2020年高考数学 大题专项练习 数列 三(15题含答案解析)

合集下载

2020年高考数学全国Ⅲ卷(理)试卷+解析

2020年高考数学全国Ⅲ卷(理)试卷+解析

附:K2=
P(K2≥k) 0.050
0.010
n ad bc2

a bc d)a cb d
0.001
k
3.841
10.828
6.635 .
19.(12 分) 如图,在长方体 ABCD A1B1C1D1 中,点 E, F 分别在棱 DD1, BB1 上,且 2DE ED1 , BF 2FB1 . (1)证明:点 C1 在平面 AEF 内; (2)若 AB 2 , AD 1, AA1 3 ,求二面角 A EF A1
故选:C.
【小结】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.
2.复数 1 的虚部是( 1 3i
A. 3 10
【答案】D

B. 1 10
1
C.
10
3
D.
10
【解析】
【分析】
利用复数的除法运算求出 z 即可.
【详解】因为 z 1 1 3i 1 3 i , 1 3i (1 3i)(1 3i) 10 10
设数列{an}满足 a1=3, an1 3an 4n . (1)计算 a2,a3,猜想{an}的通项公式并加以证明; (2)求数列{2nan}的前 n 项和 Sn.
18.(12 分)
某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的
人次,整理数据得到下表(单位:天):
1.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第
一题计分。
22.[选修 4—4:坐标系与参数方程](10 分)
在直角坐标系
xOy
中,曲线
C
的参数方程为

2020高考数学全国试题分类解析(数列部分)

2020高考数学全国试题分类解析(数列部分)

1. (广东卷)已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=,则(B)(A)32(B)3(C)4(D)52. (福建卷)3.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( A )A .15B .30C .31D .643. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =(B ) A .0B .3-C .3D .23 4. (湖南卷)已知数列{log 2(a n -1)}(n∈N *)为等差数列,且a 1=3,a 2=5,则nn n a a a a a a -++-+-+∞→12312lim 111(= (C )A .2B .23C .1D .215. (湖南卷)设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=(C ) A .sinxB .-sinxC .cos xD .-cosx6. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=(C )( A ) 33 ( B ) 72 ( C ) 84 ( D )1897. (全国卷II) 如果数列{}n a 是等差数列,则(B ) (A)1845a a a a +<+ (B)1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a =8. (全国卷II) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则(B) (A)1845a a a a >(B)1845a a a a <(C)1845a a a a +>+ (D) 1845a a a a =9. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于(C )(A )667 (B )668 (C )669 (D )67010. (上海)16.用n 个不同的实数a 1,a 2,┄a n 可得n!个不同的排列,每个排列为一行写成 1 2 3一个n!行的数阵.对第i 行a i1,a i2,┄a in ,记b i =- a i1+2a i2-3 a i3+┄+(-1)n na in , 1 3 2i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3是12,所以,b 1+b 2+┄+b 6=-12+2⨯12-3⨯12=-24.那么,在用1,2,3,4,5形成 2 3 1 的数阵中,b 1+b 2+┄+b 120等于3 1 23 2 1[答]( C )(A)-3600 (B) 1800 (C)-1080 (D)-72011. (浙江卷)limn →∞2123nn ++++=( C )(A) 2 (B) 4 (C)21(D)0 12. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

2020年高考数学专项突破50题(3)--数列【含答案解析】

2020年高考数学专项突破50题(3)--数列【含答案解析】

2020年高考数学专项突破50题(3)--数列学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(本题共40道小题,每小题2分,共80分)1.用数学归纳法证明“633123,*2n n n n N ++++⋅⋅⋅+=∈ ”,则当 1n k =+时,左端应在n k =的基础上加上( )A. ()()33312(1)k k k ++++++LB.()()()333121k k kk +++++++LC. 3(1)k + D. 63(1)(1)2k k +++2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位)。

这个问题中,甲所得为( ) A. 54钱 B.43钱 C.23钱 D.35钱 3.设等差数列{a n }的前n 项和为S n ,首项10a >,公差0d <,10210a S ⋅<,则S n 最大时,n 的值为( ) A. 11 B. 10C. 9D. 84.等比数列{a n }的前n 项和为S n ,若243,15S S ==,则56a a +=( ) A. 16 B. 17C. 48D. 495.设正项等比数列{a n }的前项和为S n ,若32=S ,154=S ,则公比q =( ) A. 2 B. 3C. 4D. 56.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为( )A. 410190-B. 5101900-C. 510990-D.4109900- 7.已知等差数列{a n }的前n 项和为S n ,若1785S =,则7911a a a ++的值为 A. 10 B. 15C. 25D. 308.已知数列{a n }中,12a =,111n n a a +--3=,若n a 1000≤,则n 的最大取值为( )A. 4B. 5C. 6D. 79.等差数列{a n }中,若243,7a a ==,则6a =( ) A. 11 B. 7C. 3D. 210.设等差数列{a n }前n 项和为S n ,等差数列{b n }前n 项和为T n ,若2018134n n S n T n -=+,则33a b =( ) A. 528 B. 529C. 530D. 53111.设等差数列{a n }的前n 项和为S n 若39S =,627S =,则9S =( ) A. 45 B. 54C. 72D. 8112.已知等差数列{a n }的前n 项和S n 满足56S S <且678S S S =>,则下列结论错误的是( ) A. 6S 和7S 均为S n 的最大值 B. 70a = C. 公差0d < D. 95S S > 13.用数学归纳法证明:“()221*111,1n nn a a a a a n N a++-++++=≠∈-L ”,在验证1n =成立时,左边计算所得结果是( ) A. 1B. 1a +C. 21a a ++D.231a a a +++14.等比数列{a n }的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A. 12 B. 10 C. 8 D. 2+log 3515.在等差数列{a n }中,64=a ,3510a a a +=,则=12a ( ) A. 10 B. 12 C. 14 D. 1616.已知数列{a n }的前n 项和S 满足*1(1)26()2nn n n S a n n N --=-+∈,则100S =( ) A. 196 B. 200C. 10011942+ D. 10211982+17.若点(),n n a 都在函数324y x =-图象上,则数列{a n }的前n 项和最小时的n 等于( ) A. 7或8 B. 7C. 8D. 8或918.等差数列{a n }的前n 项和为S n ,且8,45241=+=+a a a a ,则20192019S = ( ) A. 2016 B. 2017C. 2018D. 201919.已知数列{a n }满足:112a =,*11()2n n n a a n N +=+∈,则2019a =()A. 2018112-B. 2019112-C.20183122- D.20193122- 20.已知数列{a n }満足: 11a =,132n n a a +=-,则6a =( ) A. 0 B. 1C. 2D. 621.已知数列{a n }的前n 项和为S n ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为( ) A. 1008 B. 1009C. 1010D. 101122.记等差数列{a n }的前n 项和为S n ,若53a =,1391S =,则11S =( ) A. 36 B. 72C. 55D. 11023.在等差数列{a n }中,其前132<<m 项和为S n ,且满足若3512a S +=,4724a S +=,则59a S +=( )A. 24B. 32C. 40D. 7224.若{a n }为等差数列,S n 是其前n 项和,且11223S π=,则6tan()a 的值为( )A. 3B.C.3D. 33-25.若a ,b 是方程20(0,0)x px q p q -+=<>的两个根,且a ,b ,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值为( ) A.-4 B. -3C. -2D. -126.已知S n 为等比数列{a n }的前n 项和,1a 1=,23a a 8=-,则6S (= ) A.1283B. -24C. -21D. 1127.已知△ABC 的三个内角A ,B ,C 依次成等差数列,BC 边上的中线32=AD ,2AB =,则△ABC 的面积S 为( )A. 3B.C.D. 28.已知等差数列{a n }的前n 项和为S n ,且181212a a a ++=,则13S =( ) A. 104 B. 78C. 52D. 3929.记等差数列{a n }的前n 项和为S n ,若53a =,1391S =,则11S =( ) A. 36 B. 72C. 55D. 11030.《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层灯的盏数是( ) A. 24 B. 48 C. 12 D. 6031.已知数列{a n }是等差数列,数列{b n }分别满足下列各式,其中数列{b n }必为等差数列的是( ) A. ||n n b a =B. 2n n b a =C. 1n nb a =D.2nn a b =-32.已知数列{a n }是一个递增数列,满足*n a N ∈,21n a a n =+,*n N ∈,则4a =( )A. 4B. 6C. 7D. 833.11的等比中项是( ) A. 1 B. -1C. ±1D.1234.某个命题与自然数n 有关,且已证得“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A. 当8n =时,该命题不成立 B. 当8n =时,该命题成立 C. 当6n =时,该命题不成立 D. 当6n =时,该命题成立35.在数列{a n }中,231518n a n n =+-,则a n 的最大值为( )A. 0B. 4C.313 D.213 36.在等差数列{a n }中,已知1a 与11a 的等差中项是15,9321=++a a a ,则9a =( ) A. 24 B. 18 C. 12 D. 637.已知等差数列{a n }的公差0≠d ,前n 项和为S n ,若对所有的)(*∈N n n ,都有10S S n ≥,则( ). A. 0≥n aB. 0109<⋅a aC. 172S S <D. 019≤S38.已知等差数列{a n }和{b n }的前n 项和分别为n A 和n B ,且6302n n A n B n +=+,则使得nnb a 为整数的正整数n 的个数是( ) A. 2 B. 3C. 4D. 539.设数列{a n }满足31=a ,且对任意整数n ,总有1(1)(1)2n n n a a a +--=成立,则数列{a n }的前2018项的和为( ) A. 588 B. 589C. 2018D. 201940.数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A. 1盏B. 2盏C. 3盏D. 4盏第II 卷(非选择题)请点击修改第II 卷的文字说明二、(本题共10道小题,每小题7分,共70分)41.已知数列{ a n }的首项1133,()521n n n a a a n N a *+==∈+. (1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111...n nS a a a =+++,若<100n S ,求最大正整数n . 42.已知在等比数列{a n }中,23411,92187a a a ==. (1)求数列{a n }的通项公式;(2)设n n b na =,求数列{b n }的前n 项和T n . 43.若{c n }是递增数列,数列{a n }满足:对任意*n N ∈,存在*m N ∈,使得10m nm n a c a c +--…,则称{a n }是{c n }的“分隔数列”.(1)设2,1n n c n a n ==+,证明:数列{a n }是{c n }的分隔数列;(2)设4,n n c n S =-是{c n }的前n 项和,32n n d c -=,判断数列{S n }是否是数列{d n }的分隔数列,并说明理由;(3)设1,n n n c aq T -=是{c n }的前n 项和,若数列{T n }是{c n }的分隔数列,求实数a ,q 的取值范围. 44..在等比数列{a n }与等差数列{b n }中,11a =,12b =-,223a b +=-,334a b +=-. (1)求数列{a n }与数列{b n }的通项公式; (2)若n n n c a b =+,求数列{c n }的前n 项和S n . 45.已知数列{a n }各项均为正数,满足2333(1)122n n a n +⎛⎫+++= ⎪⎝⎭L .(1)求1a ,2a ,3a 的值;(2)猜想数列{a n }的通项公式,并用数学归纳法证明你的结论. 46.已知数列{a n }满足: 12n n n a a ++=,且111,23nn n a b a ==-⨯.(1)求证:数列{b n }是等比数列;(2)设S n 是数列{a n }的前n 项和,若10n n n a a tS +->对任意*n N ∈都成立.试求t 的取值范围. 47.已知数列{a n }的前n 项和为S n ,点(,)n n a S 在直线22y x =-上. (1)求数列{a n }的通项公式; (2)设()23log 2n n nS b a -+=,求数列{b n }的前n 项和T n .48.等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足55a =,410S =,0n b >,24b a =,416b a =.(1)求数列{a n }和{b n }的通项公式;(2)令()()1211na n n n cb b +=--,求数列{c n }的前n 项和T n .49.已知数列{a n }满足11a =,11+=+n nn a a a (n N *∈). (1)求2a ,3a ,4a 的值; (2)证明:数列{1na }是等差数列,并求数列{a n }的通项公式. 50.定义12...nnp p p +++为n 个正数12,,...,n p p p 的“均倒数”.已知正项数列{a n }的前n 项的“均倒数”为1n. (1)求数列{a n }的通项公式. (2)设数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的前n 项和为T n ,若4n T <244m m --对一切*n N ∈恒成立,求实数m 的取值范围.(3)令9()10nn nb a=⋅,问:是否存在正整数k使得k nb b≥对一切*n N∈恒成立,如存在,求出k值;如不存在,说明理由.试卷答案1.A 【分析】写成n k =的式子和1n k =+的式子,两式相减可得. 【详解】当n k =时,左端式子为3123k +++⋅⋅⋅+,当1n k =+时,左端式子为3333(1)(12312())k k k k ++++++++⋅⋅⋅+++L , 两式比较可知增加的式子为()()33312(1)k k k ++++++L .故选A.【点睛】本题主要考查数学归纳法,从n k =到1n k =+过渡时,注意三个地方,一是起始项,二是终止项,三是每一项之间的步长规律,侧重考查逻辑推理的核心素养. 2.B设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B. 3.B 【分析】由等差数列前n 项和公式得出21S 1121a =,结合数列{}n a 为递减数列确定10110,0a a ><,从而得到n S 最大时,n 的值为10.【详解】由题意可得()2111112120212110212S a d a d a ´=+=+= 10210a S ⋅<Q 10110a a ∴⋅<等差数列{}n a 的首项10a >,公差0d < 则数列{}n a 为递减数列10110,0a a ∴><即当10n =时,n S 最大 故选B 。

2020年高考数学(理数)解答题强化专练——数列含答案

2020年高考数学(理数)解答题强化专练——数列含答案

(理数)解答题强化专练——数列一、解答题(本大题共10小题,共120.0分)1.已知等差数列{a n}满足a n+1+n=2a n+1.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,求数列的前n项和T n.2.已知{a n}是递增的等差数列,且满足a2+a4=20,a1•a5=36.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n的最小值.3.已知数列{a n}满足:a1=1,a n+1=2a n+n-1.(1)设b n=a n+n,证明:数列{b n}是等比数列;(2)设数列{a n}的前n项和为S n,求S n.4.记S n为等差数列{a n}的前n项和,数列{b n}为正项等比数列,已知a3=5,S3=9,b1=a1,b5=S4.(1)求数列{a n}和数列{b n}的通项公式;(2)记T n为数列{a n•b n}的前n项和,求T n.5.已知正项数列{a n}的前n项和为S n,若数列{a n}是公差为-1的等差数列,且a2+2是a1,a3的等差中项.(1)证明数列{a n}是等比数列,并求数列{a n}的通项公式;(2)若T n是数列{}的前n项和,若T n<M恒成立,求实数M的取值范围.6.已知数列{a n}的前n项和为S n,a1=1,a2=且n≥2).(Ⅰ)证明:为等差数列:(Ⅱ)求数列的前n项和T n.7.已知S n为等差数列{a n}的前n项和,且S2=2a2-2,S5=3a5.(1)求数列{a n}的通项公式;(2)令b n=a n•2n-1,记数列{b n}的前n项和为T n,若T n>300.求正整数n的取值范围.8.设等差数列{a n}公差为d,等比数列{b n}公比为q,已知a1=b1,a3=b1+b2=5,q=2d.(1)求数列{a n},{b n}的通项公式;(2)记c n=a n·b n,求数列{c n}的前n项和S n.9.已知等比数列{a n}的公比q>1,且a1+a3+a5=42,a3+9是a1,a5的等差中项.数列{b n}的通项公式b n=,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明:b1+b2+…+b n<,n∈N*.10.设各项均为正数的数列{a n}的前n项和为S n,已知a1=1,且a n S n+1-a n+1S n=a n+1-λa n,对一切n∈N*都成立.(1)当λ=1时;①求数列{a n}的通项公式;②若b n=(n+1)a n,求数列{b n}的前n项的和T n;(2)是否存在实数λ,使数列{a n}是等差数列如果存在,求出λ的值;若不存在,说明理由.答案和解析1.【答案】解:(1)由已知{a n}为等差数列,记其公差为d.①当n≥2时,,两式相减可得d+1=2d,所以d=1,②当n=1时,a2+1=2a1+1,所以a1=1.所以a n=1+n-1=n;(2),,所以=.【解析】本题考查等差数列的定义、通项公式和求和公式,以及数列的裂项相消求和,化简运算能力,属于中档题.(1)设等差数列的公差为d,将已知等式中的n换为n-1,相减可得公差d=1,再令n=1,可得首项,进而得到所求通项公式;(2)由等差数列的求和公式可得S n,求得,再由数列的裂项相消求和,化简可得所求和.2.【答案】解:(1){a n}是递增的等差数列,设公差为d,则d>0,a2+a4=20,a1•a5=36,可得a1+a5=20,解得a1=2,a5=18,d==4,则a n=2+4(n-1)=4n-2;(2)b n=(4n-2)-30=2n-31,可得前n项和T n=n(-29+2n-31)=n2-30n=(n-15)2-225,当n=15时,前n项和T n取得最小值-225.【解析】(1)设公差为d,则d>0,运用等差数列的性质和通项公式,可得公差d,首项,进而得到所求通项公式;(2)求得b n=(4n-2)-30=2n-31,运用等差数列的求和公式,配方可得所求最小值.本题考查等差数列的通项公式和求和公式,以及单调性、前n项和的最值求法,考查运算能力,属于基础题.3.【答案】解:(1)数列{a n}满足:a1=1,a n+1=2a n+n-1.由b n=a n+n,那么b n+1=a n+1+n+1,∴===2;即公比q=2,b1=a1+1=2,∴数列{b n}是首项为2,公比为2的等比数列;(2)由(1)可得b n=2n,∴a n+n=2n那么数列{a n}的通项公式为:a n=2n-n数列{a n}的前n项和为S n=2-1+22-2+23-3+……+2n-n=(21+22+……2n)-(1+2+3+……+n)=2n+1-2.【解析】(1)由b n=a n+n,那么b n+1=a n+1+n+1,利用定义证明即可;(2)根据(1)求解数列{a n}的通项,即可求解S n.本题主要考查数列通项公式和前n项和的求解,利用分组求和法是解决本题的关键.4.【答案】解:(1)设数列{a n}的首项为a1,公差为d,设数列{b n}的首项为b1,公比为q,由a3=a1+2d=5和S3=3a1+3d=9得a1=1,d=2,a n=a1+(n-1)d=1+2(n-1)=2n-1.所以数列{a n}的通项公式为a n=2n-1.b1=a1=1,由b5=S4得,所以.所以数列{b n}的通项公式为.(2)...相减可得.即有.【解析】(1)设数列{a n}的首项为a1,公差为d,设数列{b n}的首项为b1,公比为q,运用等差数列和等比数列的通项公式,解方程可得所求;(2)运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,化简运算能力,属于中档题.5.【答案】(1)证明:∵数列{a n}是公差为-1的等差数列,∴a n=a1-(n-1),∴=3n-1.∴n≥2时,==3,数列{a n}是以3为公比的等比数列.∴a2=3a1,a3=9a1.∵a2+2是a1,a3的等差中项,∴2(a2+2)=a1+a3,∴2(3a1+2)=a1+9a1,解得a1=1.∴数列{a n}是以3为公比,1为首项的等比数列.∴a n=3n-1.(2)解:=.∴T n==.∵T n<M恒成立,∴.∴实数M的取值范围是.【解析】(1)数列{a n}是公差为-1的等差数列,可得a n=a1-(n-1),可得=3n-1.即可证明数列{a n}是以3为公比的等比数列.由a2+2是a1,a3的等差中项,可得2(a2+2)=a1+a3,解得a1.(2)由(1)可得:=.可得T n,进而得出M的取值范围.本题考查了等差数列与等比数列的定义通项公式及其求和公式、数列的单调性、对数运算性质,考查了推理能力与计算能力,属于中档题.6.【答案】(Ⅰ)证明:依题意,由=2a n+1,可得a n=2a n a n+1+a n+1,即a n-a n+1=2a n a n+1.两边同时除以a n a n+1,可得-=2(n≥2).∵-=3-1=2,也满足上式.∴数列是以1为首项,2为公差的等差数列.(Ⅱ)解:由(Ⅰ)得,=1+2(n-1)=2n-1,则=(2n-1)•3n.∴T n=1×3+3×32+…+(2n-1)•3n,3T n=1×32+3×33+…+(2n-3)•3n+(2n-1)•3n+1,两式相减,可得-2T n=3+2×32+2×33+…+2•3n-(2n-1)•3n+1,=3+18×(1+3+32+…+3n-2)-(2n-1)•3n+1=3+18×-(2n-1)•3n+1=2(1-n)•3n+1-6.∴T n=(n-1)•3n+1+3.【解析】本题第(Ⅰ)题对题干中的递推公式进行变形转化,可得-=2.进一步计算可证得为等差数列;第(Ⅱ)题先根据第(Ⅰ)题的结果计算出数列的通项公式,然后运用错位相减法可计算出前n项和T n.本题主要考查由递推公式得到通项公式,以及运用错位相减法求前n项和.考查了转化思想,逻辑推理能力和数学运算能力.本题属中档题.7.【答案】解:(1)由题意,设等差数列{a n}的公差为d,则,解得.∴a n=2+2(n-1)=2n,n∈N*.(2)由(1)知,b n=a n•2n-1=n•2n.则T n=b1+b2+b3+…+b n=1•21+2•22+3•23+…+n•2n,2T n=1•22+2•23+…+(n-1)•2n+n•2n+1.两式相减,可得-T n=2+22+23+…+2n-n•2n+1=-n•2n+1=(1-n)•2n+1-2.∴T n=(n-1)•2n+1+2.构造数列{T n}:令T n=(n-1)•2n+1+2,则T n+1-T n=n•2n+2-(n-1)•2n+1=(n+1)•2n+1>0,故数列{T n}是单调递增数列.∵T5=4•26+2=258<300,T6=5•27+2=642>300,∴满足T n>300的正整数n的取值范围为{n|n≥6,n∈N*}.【解析】本题第(1)题先设等差数列{a n}的公差为d,根据等差数列的通项公式和求和公式列出关于首项a1和公差d的方程,解出a1和d的值,即可得到数列{a n}的通项公式;第(2)题先根据第(1)题的结果计算出数列{b n}的通项公式,然后运用错位相减法计算出前n项和T n.再根据数列{T n}的单调性可计算出满足T n>300时正整数n的取值范围.本题主要考查等差数列的基础知识,错位相减法求前n项和,数列的单调性.考查了方程思想,转化思想,不等式的计算能力,逻辑思维能力和数学运算能力.本题属中档题.8.【答案】解:(1)∵b1+b2=5,∴b1(1+q)=5,又∵q=2d,a1=b1,∴a1(1+2d)=5,∴a3=a1+2d=5,∴a1=5-2d,∴(5-2d)(1+2d)=5,解得:d1=0,d2=2,若d=0,q=2d=0(舍去)若d=2,q=2d=4,∴b1=a1=a3-2d=1,∴a n=a1+(n-1)d=2n-1,b n=b1q n-1=4n-1.(2)c n=a n·b n=(2n-1)·4n-1,∴S n=1+3×4+5×42+…+(2n-1)4n-1∴4S n=4+3×42+5×43+…+(2n-1)4n,.【解析】本题考查等差数列、等比数列的通项公式和错位相减法求和,考查推理能力和计算能力,属于中档题.(1)利用等差数列和等比数列的通项公式即可求解;(2)由c n=a n·b n=(2n-1)·4n-1,利用错位相减法即可求解.9.【答案】解:(I)由a3+9是a1,a5的等差中项得a1+a5=2a3+18,所以a1+a3+a5=3a3+18=42,解得a3=8,由a1+a5=34,得,解得q2=4或,因为q>1,所以q=2,所以;(II)证明:由(I)可得,∴==,∴=.【解析】(Ⅰ)由等差中项的性质可求得a3=8,进而得到a1+a5=34,进一步求得公比q,由此即可得解;(Ⅱ)化简数列{b n},由此即可得证.本题考查等差数列与等比数列的综合运用,考查化简运算能力及逻辑推理能力,属于中档题.10.【答案】解:(1)①当λ=1时,a n S n+1-a n+1S n=a n+1-a n,则a n S n+1+a n=a n+1S n+a n+1,即(S n+1+1)a n=(S n+1)a n+1.∵数列{a n}的各项均为正数,∴=.∴•…=•…,化简,得S n+1+1=2a n+1,①∴当n≥2时,S n+1=2a n,②②-①,得a n+1=2a n,∵当n=1时,a2=2,∴n=1时上式也成立,∴数列{a n}是首项为1,公比为2的等比数列,即a n=2n-1.②由①知,b n=(n+1)a n=(n+1)•2n-1.T n=b1+b2+…+b n=2•1+3•21+…+(n+1)•2n-1,2T n=2•2+3•22+…+n•2n-1+(n+1)•2n,两式相减,可得-T n=2+2+22+…+2n-1-(n+1)•2n=2+-(n+1)•2n=-n•2n.∴T n=n•2n.(2)由题意,令n=1,得a2=λ+1;令n=2,得a3=(λ+1)2.要使数列{a n}是等差数列,必须有2a2=a1+a3,解得λ=0.当λ=0时,S n+1a n=(S n+1)a n+1,且a2=a1=1.当n≥2时,S n+1(S n-S n-1)=(S n+1)(S n+1-S n),整理,得S n2+S n=S n+1S n-1+S n+1,即=,从而•…=•…,化简,得S n+1=S n+1,即a n+1=1.综上所述,可得a n=1,n∈N*.∴λ=0时,数列{a n}是等差数列.【解析】本题第(1)①题将λ=1代入递推式并转化递推式,然后运用累乘法可得S n+1+1=2a n+1,再类比可得S n+1=2a n,两式相减,再进行计算可发现数列{a n}是等比数列,即可得到数列{a n}的通项公式;第(1)②题先根据①的结果得到数列{b n}的通项公式,然后运用错位相减法求出前n项的和T n;第(2)题可先假设数列{a n}是等差数列,则根据等差中项的性质有2a2=a1+a3,计算出a2,a3关于λ的表达式并代入可解出λ的值,再代入递推式进行验证数列{a n}是等差数列,即可得到结论.本题主要考查数列的求通项公式,等差数列和等比数列的性质应用.考查了累乘法,错位相减法,转化思想的应用,逻辑推理能力和数学运算能力.本题属较难题.。

2020年普通高等学校招生全国统一考试 理科数学 (全国卷III) word版试题及答案解析

2020年普通高等学校招生全国统一考试 理科数学 (全国卷III) word版试题及答案解析

2020年普通高等学校招生全国统一考试(III 卷) 理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A=(){}*,,,x y x y N y x ∈≥,B=(){},8x y x y +=,则A B 中元素个数为 A. 2 B. 3 C. 4 D. 6 2.复数113i-的虚部是 A. 310-B. 110-C. 110D. 3103.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ====4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e--=+,其中K 为的最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3) A.60 B.63 C.66 D.695. 设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A. (14,0)B. (12,0)C. (1,0)D. (2,0)6. 已知向量a,b 满足5a =,6b =,·6a b =-,则cos(,)a a b +=A. 3135- B. 1935-C. 1735D. 19357. 在△ABC 中,2cos =3C ,4AC =,3BC =,则cos B =A. 19B. 13C. 12D. 238. 右图为某几何体的三视图,则该几何体的表面积是 A. 6+42 B. 442+ C. 623+ D. 423+9.已知2tan tan()74πθθ-+=,则tan θ=A. -2B. -1C. 1D. 210.若直线l 与曲线y x =和圆2215x y +=都相切,则l 的方程为 A. 21y x =+ B. 122y x =+ C. 112y x =+ D. 1122y x =+11. 设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F , 2F ,离心率为5. P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a=A .1B .2C .4D .812. 已知5458<,45138<,设5a log 3=,8b=log 5,13c log 8=,则 A. a b c << B. b a c << C. b c a << D. c a b <<二、填空题:本题共4小题,每小题5分,共20分。

2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学大题专项练习数列一(15题含答案解析)高中高中数学题号一总分得分一、解答题1.已知数列的前项和为,,,求.2.设等差数列{a n}满足,,(1)求{a n}的通项公式;(2)设{a n}的前项和为,求满足成立的值。

3.设数列A:, ,… (N≥2)。

如果对小于n(2≤n≤N)的每个正整数k都有<,则称n是数列A的一个“G时刻”。

记“G(A)是数列A 的所有“G时刻”组成的集合。

(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(2)证明:若数列A中存在使得>,则G(A)≠;(3)证明:若数列A满足-≤1(n=2,3, …,N),则G(A)的元素个数不小于 -。

4.设数列的前项和为,且.(1) 求的值,并用表示;(2) 求数列的通项公式;(3) 设,求证:.5.已知在数列{a n }中,a 1=1,a n a n +1=n .(12)(1)求证:数列{a 2n }与{a 2n -1}都是等比数列;(2)若数列{a n }的前2n 项的和为T 2n ,令b n =(3-T 2n )·n·(n +1),求数列{b n }的最大项. 6.单调递增数列{a n }的前项和为,且满足.(1)求数列{a n }的通项公式;(2)数列{b n }满足,求数列{b n }的前项和7.已知等差数列的前n 项和为,且.(1)求数列的通项公式;(2)求证:.8.已知为等差数列,前n 项和为,是首项为2的等比数列,且公比大于0,,,.(Ⅰ)求和的通项公式;(Ⅱ)求数列的前n项和.9.已知数列的前项和为,,且满足(1)求及通项公式;(2)若,求数列的前项和.10.各项均为正数的数列{a n}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数的图象上,且.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}满足b n=4﹣n,设其前n项和为T n,若存在正整数k,使不等式T n >k有解,且(n∈N*)恒成立,求k的值.11.在等差数列中,,,(1)求数列的通项公式;(2)求数列的前项和.12.在数列{a n}中,,(1)写出这个数列的前4项,并猜想这个数列的通项公式;(2)证明这个数列的通项公式.13.数列{a n}的前项和为.(1)求{a n}的通项公式;(2)设,求数列{b n}的前项和.为等差数列的前n项和,且记,其中表示不超过14.x的最大整数,如.(I)求;(II)求数列的前1 000项和.15.已知数列的前n项和S n=3n2+8n,是等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)令求数列的前n项和T n.2020年高考数学大题专项练习数列五(15题含答案解析)答案解析一、解答题1.答案为:2.3.解:4.5.解:(1)证明:由题意可得a 1a 2=,则a 2=.1212又a n a n +1=n ,a n +1a n +2=n +1,∴=.(12)(12)an +2an 12∴数列{a 2n -1}是以1为首项,为公比的等比数列;12数列{a 2n }是以为首项,为公比的等比数列.1212(2)T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=+=3-3·n .1-(12)n 1-1212[1-(12)n ]1-12(12)∴b n =3n(n +1)n ,b n +1=3(n +1)(n +2)n +1,∴=,(12)(12)bn +1bn n +22n∴b 1<b 2=b 3,b 3>b 4>…>b n >…,∴数列{b n }的最大项为b 2=b 3=.926.7.8.(1)..(2).9.10.11.12.13.(1);(2)数列的前项或前项的和最大;(3).14.解:15.。

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

专题 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和. 【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是① ②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项和n S 满足,且11=a 。

2020年高考数学(文数)解答题强化专练——数列含答案

2020年高考数学(文数)解答题强化专练——数列含答案

(文数)解答题强化专练——数列一、解答题(本大题共10小题,共120.0分)1.在等差数列{a n}中,S n为其前n项的和,若S5=25,a10=19.(1)求数列{a n}的通项公式a n及前n项和S n;(2)若数列{b n}中b n=,求数列{b n}的前n和T n.2.在数列{a n}中,a1=3,a n=2a n-1+(n-2)(n≥2,n∈N*).(1)求证:数列{a n+n}是等比数列,并求{a n}的通项公式;(2)求数列{a n}的前n项和S n.3.已知数列是以为首项,为公差的等差数列,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.4.设S n是等差数列{a n}的前n项和,若公差d≠0,a5=10,且、、成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n=b1+b2+…+b n,求证:T n<.5.已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.6.已知数列{a n}中,a1=1,a2=3,点(a n,a n+1)在直线2x-y+1=0上,(Ⅰ)证明数列{a n+1-a n}为等比数列,并求其公比.(Ⅱ)设b n=log2(a n+1),数列{b n}的前n项和为S n,若S m≤λ(a m+1),求实数λ的最小值.7.已知正项等比数列{a n}满足a3=9,a4-a2=24.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)设b n=n·a n,求数列{b n}的前n项的和S n.8.已知数列{a n}满足a1=1,na n+1-(n+1)a n=1+2+3+…+n,n∈N*.(1)求证:数列{}是等差数列;(2)若b n=,求数列{b n}的前n项和为S n.9.已知数列{a n}的前n项和S n满足S n+1=S n+•a n(n∈N*),且a1=1.(Ⅰ)证明:数列{}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.10.已知数列{a n}的前n项和为S n,满足S1=1,且对任意正整数n,都有.(1)求数列{a n}的通项公式;(2)若,求数列{b n}的前n项和T n.答案和解析1.【答案】解:(1)设等差数列{a n}的公差为d,∵S5=25,a10=19.∴5a1+d=25,a1+9d=19,联立解得:a1=1,d=2.∴a n=1+2(n-1)=2n-1.S n==n2.(2)b n===,∴数列{b n}的前n和T n===.【解析】(1)设等差数列{a n}的公差为d,由S5=25,a10=19.可得5a1+d=25,a1+9d=19,联立解得:a1,d.即可得出.(2)b n===,利用裂项求和即可得出.本题考查了等差数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.2.【答案】(1)证明:∵a1=3,a n=2a n-1+(n-2)(n≥2,n∈N*).∴a n+n=2(a n-1+n-1),∴数列{a n+n}是等比数列,首项为4,公比为2.∴a n=4×2n-1-n=2n+1-n.(2)解:数列{a n}的前n项和S n=(22+23+…+2n+1)-(1+2+…+n)=-=2n+2-4-.【解析】(1)a1=3,a n=2a n-1+(n-2)(n≥2,n∈N*).变形为a n+n=2(a n-1+n-1),再利用等比数列的通项公式即可得出.(2)利用等差数列与等比数列的通项公式及其前n项和公式即可得出.本题考查了递推关系、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.3.【答案】解:(1)因为,,成等比数列,所以,即,因为,所以,即,所以(负值舍去),所以.(2)由(1)知,,所以.【解析】本题考查等差数列的通项公式及前n项和公式,等比数列的通项公式、性质及前n项和公式,以及分组法求和,属于一般题.(1)根据,,成等比数列列方程组,求出a1和公差,即可得到数列的通项公式;(2)由(1)求得,,利用分组求和法,结合等差数列和等比数列的前n项和公式即可求解.4.【答案】(Ⅰ)解:∵S n是等差数列{a n}的前n项和,公差d≠0,a5=10,且a2、a4、a8成等比数列,∴由题知:,解得:a1=2,d=2,故数列{a n}的通项公式a n=2n.(Ⅱ)证明:∵==,∴T n=b1+b2+…+b n==.∴T n<.【解析】本题考查数列的通项公式,等差数列的前n项和公式及裂项求和公式,属于一般题.(Ⅰ)利用等差数列的前n项和公式、等比数列性质,列出方程组,求出a1=2,d=2,由此能求出数列{a n}的通项公式;(Ⅱ)由==,利用裂项求和法能证明T n<.5.【答案】解:(1)设等比数列{a n}的公比为q(q>1),因为4a2,3a3,2a4成等差数列,所以6a3=4a2+2a4,即6a1q2=4a1q+2a1q3,即q2-3q+2=0,解得q=2或q=1(舍去).又因为a5=a1q4=16a1=48,所以a1=3,所以a n=3·2n-1.(2)由条件及(1)可得b1=a2=3×2=6.因为b n+1=b n+a n,所以b n+1-b n=a n,所以b n-b n-1=a n-1(n≥2),所以b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1=a n-1+a n-2+a n-3+…+a2+a1+6=3·2n-1+3(n≥2).又因为b1=6满足上式,所以b n=3·2n-1+3(n∈N*).所以.【解析】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列通项公式的求法中的应用,数列的求和的应用,主要考查学生的运算能力和转换能力,属于中档题.(1)利用已知条件求出公比和首项,进而得到通项公式;(2)利用叠加法,并利用等比数列的求和公式求出n≥2时b n的表达式,进一步验证n=1时是否成立,从而得出数列{b n}的通项公式,然后利用分组求和法,求得S n.6.【答案】解:(Ⅰ)证明:点(a n,a n+1)在直线2x-y+1=0上,可得a n+1=2a n+1,即有a n+1+1=2(a n+1),可得{a n+1}为首项为2,公比为2的等比数列,可得a n+1=2n,即a n=2n-1,a n+1-a n=2n+1-1-(2n-1)=2n,可得数列{a n+1-a n}为等比数列,其公比为2;(Ⅱ)设b n=log2(a n+1)=log22n=n,S n=n(n+1),S m≤λ(a m+1)即为m(m+1)≤λ•2m,可得2λ≥恒成立,由c m=,c m+1-c m=-=,当m=1时,c2>c1,m=2时,c3=c2,m>2时,c m+1<c m,即c1<c2=c3>c4>c5>…,可得c2=c3=为最大值,即有λ≥,则λ≥,即实数λ的最小值为.【解析】(Ⅰ)首先判断{a n+1}为首项为2,公比为2的等比数列,由等比数列的通项公式和定义,即可得到所求;(Ⅱ)运用对数的运算性质可得b n,再由等差数列的求和公式和通项公式,结合参数分离和数列的单调性,求得最大值,可得所求最小值.本题考查等比数列的定义和通项公式、以及等差数列的通项公式和求和公式的运用,考查数列不等式恒成立问题,注意运用参数分离和数列的单调性,考查运算能力、推理能力,属于中档题.7.【答案】解:(Ⅰ)设数列{a n}的公比为q.由a4-a2=24,得,即3q2-8q-3=0,解得q=3或.又∵a n>0,则q>0,∴q=3,∴a n=.(Ⅱ)b n=n·a n=,∴S n=3S n=,∴=,∴.【解析】本题考查等比数列的通项公式和用错位相减法求数列的前n项和.(Ⅰ)把已知条件用a3和公比q表示,建立方程,求出q,即可得到通项公式.(Ⅱ)紧紧抓住数列的特点,它是由一个等比数列和一个等差数列对应项相乘而得,此类数列可通过错位相减法求前n项和.8.【答案】解:(1)证明:数列{a n}满足a1=1,na n+1-(n+1)a n=1+2+3+…+n=,n∈N*,则(常数),n∈N*.则数列{}是以1为首项,为公差的等差数列.(2)由(1)得=,n∈N*,所以,n∈N*,所以,所以S n=b1+b2+…+b n=,=.【解析】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题.(1)根据数列的递推关系式整理得到(常数),n∈N*即可证明.(2)利用裂项相消法求出数列的和.9.【答案】解:(Ⅰ)证明:根据题意可得,S n+1-S n=•a n,∴a n+1=•a n,∴=•,∵a1=1,∴数列{}是以1为首项,以为公比的等比数列,(Ⅱ)由(Ⅰ)可得=()n-1,∴a n=n•()n-1,∴S n=1×()0+2×()1+3×()2+…+n•()n-1,∴S n=1×()1+2×()2+3×()3+…+n•()n,∴S n=1+()1+()2+()3+…+()n-1-n•()n=-n•()n=-(+n)•()n,∴S n=-(+)•()n.【解析】本题考查了等比数列的判定、数列递推关系、错位相减求和法,考查了推理能力与计算能力,属于中档题.(Ⅰ)由S n+1=S n+•a n,可得∴=•,故数列{}是以1为首项,以为公比的等比数列,(Ⅱ)先求出a n=n•()n-1,再利用“错位相减法”与等比数列的求和公式即可得出.10.【答案】解析:(1)由S1=1,得a1=1.又对任意正整数n,都成立,即S n+1+n(n+1)=(n+1)S n+1-(n+1)S n,所以nS n+1-(n+1)S n=n(n+1),所以,即数列是以1为公差,1为首项的等差数列,所以,即,得a n=S n-S n-1=2n-1(n≥2),又由a1=1,所以.解法2:由,可得S n+1+n(n+1)=(n+1)a n+1,当n≥2时,S n+n(n-1)=na n,两式相减,得a n+1+2n=(n+1)a n+1-na n,整理得a n+1-a n=2,在中,令n=2,得,即1+a2+2=2a2,解得a2=3,∴a2-a1=2,所以数列{a n}是首项为1,公差为2的等差数列,∴a n=1+2(n-1)=2n-1.(2)由(1)可得,所以,①则,②①-②,得,整理得,所以.【解析】本题考查的知识要点:数列的通项公式的求法,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力,属于中档题.(1)法1:将题中条件变形为nS n+1-(n+1)S n=n(n+1),即可求解;法2:将题中条件变形为S n+1+n(n+1)=(n+1)a n+1,再利用作差法即可求解.(2)利用(1)的结论,进一步利用乘公比错位相减法求出数列的和.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学 大题专项练习
数列 三
1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2.
(1)若λ=1,求数列{a n }的通项公式;
(2)若λ=2,证明数列{n n a 2
}是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为
.已知=4,=2+1,.(1)求通项公式
;(2)求数列{}的前项和.
3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19.
(1)求{a n },{b n }的通项公式;
(2)求数列{b n cos(a n π)}的前n 项和T n .
4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9.
(1)求数列{a n }的通项公式及前n 项和公式;
(2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t
∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.
5.已知数列满足:,。

数列的前n 项和为,且
.⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为
6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *.
(1)求数列{a n }的通项a n ;
(2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.
7.已知数列的前项和为,且满足;数列的前项和为,且满足
,.
(1)求数列、的通项公式;
(2)是否存在正整数,使得恰为数列中的一项?若存在,求所有满足要求的;若不存在,说明理由.
8.已知是各项均为正数的等比数列,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)为各项非零的等差数列,其前n项和S n,已知,求数列的前n项和.
9.已知数列{a n}是等比数列,为数列{a n}的前项和,且
(1)求数列{a n}的通项公式.
(2)设且{b n}为递增数列.若求证:
10.在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列.
(1)求数列{a n }的通项公式;
(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n .
11.已知数列{a n }满足a 1=1,且a n =2a n ﹣1+2n (n ≥2,且n ∈N *)
(1)求数列{a n }的通项公式;
(2)设数列{a n }的前n 项之和S n ,求证:322
->n S n n .12.已知数列是等比数列,首项为,公比,其前n 项和为,且
成等差数列.(1)求的通项公式;
(2)若数列满足为数列前n 项和,若恒成立,求的最大
值.
13.设数列{a n}满足a1=2,a n+1=2a n+2n+1(n∈N*).
(1)若b n=,证明:数列{b n}为等差数列,并求出数列{b n}的通项公式;
(2)若c n=a n+b n,求数列{c n}的前n项和S n.
14.若数列{a n}的前项和S n满足,等差数列{b n}满足
.
(1)求数列{a n}、{b n}的通项公式;
(2)设,求数列的前项和为.
15.已知数列{a n}的各项均为正数,其前n项和为,且满足,N.(1)求a2的值;
(2)求数列{a n}的通项公式;
(3)是否存在正整数k, 使a k,S2k-1,a4k成等比数列? 若存在, 求k的值;若不存在,请说明理由.
答案解析
1.解:
2.(1);(2).
3.解:(1)∵数列{a n}是等差数列,a2=6,
∴S3+b1=3a2+b1=18+b1=19,
∴b 1=1,
∵b 2=2,数列{b n }是等比数列,
∴b n =2n-1.
∴b 3=4,
∵a 1b 3=12,∴a 1=3,
∵a 2=6,数列{a n }是等差数列,
∴a n =3n.
(2)设C n =b n cos(a n π),由(1)得C n =b n cos(a n π)=(-1)n 2n-1,
则C n +1=(-1)n +12n ,∴=-2,Cn +1Cn
又C 1=-1,
∴数列{b n cos(a n π)}是以-1为首项、-2为公比的等比数列.
∴T n ==[(-2)n -1].-1×[1- -2 n]1- -2 13
4.解:(1)设{a n }的公差为d ,由题意得Error!
解得a 1=1,d=2,故a n =2n -1,S n =n 2.
(2)由(1)知b n =,要使b 1,b 2,b m 成等差数列,必须有2b 2=b 1+b m ,2n -12n -1+t
即2×=+,移项得=-=,33+t 11+t 2m -12m -1+t 2m -12m -1+t 63+t 11+t 6+6t -3-t 3+t 1+t
整理得m=3+.4t -1
因为m ,t 为正整数,所以t 只能取2,3,5.
当t=2时,m=7;当t=3时,m=5;
当t=5时,m=4.
所以存在正整数t ,使得b 1,b 2,b m 成等差数列.5.
6.解:
(1)由10a 1=(2a 1+1)(a 1+2),得2a -5a 1+2=0,解得a 1=2或a 1=.2112
又a 1>1,所以a 1=2.
因为10S n =(2a n +1)(a n +2),
所以10S n =2a +5a n +2,2
n 故10a n +1=10S n +1-10S n =2a +5a n +1+2-2a -5a n -2,2n +
12n 整理,得2(a -a )-5(a n +1+a n )=0,2n +
12n 即(a n +1+a n )[2(a n +1-a n )-5]=0.
因为{a n }是递增数列且a 1=2,
所以a n +1+a n ≠0,因此a n +1-a n =.52
所以数列{a n }是以2为首项,为公差的等差数列,52
所以a n =2+(n -1)=(5n -1).5212
(2)满足条件的正整数m ,n ,k 不存在,理由如下:假设存在m ,n ,k ∈N *,使得2(a m +a n )=a k ,
则5m -1+5n -1=(5k -1),12
整理,得2m +2n -k=,(*)35
显然,(*)式左边为整数,所以(*)式不成立.故满足条件的正整数m ,n ,k 不存在.
7.
8.Ⅰ);(Ⅱ)
9.
10.解:
(1)设等差数列{a n }的公差为d ,则依题意有Error!解得d=1或d=0(舍去),∴a n =1+(n -1)=n.
(2)由(1)得a n =n ,∴b n =2n ,∴{b n }是首项为2,公比为2的等比数列,
∴T n ==2n +1-2.2 1-2n 1-2
11.解:
12.
13.
 14.解:
15.。

相关文档
最新文档