代数式的值 参考答案:(x −1)(x +1)−(x −2)2=4x −5, 当x =14时代数式的值为-4 135、已知:23a = 25b =,求3232a b +-的值 136、已知3a x =,2b x =,求2a b x + 参考答案:6758 参考答案:18137、已知4m x =,3n x =,求23m n x x +的值 138、已知3a m =,4b m =,求32a b m -的值. 参考答案:33 参考答案:2716 139、已知327a x =,求4a x 的值 140、已知4a b += ,2211a b +=,求2()a b - 参考答案:81 参考答案:6141、已知15a a +=,求441a a+的值 142、已知221x xy += ,228y xy +=,求2()x y + 参考答案:625 参考答案:49。

整式的乘除提高训练题

整式的乘除提高训练题

整式的乘除提高训练题(总4页) -本页仅作为预览文档封面,使用时请删除本页-一.填空题 1.若代数式1)42(2---x 在取得最大值时,代数式)]12([42----x x x 的值为________2.已知二次三项式2x 2+bx +c =2(x-3)(x +1),则b =_________,c =_________.3.计算1993+9319的个位数字是___________4. 若8919+=+=+c b a ,则()()()=-+-+-222a c c b b a . 5.若代数式1)42(2---x 在取得最大值时,代数式)]12([42----x x x 的值为________6.已知二次三项式2x 2+bx +c =2(x-3)(x +1),则b =_________,c =_________.7.若m 2+m -1=0, 则m 3+2m 2+2001= .8.若x =2m +1,y =3+4m ,则用x 的代数式表示y 为 .9.用科学记数法表示: ._________000302.0=- 10.︱x ︱=(x -1)0 ,则x = .11.若c bx ax x x ++=--2)25)(32(,则=a ,=b ,=c12.如图,在一个长方形花园ABCD 中,若AB=a,AD=b,花园中建有一条长方形道路LMPQ 及一条平行四边形道路RSKT,若LM=RS=c,则长方形花园中除道路外可绿化部分的面积为________________二.选择题1.12+m a 可写成( ).A .12+⋅m a aB .a m a +2C .m a a 2⋅ D. m a a ⋅22.32)()(c a b c b a --+-⋅等于( ).A .2)(c b a +-B .5)(c a b --C .5)(c b a +--D .5)(c a b ---3.下列题中不能用同底数幂的乘法法则化简的是( )A .(x +y)(x +y)2B .(x-y)(x +y)2C .-(x-y)(y-x)2D .(x-y)2·(x-y)3·(x-y) 4.已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A. 奇数B. 偶数C. 正整数D. 整数5.(101)2+(101)0+(101)-2计算后其结果为( ) A .1 B .201 C .1011001 D .10010016.()2a a b c -+-与()2a a ab ac --+的关系是( )A .相等B .互为相反数C .前式是后式的a -倍D .前式是后式的a 倍7.若()1520=-x ,则x 的取值是( ) A .25>x B .x≥—25 C . x >—25 D .x≠25 8.计算:100101)2()2(-+- 的结果是( )A .1002-B . 2-C .2D .10029.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( ) A .()12--nc B .nc 2- C .n c 2- D .n c 2 10. 当1-=a 时,n 为整数,则)63(112321n n n n n a a a a a +---++++的值是( ).3 C11、两整式相乘的结果为122--a a 的是 ( )A 、()()43-+a aB 、()()43+-a aC 、()()26-+a aD 、()()26+-a a12.如果32=-b a ,那么b a 426+-的值是( )A. 3B. 2C. 1D. 013.若))(3(152n x x mx x ++=-+,则m 的值为( )A 、-5B 、5C 、-2D 、214.古希腊著名的毕达哥拉斯学派把1、3、6、10 …… 这样的数称为“三角形数”,而把1、4、9、16 …… 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C . 36=16+20D .49=21+28三.解答题1.已知 n x m x ==53,用含有n m 、的代数式表示14x .2.若125512=+x ,求x x +-2015)2(的值3.试确定20162015273⨯的个位数。

整式的乘除法专题训练(含答案)

整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。

14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。

18.若3x 5y 3 0, 求8x?32y的值。

19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。

5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。

难点突破“整式乘除(提高)”压轴题50道(含详细解析)

难点突破“整式乘除(提高)”压轴题50道(含详细解析)

难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+; 33312336++=,而2(123)36++=,3332123(123)∴++=++; 33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= . 根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.。

吉林省长市八年级数学上册《整式的乘除》提高测试 华东师大版

吉林省长市八年级数学上册《整式的乘除》提高测试 华东师大版

吉林省长春市八年级数学上册《整式的乘除》提高测试华东师大版(一)填空题(每小题2分,共计24分)1.a6·a2÷(-a2)3=________.【答案】-a2.2.()2=a6b4n-2.【答案】a3b2n-1.3.______·x m-1=x m+n+1.【答案】x n+2.4.(2x2-4x-10xy)÷()=错误!未找到引用源。

x-1-错误!未找到引用源。

y.【答案】4x.5.x2n-x n+________=()2.【答案】错误!未找到引用源。

;x n-错误!未找到引用源。

.6.若3m·3n=1,则m+n=_________.【答案】0.7.已知x m·x n·x3=(x2)7,则当n=6时m=_______.【答案】5.8.若x+y=8,x2y2=4,则x2+y2=_________.【答案】60或68.9.若3x=a,3y=b,则3x-y=_________.【答案】错误!未找到引用源。

.10.[3(a+b)2-a-b]÷(a+b)=_________.【答案】3(a+b)-1.11.若2×3×9m=2×311,则m=___________.【答案】5.12.代数式4x2+3mx+9是完全平方式则m=___________.【答案】±4.(二)选择题(每小题2分,共计16分)13.计算(-a)3·(a2)3·(-a)2的结果正确的是……………………………()(A)a11(B)a11(C)-a10(D)a13【答案】B.14.下列计算正确的是………………………………………………………………()(A)x2(m+1)÷x m+1=x2(B)(xy)8÷(xy)4=(xy)2(C)x10÷(x7÷x2)=x5(D)x4n÷x2n·x2n=1【答案】C.15.4m·4n的结果是……………………………………………………………………()(A)22(m+n)(B)16mn(C)4mn(D)16m+n【答案】A.16.若a为正整数,且x2a=5,则(2x3a)2÷4x4a的值为………………………()(A)5 (B)错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.x2n-xn+________=( )2.【答案】 ;xn- .
6.若3m·3n=1,则m+n=_________.【答案】0.
7.已知xm·xn·x3=(x2)7,则当n=6时m=_______.【答案】5.
8.若x+y=8,x2y2=4,则x2+y2=_________.【答案】60或68.
(二)选择题(每小题2分,共计16分)
13.计算(-a)3·(a2)3·(-a)2的结果正确的是( )
(A)a11(B)a11(C)-a10(D)a13【答案】B.
14.下列计算正确的是( )
(A)x2(m+1)÷xm+1=x2(B)(xy)8÷(xy)4=(xy)2
(C)x10÷(x7÷x2)=x5(D)x4n÷x2n·x2n=1【答案】C.
(4)(x2-2x-1)(x2+2x-1);【答案】x4-6x2+1.
(5)(a- b)(2a+ b)(3a2+ b2);
【提示】原式=2(a- b)(a+ b)(3a2+ b2)=6a4- b4.
【答案】6a4- b4.
(6)[(a-b)(a+b)]2÷(a2-2ab+b2)-2ab.
【提示】原式=(a-b)2(c+b)2÷(a-b)2-2ab=a2+b2.【答案】a2+b2.
【答案】 .
(五)解答题(每小题5分,共20分)
23.已知x+ =2,求x2+ ,x4+ 的值.
【提示】x2+ =(x+ )2-2=2,x4+ =(x2+ )2-2=2.
【答案】2,2.
24.已知(a-1)(b-2)-a(b-3)=3,求代数式 -ab的值.
【答案】由已知得a-b=1,原式= = ,或用a=b+1代入求值.
15.4m·4n的结果是…( )
(A)22(m+n)(B)16mn(C)4mn(D)16m+n【答案】A.
16.若a为正整数,且x2a=5,则(2x3a)2÷4x4a的值为
(A)5(B) (C)25(D)10【答案】A.
17.下列算式中,正确的是…( )
(A)(a2b3)5÷(ab2)10=ab5(B)( )-2= =
x2、x3项系数应为零,得
∴p=2,q=7.
(C)(0.00001)0=(9999)0(D)3.24×10-4=0.0000324【答案】C.
18.(-a+1)(a+1)(a2+1)等于……( )
(A)a4-1(B)a4+1(C)a4+2a2+1(D)1-a4【答案】D.
19.若(x+m)(x-8)中不含x的一次项,则m的值为
(A)8(B)-8(C)0(D)8或-8
20.已知a+b=10,ab=24,则a2+b2的值是…
(A)148(B)76(C)58(D)52【答案】D.
(三)计算(19题每小题4分,共计24分)
21.(1)( a2b)3÷( ab2)2× a3b2;【答案】2a7b.
( +3y)2-( -பைடு நூலகம்y)2;【提示】运用平方差公式.【答案】3xy.
(3)(2a-3b+1)2;【答案】4a2+9b2+1-12ab+4a-6b.
《整式的乘除》提高测试
(一)填空题(每小题2分,共计24分)
1.a6·a2÷(-a2)3=________.【答案】-a2.
2.( )2=a6b4n-2.【答案】a3b2n-1.
3.______·xm-1=xm+n+1.【答案】xn+2.
4.(2x2-4x-10xy)÷( )= x-1- y.【答案】4x.
9.若3x=a,3y=b,则3x-y=_________.【答案】 .
10.[3(a+b)2-a-b]÷(a+b)=_________.【答案】3(a+b)-1.
11.若2×3×9m=2×311,则m=___________.【答案】5.
12.代数式4x2+3mx+9是完全平方式则m=___________.【答案】±4.
22.化简求值(本题6分)
[(x+ y)2+(x- y)2](2x2- y2),其中x=-3,y=4.
【提示】化简结果4x4- y4.【答案】260.
(四)计算(每小题5分,共10分)
23.9972-1001×999.
【提示】原式=9972-(1000+1)(1000-1)
=9972-10002+1=(1000-3)2-10002+1
=10002+6000+9-10002+.
【答案】-5990.
22.(1- )(1- )(1- )…(1- )(1- )的值.
【提示】用平方差公式化简,
原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1- )(1+ )= · · · · …· · · = ·1·1·1·…· .
25.已知x2+x-1=0,求x3+2x2+3的值.
【答案】4.
【提示】将x2+x-1=0变形为(1)x2+x=1,(2)x2=1-x,将x3+2x2+3凑成含(1),(2)的形式,再整体代入,降次求值.
26.若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q的值.
【答案】展开原式=x4+(p-2)x3+(q-2p-3)x2-(3p+28)x-3q,
相关文档
最新文档