(完整版)六年级数学下-《整式的乘除》测试题
中学六年级数学下册 第六章 整式的乘除单元综合检测题(无答案) 鲁教版五四制 试题

整式的乘除一、选择题〔每题3分,共30分〕1.以下运算中,正确的选项是〔 〕A .2054a a a =B .4312a a a =÷C .532a a a =+D .a a a 45=-2.÷c b a 468〔 〕=224b a ,那么括号内应填的代数式是〔 〕A 、c b a 232B 、232b aC 、c b a 242D 、c b a 2421 3.以下从左边到右边的变形,属于因式分解的是〔 〕 A. 1)1)(1(2-=-+x x x B.1)2(122+-=+-x x x x C. )4)(4(422y x y x y x -+=- D. )3)(2(62-+=--x x x x 4、如果:()159382b a b a n m m =⋅+,那么〔 〕A 、2,3==n m B 、3,3==n m C 、2,6==n m D 、5,2==n m 7、以下各式是完全平方式的是〔〕 A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8、矩形ABCD 中,横向阴影局部是长方形,另一局部是平行四边形,依照图中标注的数据,图中空白局部的面积为〔 〕A 、2c ac ab bc ++-B 、2c ac bc ab +--C 、ac bc ab a -++2D 、ab a bc b -+-22 9、将12-x 4+8分解因式正确的选项是( )A 、12-(x 4-16)B 、12-(x 2+4)(x 2-4)C 、12-(x 2+4)(x+2)(x -2) D 、12-(x 2+2)(x 2-2)2 10、把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b)4D 、(a+b)2⋅(a -b)2 二、填空题〔每题3分,共30分〕11.计算 -a ⋅(-a)2⋅(-a)3=_____ ._______2142=÷-a b a ._____)2(23=-a12.计算:.___________________)3)(2(=+-x x (-2x -3)(-2x+3)=________13.计算:._________________)12(2=-x(2x -2)(3x+2)=___________。
第12章 整式的乘除测试题(一)

第12章 整式的乘除测试题(一)一、选择题(每小题3分,共30分)1. 计算3212ab ⎛⎫- ⎪⎝⎭的结果正确的是( ) A. 6381b a B. 6361b a C. -6361b a D. -6381b a 2.下列等式从左到右的变形属于因式分解的是( )A. 2(x-y )=2x-2yB. x 2-2x+1=x (x-2)+1C. x 2-x-2=(x-1)(x+2)D. x 2y+y=y (x 2+1)3. 下列单项式中,与单项式-6a 2b 3相乘,所得到的乘积是-2a 3b 4的是( )A.3abB.31ab C. 3a 5b 7 D.12a 5b 74. 已知a+2b=5,ab=2,则代数式(a-5)(2b-5)的值为( )A. 1B. 2C. 3D. 45. 小虎在利用两数和(差)的平方公式计算时,不小心用墨水将式子中的两项染黑:(2x +■)2=4x 2+12xy +■,则被染黑的最后一项应该是( )A.3yB.9yC.9y 2D.36y 26.若长方形的面积是4a 2+8ab+2a ,它的一边长为2a ,则它的周长为( )A.2a+4b+1B.2a+4bC.4a+4b+1D.8a+8b+27. 若要得到(a-2b )2,则代数式(a+b )(a+4b )应加上( )A. abB. -abC. 9abD. -9ab8.若2x+y-2=0,则9x ×3y -1的值为( )A.-10B.8C.7D.69. 若n 是正整数,则关于多项式(n+2)2-n 2的说法不正确的是( )A. 一定能被2整除B. 一定能被4整除C. 一定能被8整除D. 一定能被n+1整除10. 如果图1-①的阴影部分的面积为S 1,图1-②的阴影部分的面积为S 2,那么(S 12-2S 1S 2+S 22)÷b 2的值为( )A. a 2-2ab+b 2B. a 2+b 2C. a 2-2abD. 2ab+b 2图1二、填空题(每小题3分,共18分)11. 多项式2(a-2)(a+3)与2ab-4b的公因式是__________.12.计算:(-2n-5m)(2n-5m)=-(______)(2n-5m)=_______.13.若定义运算:a⊗b=a2b3,则(-2x2)⊗(3x)=______.14..如图2-①,小聪剪出9张卡片,他用这9张卡片拼成了如图2-②所示的正方形,请你根据图形的面积,写出一个相应的多项式的因式分解:__________________.①②图215. 已知(m-n)2=8,(m+n)2=2,则m2+n2=______.16. 已知A=(x-1)(x+1)(x2-1),B=[(x+2)(x-2)-2(x2-2)]÷x,则A+B=______.三、解答题(共52分)17.(每小题3分,共6分)计算:(1)3a3·a2-2a7÷a2;(2)[(2x+y)(2x-y)-4(x-2y)2]÷2y.①②18.(每小题4分,共8分)因式分解:(1)12xy2-6x2y-9xy;(2)2x(x-y)2+(y-x)3.19. (8分)问题情境计算:(a+8b)(a-8b)-(a+2b)(a-3b).(1)独立思考完成填空:(a+8b)(a-8b)-(a+2b)(a-3b)=a2-______-(a2+______-3ab-6b2)=_______=_______. (2)反思交流①上述运算主要用了我们学过的哪一个乘法公式和乘法法则?②先化简,再求值:(2m-n)(2m+n)+(2m-n)(n-4m)+2n(n-3m),其中m2-17=0.20.(8分)小马和小虎对同一个多项式x2-mx-n进行因式分解,小马由于粗心看错了一次项的系数-m,因式分解的结果为(x+3)(x-2);小虎也由于不认真,看错了常数项-n,因式分解的结果为(x-2)(x+1).若多项式x2-mx-n因式分解的结果是(x+2)(bx+a),求a,b的值.21.(10分)计算:(x+y-2)(x-y).小明展示了他的解法:(x+y-2)(x-y)=(x+y-2)·x-(x+y-2)·y=x·x+y·x-2·x-x·y-y·y+2·y=x2+xy-2x-xy-y2+2y=x2-2x-y2+2y.(1)利用上述方法,计算:(5x+y-1)(5x-y+1).(2)你还有与(1)中不同的解法吗?若有,写出解题过程.22.(12分)234-415可以被10和16之间(不包括10和16)的某两个数整除,求这两个数.(山东于华虎)第12章整式的乘除测试题(一)一、1. D 2. D 3. B 4. D 5. C 6. D 7. D 8.B 9.C 10.A二、11. 2(a-2)12. 2n+5m -4n2+25m2 13. 108x714. a2+4ab+4b2=(a+2b)215. 516. x4-2x2-x+1三、17. 解:(1)3a3·a2-2a7÷a2=3a5-2a 5=a5.(2)[(2x+y)(2x-y)-4(x-2y)2]÷2y=(4x2-y2-4x2+16xy-16y2)÷2y =(-17y2+16xy)÷2y=172y+8x.18. 解:(1)原式=3xy(4y-2x-3);(2)原式=2x(x-y)2-(x-y)3 =(x-y)2[2x-(x-y)]=(x-y)2(x+y).19.(1)64b22ab a2-64b2-a2-2ab+3ab+6b2ab-58b2(2)①运用了两数和乘以这两数差的乘法公式和多项式与多项式相乘的乘法法则.②(2m-n)(2m+n)+(2m-n)(n-4m)+2n(n-3m)=(2m)2-n2+(2mn-n2-8m2+4mn)+(2n2-6mn)=4m2-n2+2mn-n2-8m2+4mn+2n2-6mn=-4m2.当m2-17=0时,m2=17,原式=-4×17=-68.20. 解:因为(x+3)(x-2)=x2+x-6,所以-n=-6,所以n=6.因为(x-2)(x+1)=x2-x-2,所以-m=-1,所以m=1.所以x2-mx-n=x2-x-6.因为多项式x2-mx-n因式分解的结果是(x+2)(bx+a),所以x2-x-6=bx2+(a+2b)x+2a. 所以b=1,2a=-6. 所以b=1,a=-3.21.解:(1)(5x+y-1)(5x-y+1)=(5x+y-1)·5x-(5x+y-1)·y+(5x+y-1)·1=5x·5x+y·5x-1·5x-5x·y-y·y+1·y+5x·1+y·1-1·1=25x2+5xy-5x-5xy-y2+y+5x+y-1=25x2-y2+2y-1.(2)有,解题过程如下:(5x+y-1)(5x-y+1)=[5x+(y-1)][5x-(y-1)]=(5x)2-(y-1)2 =25x2-y2+2y-1.22. 解234-415=234-(22)15=234-230=230(24-1)=230×15=229×10×3=228×5×12=226×15×16.因为这两个数是介于10和16之间,不包括10和16,所以这两个数是12和15.。
2020-2021学年鲁教版(五四制)数学六年级下册第六章-整式的乘除 综合练习

2020-2021学年鲁教版数学六年级下册第六章-整式的乘除综合练习一、选择题1.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a32.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−43.若x2+mx+16是完全平方式,则m的值等于()A. 8B. −4C. ±8D. ±44.(−13)−1的计算结果是()A. 1B. 3C. 13D. −35.已知5a=4,5b=6,5c=9,则a,b,c之间满足的等量关系是()A. a+b=c+1B. b2=a⋅cC. b=c−aD. 2b=a+c6.给出下列算式①(−3pq)2=6pq,②−2−2=14,③(x3)4×(−x2)3=x18,④a5÷a5=0,⑤(x−y)2=x2−y2,⑥(a+2b)2=a2+ 2ab+4b2,⑦−(a−b)4÷(b−a)3=a−b其中运算正确的有()A. 0个B. 1个C. 2个D. 3个7.已知125x=1000,8y=1000,则2x +2y等于()A. 1B. 2C. 12D. 328.某种产品的原料提价,因而厂家决定对产品进行提价,现有3种方案:①第一次提价m%,第二次提价n%;②第一次提价n%,第二次提价m%;③第一次、第二次提价均为m+n2%.其中m和n是不相等的正数.下列说法正确的是()A. 方案①提价最多B. 方案②提价最多C. 方案③提价最多D. 三种方案提价一样多9.小南身高为163cm,一张纸的厚度为0.09mm,现将这张纸连续对折(假设对折始终能成功),若连续对折n次后,纸的厚度超过了小南的身高,那么n的值最小是()A. 12B. 13C. 14D. 1510.若x2−2(a−3)x+25是完全平方式,那么a的值是()A. −2,8B. 2C. 8D. ±211.如果(a n⋅b m b)3=a9b15,那么()A. m=3,n=4B. m=4,n=4C. m=3,n=3,D. m=4,n=312.计算(2x+3y−4)(2x+ay+b)得到的多项式不含一次项,其中a,b是常数,则a−b的值为()A. 1B. −1C. −7D. 713.为了求1+2+22+23+⋯+22011+22012的值,可令S=1+2+22+23+⋯+22011+22012,则2S=2+22+23+24+⋯+22012+22013,因此2S−S=22013−1,所以1+22+23+⋯+22012=22013−1.仿照以上方法计算1+5+52+53+⋯+52012的值是()A. 52013−1B. 52013+1C. 52013−44D. 52013−14二、填空题14.若a+b=2,a2−b2=6,则a−b=______.15.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.16.若a2+b2=10,ab=−3,则(a−b)2=________.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若3x=4,3y=7,则33x−2y的值为______ .19.若(a−1)a+4=1成立,则a=.三、计算题20.计算:(1)5−1÷5−3+(−1)2020−(12)−1+(2021−π)0;(2)[(−2)−3−8−1×(−1)−2]×(−12)−2×(π−2)0.21. 计算:(1)(−13)6÷(−13)3;(2)y 10÷y 3÷y 4;(3)(−ab)5÷(−ab)3;(4)(x −y)5÷(y −x)2.22. 先化简,再求值:(2x +y)(2x −y)−(x −2y)2+y(−4x +5y +1),其中x =2,y =2008.23. 若(x 2+px −13)(x 2−3x +q)的积中不含x 项与x 3项(1)求p 、q 的值;(2)求代数式(−2p 2q)2+(3pq)0+p 2019q 2020的值24. 已知a 是大于1的实数,且有a 3+1a 3=p ,a 3−1a 3=q 成立.(1)若p +q =4,求p −q 的值;(2)若q 2=22n +122n −2(n ≥1,且n 是整数). (i)用含n 的式子表示;(ii)比较p 与(a 3+14)的大小,并说明理由.答案1.【答案】D2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】B7.【答案】B8.【答案】C9.【答案】D10.【答案】A11.【答案】D12.【答案】B13.【答案】D14.【答案】315.【答案】6.5×10−416.【答案】1617.【答案】m +818.【答案】644919.【答案】−4或2或020.【答案】解:(1)原式=25.(2)原式=−1.22.【答案】解:原式=4x 2−y 2−x 2+4xy −4y 2−4xy +5y 2+y =3x 2+y∵x =2,y =2008,∴原式=3×22+2008=202023.【答案】解:(1)(x 2+px −13)(x 2−3x +q) =x 4−3x 3+qx 2+px 3−3px 2+pqx −13x 2+x −13q =x 4+(p −3)x 3+(q −3p −13)x 2+(pq +1)x −13q ∵(x 2+px −13)(x 2−3x +q)的积中不含x 项与x 3项∴{pq +1=0p −3=0∴{p =3q =−13(2)∵p =3,q =−13(−2p 2q)2+(3pq)0+p 2019q 2020的值 =4p 4q 2+1+(pq)2019⋅q=4×81×19+1−1×(−13)=37+13=3713∴代数式(−2p 2q)2+(3pq)0+p 2019q 2020的值为3713.24.【答案】解:(1)∵a 3+1a 3=p①,a 3−1a 3=q②,∴①+②得,2a 3=p +q =4, ∴a 3=2;①−②得,p −q =2a 3=1.(2)(i)∵q 2=22n +122n −2(n ≥1,且n 是整数),∴q 2=(2n −12n )2,∴q =2n −12n ,(ii)由(1)中①+②得2a 3=p +q ,a 3=12(p +q),①−②得2a 3=p −q ,1a 3=12(p −q), ∴p 2−q 2=4,p 2=q 2+4=(2n +12n )2,∴p =2n +12n ,∴a 3+1a 3=2n +12n ③,a 3−1a 3=2n −12n ④,∴③+④得2a 3=2×2n , ∴a 3=2n ,∴p −(a 3+14)=2n +12n −2n −14=12n −14,当n =1时,p >a 3+14;当n =2时,p =a 3+14;当n ≥3时,p <a 3+14.。
整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的乘除试卷

《整式的乘除》测试题班级 姓名 座号 评分:一、 选择题:(每小题3分,共45分)(1)=∙-n m a a 5)(( )(A )m a +-5 (B )m a +5 (C ) n m a +5 (D )n m a +-5(2)下列运算正确的是( )(A )954a a a =+ (B )33333a a a a =⨯⨯ (C )954632a a a =⨯ (D )743)(a a =-(3)=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-20032003532135()(A )1- (B )1 (C )0 (D)2003(4)设A b a b a +-=+22)35()35( ,则=A ( )(A )ab 30 (B )ab 60 (C ) ab 15 (D )ab 12(5)用科学记数方法表示0000907.0,得( )(A )41007.9-⨯ (B )51007.9-⨯ (C )6107.90-⨯ (D )7107.90-⨯(6)计算(3x 2y )·(-43x 4y )的结果是( ).A .x 6y 2B .-4x 6yC .-4x 6y 2D .x 8(7))(5323===-b a b a x x x ,则,已知(A )2527(B )109(C )53 (D )52(8)一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )(A )6cm (B )5cm (C )8cm (D )7cm(9)下列多项式乘法算式中,可以用平方差公式计算的是( ).A .(m -n )(n -m )B .(a+b )(-a -b )C .(-a -b )(a -b )D .(a+b )(a+b ) (10)下列等式恒成立的是( ).A .(m+n )2=m 2+n 2B .(2a -b )2=4a 2-2ab+b 2C .(4x+1)2=16x 2+8x+1D .(x -3)2=x 2-9(11))()23)(23(=---b a b a(A )2269b ab a -- (B )2296a ab b -- (C )2249b a - (D )2294a b -(12)=-+1221)()(n n x x ( )(A)n x 4 (B)34+n x (C)14+n x (D)14-n x(13)计算结果是1872-+x x 的是( )(A)(x-1)(x+18) (B)(x+2)(x+9) (C)(x-3)(x+6) (D)(x-2)(x+9)(14)===+b a b a 2310953,,( ) (A)50 (B)-5 (C)15 (D)b a +27(15)一个多项式的平方是22124m ab a ++,则=m ( )。
鲁教版六年级数学下册《第6章整式的乘除》达标测试题【含答案】

鲁教版六年级数学下册《第6章整式的乘除》达标测试题一.选择题(共8小题,满分40分)1.如果多项式x2+(m﹣2)x+16是一个二项式的完全平方式,那么m的值为( )A.6B.+10C.10或﹣6D.6或﹣22.如果(2x+m)与(x+3)的乘积中不含x的一次项,那么m的值为( )A.﹣6B.﹣3C.0D.13.若x+y=﹣3,xy=1,则代数式(1+x)(1+y)的值等于( )A.﹣1B.0C.1D.24.医用外科口罩的熔喷布厚度约为0.000136米,将0.000136用科学记数法表示应为( )A.0.136×10﹣3B.1.36×10﹣3C.1.36×10﹣4D.13.6×10﹣55.若a=20210,b=2020×2022﹣20212,c=()2020×()2021,则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.c<b<a D.b<c<a6.已知a+b=7,a2+b2=25,则(a﹣b)2的值为( )A.49B.25C.3D.17.已知2n=a,3n=b,12n=c,那么a,b,c之间满足的等量关系是( )A.c=ab B.c=ab2C.c=a2b D.c=a3b8.已知(2021+a)(2019+a)=b,则(2021+a)2+(2019+a)2的值为( )A.b B.4+2b C.0D.2b二.填空题(共8小题,满分40分)9.计算:(﹣6m2n3)2÷9m3n3= .10.已知2m=3,2n=5,则23m﹣2n的值是 .11.计算:(﹣a)3•(﹣a)2•(﹣a)3= .12.已知(x+3)2﹣x=1,则x的值可能是 .13.已知长方形面积为6y4﹣3x2y3+x2y2,它的一边长为3y2,则这个长方形另外一边长为 .14.计算:(1﹣)×(1﹣)×…×(1﹣)= .15.已知2×8m×16m=222,则(﹣m2)4÷(m3•m2)的值为 .16.如图,两个正方形边长分别为a、b,如果a+b=18,ab=12,则阴影部分的面积为 .三.解答题(共6小题,满分40分)17.计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.18.利用乘法公式计算:(1)(3+2a)(3﹣2a).(2)(﹣2m﹣1)2.(3)(x+2y﹣3)(x+2y+3).19.(1)计算:;(2)计算:(2a+5)(2a﹣5)﹣4a(a﹣2);(3)用乘法公式计算:20202﹣2019×2021;(4)已知10m=2,10n=3,求103m+2n的值.20.先化简,再求值[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a,其中,a=﹣1,.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.22.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1: ;方法2: .(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.答案一.选择题(共8小题,满分40分)1.解:∵x2+(m﹣2)x+16是一个二项式的完全平方式,∴m﹣2=±8,∴m=10或﹣6.故选:C.2.解:(2x+m)(x+3)=2x2+6x+mx+3m=2x2+(6+m)x+3m,∵(2x+m)与(x+3)的乘积中不含x的一次项,∴6+m=0,解得:m=﹣6,故选:A.3.解:∵x+y=﹣3,xy=1,∴(1+x)(1+y)=1+y+x+xy=1﹣3+1=﹣1,故选:A.4.解:0.000136=1.36×10﹣4.故选:C.5.解:a=20210=1;b=2020×2022﹣20212=(2021﹣1)×(2021+1)﹣20212=20212﹣1﹣20212=﹣1;c=(﹣)2020×()2021=;∴b<a<c.故选:B.6.解:∵2ab=(a+b)2﹣(a2+b2)=72﹣25=49﹣25=24,∴(a﹣b)2=a2﹣2ab+b2=25﹣24=1,故选:D.7.解:∵2n=a,3n=b,∴12n=c,(4×3)n=c,4n×3n=c,(2n)2×3n=c,则a2b=c,故选:C.8.解:设2021+a=x,2019+a=y,则x﹣y=2,xy=b,原式=x2+y2=(x﹣y)2+2xy=22+2b=4+2b,故选:B.二.填空题(共8小题,满分40分)9.解:原式=36m4n6÷9m3n3=(36÷9)m4﹣3n6﹣3=4mn3,故4mn3.10.解:∵2m=3,2n=5,∴23m﹣2n=23m÷22n=33÷52=27÷25=,故.11.解:原式=﹣a3•a2•(﹣a3)=a8,故a8.12.解:当x+3=1时,解得:x=﹣2,故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时,解得:x=﹣4,故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时,解得:x=2,故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故﹣2或﹣4或2.13.解:长方形另一边长为:(6y4﹣3x2y3+x2y2)÷3y2=2y2﹣x2y+x2,故2y2﹣x2y+x2.14.解:原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××××…××=×=,故.15.解:∵2×8m×16m=222,∴2×(23)m×(24)m=222,∴2×23m×24m=222,∴21+3m+4m=222,∴1+3m+4m=22,解得:m=3,∴(﹣m2)4÷(m3•m2)=m8÷m5=m3=33=27,故27.16.解:阴影部分的面积为:S正方形ABCD+S正方形CEFG﹣S△ABD﹣S△BFG=====.∵a+b=18,ab=12,∴阴影部分的面积为:=144.∴阴影部分的面积为144.故144.三.解答题(共6小题,满分40分)17.解:原式=6x²+4xy﹣9xy﹣6y²﹣(4x²﹣12xy+9y²).=6x²﹣5xy﹣6y²﹣4x²+12xy﹣9y².=2x²+7xy﹣15y².18.解:(1)(3+2a)(3﹣2a)=9﹣4a2;(2)(﹣2m﹣1)2=4m2+4m+1;(3)(x+2y﹣3)(x+2y+3)=[(x+2y)﹣3][(x+2y)+3]=(x+2y)2﹣9=x2+4xy+4y2﹣9.19.解:(1)原式=1﹣16+(﹣4×)2020=1﹣16+1=﹣14;(2)原式=4a2﹣25﹣4a2+8a=8a﹣25;(3)原式=20202﹣(2020﹣1)(2020+1)=20202﹣20202+1=1;(4)∵10m=2,10n=3,∴103m+2n=103m•102n=(10m)3•(10n)2=23×32=8×9=72.20.解:[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a =(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=﹣1,=时,原式=﹣(﹣1)﹣=1﹣=.21.解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y),得:x﹣2y=3,联立,①+②,得2x=7,解得:x=;②=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)==×=.22.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。
(完整版)整式的乘除测试题(3套)及答案

21、(本题8分)若=2005, =2006,=2007,求的值。
a b c ac bc ab c b a ---++2
2222
、(本题8分).说明代数式的值,与的值无关。
[]
y y y x y x y x +-÷-+--)2())(()(2y 23、(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形 地块, 规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面
积是多少平方米? 并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算. 现有一居民本月用水x 吨,则应交水费多少元?
a
e m
i
t
ma
mx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;
,24时如果元应交水费时解如果 63
,2,3===原式时当b a
i n t h e i r b
e i n
g a
r e
g o
六、解答题(每题4分,共12分)
38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.
39.已知2x+5y=3,求4x ·32y 的值.
40.已知a 2+2a+b 2-4b+5=0,求a ,b 的值.。
2022年鲁教版(五四)六年级数学下册第六章整式的乘除综合测评试题(含详细解析)

六年级数学下册第六章整式的乘除综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知3m =a ,3n =b ,则33m +2n 的结果是( )A .3a +2bB .a 3b 2C .a 3+b 2D .a 3b ﹣22、下列计算结果正确的是( )A .a +a 2=a 3B .2a 6÷a 2=2a 3C .2a 2•3a 3=6a 6D .(2a 3)2=4a 63、下列运算正确的是( )A .a 2+a 4=a 6B .(a 2)3=a 8C .(3a 2b 3)2=9a 4b 6D .a 8÷a 2=a 4 4、最小刻度为0.2nm (91nm 10m -=)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为( )A .9210m -⨯B .11210m -⨯C .9210m -⨯D .10210m -⨯ 5、计算()22a b --得( )A .2244a ab b ++B .2244a ab b -+C .2224a ab b ---D .2244a ab b ---6、下面计算正确的是( )A .339x x x ⋅=B .4322a a a ÷=C .222236x x x ⋅=D .()2510x x = 7、下列运算正确的是( )A .a 2+a 4=a 6B .22122a a -=C .(﹣a 2)•a 4=a 8D .(a 2b 3c )2=a 4b 6c 28、观察下列各式:(x ﹣1)(x +1)=x 2﹣1;(x ﹣1)(x 2+x +1)=x 3﹣1;(x ﹣1)(x 3+x 2+x +1)=x 4﹣1;(x ﹣1)(x 4+x 3+x 2+x +1)=x 5﹣1;…,根据上述规律计算:2+22+23+…+262+263=( )A .264+1B .264+2C .264﹣1D .264﹣2 9、若()()2224x ax x ++-的结果中不含x 项,则a 的值为( )A .0B .2C .12D .-210、下列运算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .2a •3a =6a 2D .(a ﹣b )2=a 2﹣ab +b 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知11233515x x x ++-⋅=,则x =________.2、312m =,36n =,则3n m +=__________.3、一种花的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为_____.4、医用外科口罩的熔喷布厚度为0.000156米,将0.000156用科学记数法表示为 _____.5、已知实数,,a b c 满足22218,618a b ab c c +==++,则2b a a b+=___________. 三、解答题(5小题,每小题10分,共计50分)1、请阅读下列材料:我们可以通过以下方法求代数式2813x x ++的最小值. ()2222281324441343x x x x x ++=+⋅⋅+-+=+-∵()240x +≥∴当x =-4时,2813x x ++有最小值-3请根据上述方法,解答下列问题:(1)()22222610233310x x x x x a b ++=+⋅⋅+-+=++,则a =______,b =______;(2)求证:无论x 取何值,代数式25x ++的值都是正数:(3)若代数式2227x kx -+的最小值为4,求k 的值.2、计算:(x +2)(x ﹣3)+(x ﹣1)2.3、(1)计算:0120222--(2)化简:()223412a a a a a --⋅-÷ 4、计算:(1)()32332216xy y x y ⋅⋅;(2)()()1352a a a a a ⎡⎤+--÷⎣⎦5、计算:﹣12020+(2021﹣π)0+(﹣3)﹣1+(13)﹣2﹣(﹣23).-参考答案-一、单选题1、B【解析】【分析】逆用同底数幂的乘法和幂的乘方法则计算.【详解】解:∵3m =a ,3n =b ,∴33m +2n =33m ×32n =()()3233m n ⋅=()()3233m n ⋅= a 3b 2, 故选B .【点睛】本题考查了同底数幂的乘法和幂的乘方运算的的逆运算,熟练掌握幂的运算法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.2、D【解析】【分析】根据合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方法则逐项分析即可.【详解】解:A. a 与a 2不是同类项,不能合并,故不正确;B. 2a 6÷a 2=2a 4,故不正确;C. 2a 2•3a 3=6a 5,故不正确;D. (2a 3)2=4a 6,正确;故选D.【点睛】本题考查了合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方运算,熟练掌握运算法则是解答本题的关键.3、C【解析】【分析】由合并同类项可判断A ,由幂的乘方运算可判断B ,由积的乘方运算可判断C ,由同底数幂的除法运算可判断D ,从而可得答案.【详解】解:24,a a 不是同类项,不能合并,故A 不符合题意;()632,a a = 故B 不符合题意; 2234639,a b a b 故C 符合题意;826,a a a 故D 不符合题意;故选C【点睛】本题考查的是合并同类项,幂的乘方运算,积的乘方运算,同底数幂的除法,掌握以上基础运算是解本题的关键.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示这一最小刻度为2×10-10m ,故选:D .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、A【解析】【分析】变形后根据完全平方公式计算即可.【详解】解:()22a b -- =()2+2a b=2244a ab b ++,故选A .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.【解析】【分析】利用同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等运算法则分别计算,判断即可.【详解】解:A 、336x x x ⋅=,原式计算错误,不符合题意;B 、4322a a a ÷=,原式计算错误,不符合题意; C 、2242?36x x x =,原式计算错误,不符合题意;D 、()2510x x =,计算正确,符合题意;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等知识点,熟练掌握相关运算法则是解本题的关键.7、D【解析】【分析】由题意合并同类项原则和积的乘方以及幂的乘方和负指数幂运算逐项进行运算判断即可.【详解】解:A. 无法合并同类项,故本选项运算错误; B. 2222a a -=,故本选项运算错误; C. (﹣a 2)•a 4=6a -,故本选项运算错误;D. (a2b3c)2=a4b6c2,故本选项运算正确.故选:D.【点睛】本题考查整式加法和积的乘方以及幂的乘方和负指数幂运算,熟练掌握相关运算法则是解题的关键.8、D【解析】【分析】先由规律,得到(x64﹣1)÷(x﹣1)的结果,令x=2得结论.【详解】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:D.【点睛】本题考查了平方差公式、及数字类的规律题,认真阅读,总结规律,并利用规律解决问题.9、B【解析】【分析】先根据多项式乘以多项式法则展开,合并同类项,由题可得含x的平方的项的系数为0,求出a即可.【详解】解:(x 2+ax +2)(2x -4)=2x 3+2ax 2+4x -4x 2-4ax -8=2x 3+(-4+2a )x 2+(-4a +4)x -8,∵(x 2+ax +2)(2x -4)的结果中不含x 2项,∴-4+2a =0,解得:a =2.故选:B .【点睛】本题考查了多项式乘以多项式,能熟练地运用法则进行化简是解此题的关键.10、C【解析】【分析】分别根据同底数幂的除法运算法则,积的乘方与幂的乘方运算法则,单项式乘以单项式运算法则以及完全平方公式对各项分别计算出结果再进行判断即可.【详解】解:A 、1239a a a ÷=,原选项计算错误,故不符合题意;B 、()326327a a =,原选项计算错误,故不符合题意;C 、2236a a a ⋅=,原式计算正确,故符合题意;D 、222()2a b a ab b -=-+,原选项计算错误,故不符合题意;故选:C .【点睛】此题主要考查了同底数幂的除法,积的乘方与幂的乘方,单项式乘以单项式以及完全平方公式,熟练掌握相关运算法则是解答此题的关键.二、填空题1、4【解析】【分析】逆用积的乘方得到一元一次方程,求解方程即可得到x 的值.【详解】解:∵11233515x x x ++-⋅=∴123(35)15x x +-⨯=,即1231515x x +-=∴123x x +=-解得,4x =故答案为:4【点睛】本题主要考查了积的乘方逆运用以及解一元一次方程,熟练掌握积的乘方的性质是解答本题的关键. 2、72【解析】【分析】根据逆用同底数幂的乘法,计算即可.【详解】解:∵312m =,36n =,∴3n m +=1263723m n ⨯=⨯=故答案为:72【点睛】本题考查了同底数幂的乘法,掌握同底数幂的乘法是解题的关键.3、4⨯6.510-【解析】【分析】用科学记数法表示绝对值小于1的正数时,一般形式为10n⨯,指数中的n由原数左边起第一个不a-为零的数字前面的0的个数所决定.【详解】解:0.00065=4⨯.6.510-故答案为:4⨯.6.510-【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、1.56×10﹣4【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000156=1.56×10﹣4.故答案为:1.56×10﹣4.【点睛】本题考查了科学记数法,解题关键是熟练掌握绝对值小于1的数用科学记数法表示的方法. 5、3【解析】【分析】由22218,618a b ab c c +==++可得222221218,a ab b c c 再利用非负数的性质求解a b =且,a b 都不为0,从而可得答案.【详解】 解: 22218,618a b ab c c +==++, 2221236,ab c c222221218,a ab b c c22230,a b c0,30,a b c,3,a b c9,ab 则,a b 都不为0,2123,b a a b∴+=+= 故答案为:3.【点睛】本题考查的是非负数的性质,完全平方公式的应用,熟练的构建非负数之和为0的条件是解本题的关键.三、解答题1、 (1)3;1(2)见解析(3)k =【解析】【分析】(1)将2610x x ++配方,然后与22610()x x x a b ++=++比较,即可求出a 、b 的值;(2)先利用完全平方公式配方,再根据偶次方的非负性列式求解;(3)二次项系数为1的二次三项式配方时,常数项为一次项系数一半的平方,故先将代数式提取公因数2,再配方,然后根据2227x kx -+的最小值为4,可得关于k 的方程,求解即可.(1)解:22610(3)1x x x ++=++而22610()x x x a b ++=++所以a =3,b =1故答案为:3;1(2)解:∵25x ++22225x x =++-+(22x =+无论x 取何值,(20x ≥,∴(2022x +≥>∴无论x 取何值,代数式25x ++的值都是正数.(3)解:2227x kx -+22()7x kx =-+2222()()722k k x kx ⎡⎤=-+-+⎢⎥⎣⎦ 222()722k k x =--+ ∵代数式2227x kx -+有最小值4 ∴2742k -+= ∴26k =∴k =【点睛】本题考查了配方法在最值问题与证明题中的应用,明确如何配方并读懂材料中的方法是解题的关键,配方法属于重要的运算方法之一,需熟练掌握.2、2x 2-3x -5【解析】【分析】根据多项式乘多项式的运算法则以及完全平方公式计算即可.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:原式=x 2-3x +2x -6+x 2-2x +1=2x 2-3x -5.【点睛】本题考查了整式的混合运算,掌握相关公式与运算法则是解答本题的关键.3、(1)12;(2)453a a -【解析】【分析】(1)根据负整数指数幂、零指数幂可以解答本题;(2)根据幂的乘方和同底数幂的乘除法可以解答本题.【详解】解:(1)0120222--11122=-=; (2)()223412a a a a a --⋅-÷4454a a a =--453a a =-.【点睛】本题考查了幂的乘方、同底数幂的乘除、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.4、 (1)128x 6y 11(2)-a +8【解析】【分析】(1)原式首先计算积的乘方和幂的乘方,最后计算单项式乘以单项式即可得到答案;(2)原式先根据单项式乘以多项式法则去掉小括号,再根据多项式除以单项式运算法则进行计算即可.(1)()32332216xy y x y ⋅⋅=()3332332216x y y x y ⨯⨯⋅⨯=33326816x y y x y ⋅⨯=161128x y ;(2) ()()1352a a a a a ⎡⎤+--÷⎣⎦=22(+3+15)2a a a a a -÷=2(2+16)2a a a -÷=222+162a a a a -÷÷=-a +8【点睛】本题主要考查了整式的运算,熟练掌握运算法则是解答本题的关键.5、2163. 【解析】【分析】先计算乘方、零指数幂、负整数指数幂,再计算加减法即可得.【详解】 解:原式111()9(8)3=-++-+--1983=-++216.3【点睛】本题考查了乘方、零指数幂、负整数指数幂等知识点,熟练掌握各运算法则是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下 《整式的乘除》测试题
姓名 成绩 家长签名:
题 号 1 2 3 4 5 6 7 8 9 10 答 案
1、下列运算正确的是( )
A .2
523a a a =+ B .3
3
6)2(a a = C .1)1(2
2
+=+x x D .4)2)(2(2
-=-+x x x
2、.4)2(xy -的计算结果是( )
A.-2x 4y 4
B. 8x 4y 4
C.16x 4y 4
D. 16xy 4
3、如果多项式162
++mx x 是一个完全平方式,则m 的值是( ) A.±4 B.4 C.±8 D.8 4、下列各题中,能用平方差公式的是( )
A.)2)(2(b a b a +--
B.)2)(2(b a b a +-
C.)2)(2(b a b a ----
D.)2)(2(b a b a +-- 5、若n mx x x x ++=-+2
)2)(4(,则m 、n 的值分别是( )
A.2,8
B.2-,8-
C. 2-,8
D. 2,8- 6、下列计算正确的是( )
A.(-1)0=-1
B.(-1)-1=1
C.2a -3=
3
21a
D.(-a 3)÷(-a )7=
41a
7、已知,3,5=-=+xy y x 则
=+22y x ( ) A. 25. B 25- C 19 D 、19-
8、如图,从边长为cm a )1(+的正方形纸片中剪去一个边长为cm a )1(-的正方形(1>a ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )
A .22cm
B .2
2acm
C .2
4acm D .2
2
)1(cm a -
9、计算:3
3)8(125.0-⨯的结果是( )A .-8 B .8 C .1 D .-1
二、填空题:(3分×5=15分)
11、已知,6,1222=+=-y x y x 则=-y x 。
12、计算:32011x x ⋅ = ; 0)14.3(π- = 。
13、=⨯⋅⨯)108()106(53 ;5、(3x-2y )( )=4y 2-9x 2。
14、若812=x
,则=x ;若9423=⎪⎭
⎫
⎝⎛p
,则=p 。
15、如果(x+3)(x-5)=x 2-mx+n ,则m=___________,n=___________;
三、解答题:(16题6分,17至30题各2分,31至34题各4分,35题5分,共75分)
16、口算:(1)=⋅341010 ; (2)=-0)14.3(π ; (3)=--1)2( ; (4)=--2)2( ;
(5)=--1)21( ; (6)=--2)2
1
( ;
17、222)2()3()2(x x x ---+ 18、 )18()3610854(2
2xy xy xy y x ÷--
19、021)2
1
()21()21(-+-+--- 20、(3xy 2)·(-2xy)
21、(
)
()2234
2
3
2-+--x x x
x 22、()()
222
2
2
3366m m n
m n m -÷--
23、2)32(+x 24、))()((22b a b a b a ++-
25、()()()1122
+--+x x x 26、()()2
222b a b a ----
27、)3)(1()2)(2(-+-+-m m m m 28、)3)(3(-+++b a b a
29、1901899+⨯(用简便方法计算) 30、1181221232⨯-(用简便方法计算)
31、先化简,后求值:2)()()(b a a b b a --+⋅-,其中 2-=a ,3=b
32、 (x -2)(x +2)-(x +1)(x -3) 33、若6=+y x ,3=xy ,求22y x +。
34、(-8a 4b 5c÷4ab 5)·(3a 3b 2) 35.
()
()
2
2012
14.3211π--⎪⎭
⎫ ⎝⎛-+--
(2)()()()()2
3
3
2
3
2222x y x xy y x ÷-+-⋅ (3)()()
222
2
2
3366m m n
m n m -÷--。