《数学史》朱家生版+课后题目参考答案解析+第五章

合集下载

数学史教案(朱家生)

数学史教案(朱家生)

数学史教案(朱家生)教案课程名称:数学史课程代码:授课专业班级:10数本(1)(2)(3)(4)授课教师:系别:2021年9月1日word文档可自由复制编辑绪论一、教学时间安排:3学时二、教学目的、要求:1.介绍数学史研究对象;2.认知自学数学史的意义。

三、教学的重点和难点:数学史研究对象和学习数学史的意义的介绍四、教学方法和教学手段:讲授法、多媒体辅助五、教学过程设计:导入、新课、小结六、教学内容:数学就是人类文明的一个关键组成部分。

与其他文化一样,数学科学也就是几千年去人类智慧的结晶。

(数学就是人类文明的一个关键组成部分?)(1)从远古时期的结绳记事、屈指记数至借助现代电子计算机展开排序、证明与科学管理,从利用勾股测量等具体内容的操作方式至抽象化的公理化体系的产生,……所有这些,都形成了科学史上最富于理性魅力的题材。

(1)随着时代的进步,数学科学的思想、方法与内容已经渗透到人类生活的各个领域,科学技术包括社会科学的数学化已成为一种共识。

(数学科学的思想、方法与内容已经渗透到人类生活的各个领域?科学技术包括社会科学的数学化已成为一种共识?)人类的现实生活需要数学、国家的发展、科学技术的进步更离不开数学。

(20世纪中叶,美、苏两国在检讨本国科技落后时,寻找到的最终根源都是“数学问题”没处理好)因此,具备一些必需的数学知识和一定的数学思想方法,是现代人才基本素质的非常重要的组成部分。

(为什么说具备必需的数学知识和一定的数学思想方法,是现代人才基本素质的非常重要的组成部分?)(1)与其他学科较之,数学就是一门积累性很强的学科,他的许多关键性理论都就是在承继和发展旧有理论的基础上发展出来的。

(天文学――地心学说;物理学――燃素说,等等都被废黜了。

)如果我们不回去上溯古今数学思想方法的演进与发展,也就不可能将真正认知数学的真谛,恰当把握住数学科学发展的方向。

(许多存有成就的数学家都高度关注数学发展史。

例如我国的华罗庚、苏步青、吴文俊、张奠宙、法国的庞加莱等小数学家都非常高度关注数学史的发展)。

数学史试题参考答案

数学史试题参考答案

数学史试题参考答案数学史试题参考答案《数学史》试题参考答案一、填空1、泥版文书代数2、刘徽秦九韶3、花拉子米一元二次方程的一般代数解法4、斐波那契算经5、牛顿《流数简论》6、瑞士法国学派7、第五公设罗巴切夫斯基8、变量数学解析几何的发明二、选择A B B D C D A B D C三、简答1、解析几何得以建立的基本思想有两个:实数和平面上的一条直线上的点作成一一对应;有序实数对与平面上的点作成一一对应。

很早以前人们就有了初步的坐标观念,例如古埃及人和罗马人用于测量的、希腊人用于绘制地图的坐标思想;奥雷姆(法国人,约1320一1382)在14世纪曾试图用图线来表示变量之间的关系。

但是在明确提出上述两个原则之前,无法用代数方法来研究几何学。

笛卡儿解决了贯彻这两个原则的方法问题,那就是建立坐标系。

2、《九章算术》共分九章,每一章都包括若干道问题,共计有246道题。

每道问题后给以答案,一些问题后给出“术”,即解题的方法。

通过这种形式,对我国古代数学作了总结和发展,代表了中国古代数学的基本思想方法,它具有如下的特点。

(1)开放的归纳体系(2)算法化的内容(3)模型化的方法3、一个正方体用它的两个中心轴线互相垂直的内切圆柱贯穿,所得到的相贯体;它是公元3世纪的刘徽在注“开立圆术”时提出的概念,并认识到它与其内切球的体积之比为 4 :,但是不会计算它的体积;6世纪的祖暅用“缘幂势既同,则积不容异”的`原理,求出了它的体积,进而求出了球体积。

4、两个整数a和b,若a是b的因数之和而且b是a的因数之和,则a和 b 互称为亲和数。

如220和284互为亲和数。

五、论述题答:欧几里得《几何原本》可以说是数学史上的第一座理论丰碑。

它最大的功绩是第一次把数学用公理的形式表现了出来。

所谓公理和公设,指的是某门学科中不需要证明而必须加以承认的某些陈述或命题,即“不证自明”的命题。

一门学科如果被表示成公理的形式,即么它的所有命题就可以由这些公理或公设逻辑地推证出来。

数学史朱家生版课后题目参考答案第

数学史朱家生版课后题目参考答案第

1.数学的起源于世界xxxx产生的关系11数本(1)班郭奇2011041047“数学”这个词在我们的生活中可谓是无处不在,他作为人类思维的表达形式,反映了人们的积极进取的意志、缜密周详的推理及对完美境界的追求。

“数学”与我们身边的其他学科也有着密切联系。

例如在天文学方面、医学方面、经济学方面等等。

大到天文地理,小到生活琐事,数学的魅力可谓是发挥的淋漓尽致。

然而关于数学的起源,却有着一个古老而神奇的传说。

相传在非常非常遥远的古代,有一天在黄河的波涛中突然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的河水中又爬出一只“神龟”来,龟背上也驮着一卷书,书中则阐述了数的排列方法。

马背上的图叫“河图”,乌龟背上的书叫做“洛书”,当“河图洛书”出现后,数学也就诞生了。

当然,这个也只不过是个传说罢了。

数学作为最古老的一门学科,他的起源可以上溯到一万多年以前。

但是,公元1000年以前的资料留存下来的极少,迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。

远在一万五千年以前,人类就可以相当逼真的描绘出人和动物的形象,这是萌发图形意识的最早证据。

后来就开始逐渐对圆形和直线型的追求,从而成为数学图形的最早的原型。

在日常的生活实践中又逐渐产生了记数的意识和系统。

人类摸索过许多种记数的方法,例如用石块记数,结绳记数等,最后逐步发展到现在我们所用的数字。

图形意识和记数意识发展到一定阶段,又产生了度量的意识。

从人类社会的发展史来看,人们对数学本质特征的认识也在不断变化和深化着。

欧几里得说过“数学的根源在于普通的常识,最显著的例子是非负整数。

”他的算术来自于普通常识中的非负整数。

而且直到十九世纪中叶,对于数的科学探索还停留在普通的常识。

因此,十九世纪以前,人们普遍认为数学是一门自然学科,经验学科,因为那时的数学与现实之间的联系非常密切。

随着数学研究的不断深入,从十九世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位。

大学高等数学第五章 定积分及其应用答案

大学高等数学第五章 定积分及其应用答案

第五章 定积分及其应用习 题 5-11. 如何表述定积分的几何意义?根据定积分的几何意义推出下列积分的值: (1)⎰-x x d 11, (2)⎰--x x R R R d 22, (3)⎰x x d cos 02π, (4)⎰-x x d 11.解:若[]⎰≥∈x x f x f b a x ab d )(,0)(,,则时在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围成平面图形的面积. 若[]b a x ,∈时,⎰≤x x f x f ab d )(,0)(则在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围平面图形面积的负值. (1)由下图(1)所示,0)(d 1111=+-=⎰-A A x x .(2)由上图(2)所示,2πd 2222R A x x R R R==-⎰-.(3)由上图(3)所示,0)()(d cos 5353543π20=--++=+-+=⎰A A AA A A A x x . (4)由上图(4)所示,1112122d 611=⋅⋅⋅==⎰-A x x . 2. 设物体以速度12+=t v 作直线运动,用定积分表示时间t 从0到5该物体移动的路程S.( 2 )( 1 )( 3 )(4)解:=s ⎰+t t d )12(053. 用定积分的定义计算定积分⎰bax c d ,其中c 为一定常数.解:任取分点b x x x x a n =<<<<= 210,把],[b a 分成n 个小区间],[1i i x x -)2,1(n i =,小区间长度记为x ∆i =i x -1-i x )2,1(n i =,在每个小区间[]i i x x ,1-上任取一点i ξ作乘积i i x f ∆⋅)(ξ的和式:∑∑==--=-⋅=∆⋅n i ni i iiia b c x xc x f 111)()()(ξ,记}{max 1i n i x ∆=≤≤λ, 则)()(lim )(lim d 0a b c a b c x f x c ni i i b a-=-=∆⋅=∑⎰=→→λλξ.4. 利用定积分定义计算120d x x ⎰.解:上在]1,0[)(2x x f =连续函数,故可积,因此为方便计算,我们可以对[]0,1 n 等分,分点i i n i nix ξ;1,,2,1,-==取相应小区间的右端点,故 ∑∑∑===∆=∆=∆ni i i ni i i ni i i x x x x f 12121)(ξξ=∑∑===ni ni in n n i 1232111)(=311(1)(21)6n n n n ⋅++ =)12)(11(61nn ++ 当时0→λ(即时∞→n ),由定积分的定义得: 120d x x ⎰=31.5. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 35093(1)11,(0)5,(),(1)781024f f f f -====的大小,知min max 5093,111024f f ==,由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即14315093(425)d 22512x x x -≤-+≤⎰. 6. 利用定积分的性质说明⎰1d xe x与⎰1d 2x e x ,哪个积分值较大?解:在[]0,1区间内:22xx x x e e ≥⇒≥ 由性质定理知道:⎰1d xe x≥⎰1d 2x e x7. 证明:⎰---<<2121212d 22x e ex 。

数学史答案——精选推荐

数学史答案——精选推荐

数学史答案四、简答题1、阿基⽶德在数学上的主要贡献:(1)研究⼤数:《沙粒计算》填满宇宙的沙粒数相当于,他还曾⽤过相当于的⼤数。

(2)⼏何学⽅⾯:发现⼤量⽴体体积公式。

(3)数学⽅法论⽅⾯:他曾⽤“原⼦法”和“穷竭法”计算⾯积和体积;他⾸创⽤“平衡法”证明数学问题(如证明球体积公式);他还⽤“积分”求和法求⾯积和体积;他通过引⼊特征三⾓形找到求曲线的⼀般⽅法;他把求极值问题归结为求切线问题;他还采⽤类似现在的“插值法”计算螺线长度。

他的这些思想⽅法使他成为微积分的先躯。

后来微积分开创者的许多思想都源于阿基⽶德。

阿基⽶德数学研究的主要特点:①注重联系实际,将数学与⼒学、物理学等实际问题结合;②注重⽅法论,其⽅法中体现了数学思想的深度;③注重论述的精确性、严谨性,成为他那个时代的典范。

2、刘徽的主要数学贡献:(1)算术⽅⾯:①⾸次使⽤⼗进⼩数;②完善齐同术;③其它:刘徽明确提出分数的基本性质:“法实俱长,意亦等也”;他对求最⼤公约数的⽅法进⾏了理论说明;对化带分数为假分数的⽅法进⼀步明确;他还研究了各种⽐例算法。

(2)代数⽅⾯:①⾸次给出正负数定义、记法及性质;②改进解线性⽅程组的“直除法”;③提出解⽅程组的新⽅法;④研究等差数列,并给出求和公式。

(3)⼏何⽅⾯:①提出“割圆术”;②开始⼏何定理的证明;③研究了球体体积;(4)极限思想;(5)创⽴重差术。

3、⽂艺复兴时期欧洲数学的主要进展1.代数⽅程论的发展;2. 符号代数的产⽣;3.三⾓学的确⽴;4.⼏何学的新突破;5. 计算技术的重⼤进步(1)⼗进⼩数的发明(2)对数的发明(3)计算⼯具的产⽣4、举例说明《九章算术》中解线性⽅程组的“直除法”《九章算术》中的“⽅程”,实际是线性⽅程组.例如卷⼋第⼀题:“今有上⽲三秉,中⽲⼆秉,下⽲⼀秉,实三⼗九⽃;上⽲⼆秉,中⽲三秉,下⽲⼀秉,实三⼗四⽃;上⽲⼀秉,中⽲⼆秉,下⽲三秉,实⼆⼗六⽃.问上中下⽲实⼀秉各⼏何?”(⽲即庄稼,秉即捆,实即粮⾷.)依术列筹式如图4.11,它相当于三元⼀次⽅程组其中x,y,z分别为上中下三等⽲每捆打粮⾷的⽃数.按《九章算术》解法,⽤(1)式x的系数3去乘(2)的各项,得6x+9y+3z=102.(4)⽤(4)减(1)⼆次,得5y+z=24.(5)再⽤(3)×3,得3x+6y+9z=78.(6)(6)减(1),得4y+8z=39.(7)中把这种⽅法叫“直除法”,即连续相减法.它的原理与现在加减消元法⼀致,只是⽐较烦琐.6.简述卡⽡列⾥不可分量⽅法的基本思想。

高等数学参考解答 (5)

高等数学参考解答 (5)
(3)平行于X轴(4)平行于X轴
5.对所给方程配方可知
可见,是球面方程,球心坐标 半径5
6.(1)椭圆柱面(2)双曲线柱面(3)抛物柱面(4)椭圆柱面
7.椭球
B组
1.选择练习题
(1)空间点 关于 轴的对称点是
A B
C D
(2)在空间直角坐标系中,点 位于
A第5卦限B第4卦限
C第2卦限D第3卦限
(3)在 坐标面上与已知三点 , 和 等距的点是
解之得
又在(2,1)点有 , , ,因此

从而函数在(2,1)点处有极小值 。
⑵求偏导,联立求驻点
解之得 ,
在(-3,-2)点有 , , ,因此

从而函数在(-3,-2)点处有极大值 ;
另一方面,在(-3,2)点有 , , ,因此此点处有
从而,驻点 不是极值点.
7.设长方体的长宽高分别为x, y, z,先给出体积函数
2.(1)(-x,y,z),(x,-y,-z),(0,0,z)(2)
(3)c(y-b)+b(z-c)=0。
3.(1)过z轴,则平面的方程为
又过点( ,1, ),则有 ,因此平面方程为
x+3y=0
(2)平行于x轴的平面方程为
又过点A( ,1, )和B(3,0,5),从而

从而所求平面的方程为
(3)平行于xOy面的平面方程为
3.⑴ ,
⑵ ,
⑶ ,
⑷ ,
⑸ ,
⑹ ,
4.⑴先求一阶偏导数

因此
, ,
⑵先求一阶偏导数

因此
, ,
⑶先求一阶偏导数

因此
, ,
⑷先求一阶偏导数

数学史朱家生习题答案

数学史朱家生习题答案

数学史朱家生习题答案数学史朱家生习题答案数学作为一门古老而又重要的学科,其历史可以追溯到古代文明的起源。

在数学的发展过程中,许多数学家都做出了重要的贡献,其中朱家生是中国数学史上的一位重要人物。

本文将通过回答一些与朱家生相关的习题,来探讨他的数学思想和贡献。

1. 朱家生是谁?他的数学成就有哪些?朱家生(1916-2004)是中国著名的数学家,他在数学教育和研究领域做出了重要的贡献。

他曾任教于北京大学,并担任中国数学会主席。

朱家生的数学成就包括但不限于:在数论和代数几何方面作出了重要的研究,提出了朱家生猜想,并在数学教育改革中起到了重要的推动作用。

2. 朱家生猜想是什么?它为数学界带来了什么影响?朱家生猜想是一个关于数论中的整数分拆问题的猜想。

具体来说,它猜测了任何一个正整数都可以表示为不同奇素数的和。

这个猜想在数论领域引起了广泛的关注,并且至今尚未被证明或者推翻。

朱家生猜想的提出激发了许多数学家对整数分拆问题的研究,推动了相关领域的发展。

3. 朱家生如何影响了数学教育改革?朱家生在中国的数学教育改革中起到了重要的推动作用。

他提倡“数学思维”的培养,强调数学教育应该注重培养学生的创造力和解决问题的能力。

他主张通过培养学生的数学素养来提高整个国家的科学技术水平。

朱家生的观点对中国的数学教育产生了深远的影响,推动了数学教育的改革和发展。

4. 朱家生的数学思想有哪些特点?朱家生的数学思想具有以下几个特点:首先,他注重数学的实际应用。

他认为数学应该与实际问题相结合,通过解决实际问题来推动数学的发展。

其次,他强调数学的创造性思维。

他认为数学不仅仅是一种工具,更是一种思维方式,通过培养学生的创造力和解决问题的能力来推动数学的发展。

最后,他重视数学教育的普及。

他认为数学是一门普及的学科,应该为更多的人所了解和掌握,通过数学的普及来提高整个社会的科学素养。

5. 朱家生对中国数学界的影响是什么?朱家生对中国数学界的影响是深远的。

实变函数论课后答案第五章1

实变函数论课后答案第五章1

第无章第一节习题1•试就[0, 1上的D i r i chBe数D(x)和Riema nn函数R(x)计算D(x)dx 和R(x)dx[0,1] [0,1]解:回忆D(x) =『x「Q即D(X)=^Q(X) ( Q为R1上全体有理数0 x E R Q之集合)回忆:E(X)可测二E为可测集和P129定理2:若E是R n中测度有限的可测集,f (x)是E上的非负有界函数,则f(x)dx二f(x)dx:= f (x)E E为E上的可测函数显然,Q可数,贝y m*Q =0,Q可测,Q(x)可测,有界,从而Lebesgue可积由P134Th4(2)知二Q(x)dx 亠I :Q(x)dx 二1dx 亠i 0dxQ(x)dx[0,1] [0,1] 'Q [0,1] 'Q c[0,1] 'Q [0,1] "Q c=1 m([0,1「Q) 0 m([0,1] 一Q c) =1 0 0 1 = 0回忆Riemann函数R(x): R:[0,1] T R11n— x =一口和门无大于1的公因子n mR(x)二 1 x = 00 x 壬[0,1]_Q在数学分析中我们知道,R(x)在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann可积,R(x) = 0 a.e于[0,1]上,故R(x)可测(P104定理3),且R(x)dx 二 R(x)dx R(x)dx[0,1][0,1] QQ而0_ R(x)dx _ 1dx=mQ=0(Q 可数,故m *Q=0)故QQR(x)dx 二 R(x)dx= 0dx=0[0,1][0,1] q[0,1] -Q2.证明定理1(iii)中的第一式证明:要证的是:若mE — f(x),g(x)都是E 上的非负有界函数,则f(x)dx_ f(x)dx 亠 I g(x)dx-EE-E下面证明之:-;.0,有下积分的定义,有E 的两个划分D 1和D 2使) f(x)dx ,S D 2(g). g(x)dx--_E2_E2此处s D 1( f), S D 2(g)分别是f 关于D 1和g 关于D 2的小和数,合并D 1,D 2 而成E 的一个更细密的划分 D ,则当S D (f g )为f(x),g(x)关于D 的小 和数时(f(x) g(x))dx_S D (f g)-S D f S o g-Sqf S D 2gg(x)dx f (x)dx 亠i g(x)dx - ;(用到下确界的性上 2_E _E质和P125引理1)由;的任意性,令工一0,而得 (f (x) g(x))dx 1 f(x)dx 亠 1 g(x)dx--E-E3.补作定理5中.f(x)dx 「::的情形的详细证明E证 明 : 令 E m 二 E 「X lllxlF ml , 当 .f(x)dx 「:: 时E:二 f (x)dx = lim f (x)dxEm ''E m-f(x)dx--E-M 0 ,存在m0= m0(M ) N ,当m 一m°时,f(x)dx=lim [f(x)]kdxJ k -JtsC J'E m[f(x)]k dx 二[limf n(x)]kdx 二lim[f n(x)]kdxu u n厂 • n 厂E mE m 「Em …= lim [ f n(x)]kdx 乞 limf n(x)dx ^lim f n(x)dx―匸n _&En r.E mE mE(利用[f n(x)]kdx 有限时的结论,Th5中已详证)E m由 M 的任意性知 lim f n(x)dx 二::=f (x)dxn ^sc **十 E4.证明:若f(x)是E 上的非负函数,f(x)dx = O ,则f(x)=Oa.eE证明:令E n1二[x|n ::: f(x)辽 n 1],n =1,2,, F m=[x|f (x)空-bo -be则 E[x| f(x) 0^(E n ) 一•(F n )n Tn叫f 可测,故 E n ,F m ,E[x| f (x) 0]( n =1,2川l ;m =12111)都是可测集,由 P135Th 4(2)和 f(x)dx = 0,f(x)非负知E0 二 f (x)dx _f (x)dx _ f (x)dx _ n dx 二 nmE n_ 0EE[x;f(x) 0]E n E n故 mE n =0,( n =1,2,|l();同理 mF m =0,(m =1,2,|l()-bo-bo故 mE[x | f (x) 0] _ ' mE n' mF m= 0n 二 m d故从 f (x)非负,E[x| f(x)=0] = E - E[x| f(x) 0],知 fx) 0 ae 于 E . 证毕.5.证明:当mE 「::时,E 上的非负函数的积分.f(x)dx 「二的充要条E件是-bokk、2 mE[x| f (x) _2 ]:2M ::: E m 则存在k 使M 证毕.证明:令E k = E x f( x k2 ]* 10 ,, E n 二E[x|2n乞f(x) :::2n1], k =0,1,2,HlE[x|f(x)- — UEnECE j =0当iQ , f 非负,故从mE^+^知 n =0 0 乞f(x)dx ::::,而 f(x)dx 二f(x)dx ::f (x)dxE[x|f(x)::?]EE[x|0^f(x) ::?]E[x|f (x) 1]f (x)dx :: :: =f (x)dx ::::EE[x|f(x)」]注意由单调收敛定理和f (X) _ 0可测知-bon(x) f (x)dx = lim f(x)dx = lim' f(x)dx 「 f (x)dxEEi" J 1E" i i卫 Ei7 E i乜E ii 0<Z J 2“dx =E 2小口巳=2瓦 2nmEn 兰2E 2nmFn=^ 2nE[x| f(xp^2n]i =0E ・ n^0 nT n =0 nJ所以,若 v 2kmE[x| f (x) _2k]—::,k=0则f(x)dx ::: •::,故充分性成立.E::::1若 k n为证必要性,注意F kE 「mF k 八mE i ,令珂 卄一,则 宦◎ 0 右k c n-J-y*"-J-y*"—l-y"°^^0^^0' 2nmE[x| f(x) _2n]八 2n mF n 八 2叽 mE k;二 2n:mE k ;二 2n{mE kn=0 n=0 n =0k=n n =0k=nn =0k=0■bo 二' mE k(2k1—1) =為 2k1mE k—' mE kk -0 k -0k -0-bo-bo=2、2kmE k -m[E[x; f (x)-1]]乞 2、f(x)dxk =°k=0 Ekf(x)dx= [ f(x)dx =E[x|f(x) 1],「E nf(x)dx 二nEn im屮(x)f(x)dx T m: QEi(x)f(x)dxLeviTh=limn _j I 则有 . f(x)dx ::::E[x;f(x) _1]-bo -bo二二 2nTmE k二二 2nmE k八 mE 「2n八 mEk =0 n =0::kk =0 n =0 k =0k 12 Tn =0 k =02-1-bdk十 =2 2kmE k-m (UE k )心E Ef (x)dx = 2 f (x)dx _ 2 f (x)dx :::E[x|f (x) 1] E(mE ” 壯j mE[x | f (x)亠1]:::::)证毕.注意以上用到正项二重级数的二重求和的可交换性, 这可看 成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定-be -bek —; a 八・ 7 a nm - b ,同理,b - a ,贝Sa = b , l 二 a nmn =0 m=0[一1,"2九为简单函数,f(x)「im 「n X),则x _ n n ::f(x)可测6.如果f(x),g(x)都是E 上的非负可测函数,并且对于任意常数a 都有mE[x| f (x) _ a] = mE[x | g(x) _ a]则.f (x)dx = J g(x)dx=2UEkmank -F m-e-be k%d叫m )=k im : o、' a nm d 叫m) n 二0k=lim ' k _ .'n z :0■be址"be "bea nm d 」(m) ='a nm d 叫m)a nmn=0 mz0nz0■是R 1上的一个测度(离散的)-m Nj[[m]] =1J(A) =#[A - N] , N 为自然数集, 需看成a nxa n (x) J当x 三N■ ■ ■■当 ,也可这样设送Z a nm-bo -bd二 a,M •二 a nm 二 b ,贝「k,k ―― a nmn吕 m :!P k ―― a nm m z! n二P ::< v y a nmm z! n T-b ,令 p > --:, k ::二二 anm- b ,令n =1 m T-bo -bo■- ■-a nm m=0 n =0nmn =0 m =0an(X )={^■— ■— a nmm 0n =0■— ■— a nm ■— ■— a nm m =0n -0 n =0m =0证明:若存在b ■ 0使E[x | f (x) _ b] - •二,贝卩f (Mdx = g )x dx 「::结论成EE故-b a , a,b R 1, E[x| f(x) _b]:::::,贝SE[x| f(x) _a] — E[x| f(x) _b]二 E[x|a 乞 f(x) ::: b]mE[x | a _ f (x) :: b] = mE[x | f (x) _ a] - mE[x | f (x) _ b]=mE[x; g (x) _ a] -mE[x; g(x) _ b] = mE[x; a 乞 g(x) ::: b]_k k 1-m N ,及 k =0,12|l(,2m -1,令 Em,厂 E[x|2m "(x):::芦]及Em ,m2^E[x| f(x^m]贝Um2mE 二 |jE m,k , E m,k 互不相交k =0同样 E m,k =E[x| 存 g(x) /], Em,m2m二 E[x|g(x) m],E m,k 互不相交负简单函数,且*m (X )L 「m (X )_均为单调不减关于m ,'- m (X )》f(X ), ' m (x) > g(x)注意到kk+1kk +1m(E m,k )二 mE[x| 班乞 f (x)::〒]=mE[x |却乞 g(x)::〒]=m(E m,Qm2mkm2mk故「m (x)dxmm^m’k ) 而 m(E m,k) =「m (x)dxEk =0 2k =02E故由 Levi 定理知 f (x)dx = lim ■ m (x)dx = lim m(x)dx 二 g(x)dxEEEE7.设mE- ::, f (x)是E 上的有界非负可测函数,0 — (x):::M ,m2mE= U Em ,k ,令' m (x)mm2 u八卫 k =0 2mm2 kfmE m,k(X ),屮 m (X )=送 才 ~(x),则屮 m (x )2 m(x)都是非0 二g0n) ::: g1n)viAg k:) = M, n=1,2,川使max'y i(n)-y(nJL)|i =1,2,|||,k n』=l n—0(n—,),E i(n^E[x|y i(n] < f(x) ::: y i⑺],i n• E i(n),i = 1,2,11( ,k n; n =1,231()证明:k nf(x)dx=lim' f( i n)m^(n)E n口4证明:显然,由f可测于E知,E i(n)是可测集(-仁i ^k n,n・N )且k nE E i(n)i 4,又在E(n)上小f(x)<閑表明y(^inV(x^x SUP f(x^y(n)记S D nKi k n=L sup f(x)mE(n)(大和数),S D:inf f(x)mE j(n)(小i 4 x. E(n)i4 x已和数)则从f(x)有界可测知f(x)在E上可积(P129Th2,故一二:::S D< f(x)dx = f(x)dx 二f(x)dxzS D「:::,又从T E i(n)知E _E Ek:k:<Z f(¥)mE(:)玄迟sup f(x)mE i(n)=S D:< -hsc i =1 i 1 x-E(n)k n"f(x)dx-送f(¥)mE(n)兰S D:E 7k n | f x dx - x E Ykf ( mE(n岂S D:-S D:•八i 二ny i -y i n i mE i n( < l/' mE n'iJmE >1 i=(从l n > 0知)8 .设mE :::k n故f(x)dx = lim'E …心f (x)是E上的非负可测函数,f (x)dx ::::,f( i n)mE(n)e n 二E[x;f (x) - n] 证明:lim: men =0证明:由本节习题5知f(x)dx::: :: , mE < -HeE■be 则v 2k mE[x| f (x) _2k] :::•::,故k 4lim 2k mE[x| f(x) _2k] =0n L :(1)反证设I i nm 叶 e ,贝卩;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学史》朱家生版+课后题目参考答案解析+第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.导致欧洲中世纪黑暗时期出现的主要原因是什么?因为中世纪时期是欧洲最为混乱的时期,也是其经济、政治、文化、军事等全面停滞发展的时期,当时的欧洲居民生活在水深火热之中,所以被称为黑暗时期.1、政治的黑暗、政权的分散:自罗马帝国衰亡后,中欧、西欧被来自东欧的日耳曼民族统治,日耳曼民族又有很多种族,因此相互征伐不断,如法兰克帝国、神圣罗马帝国、英格兰王国、教皇国等等,这些国家相互征伐、动乱不已,而且中世纪时期虽然是欧洲的封建时期,但却不集权、不统一,类似分封制的封建制度导致封建国家缺乏强有力的基础,例如神圣罗马帝国、皇帝仅仅是一个称号而已.而封建地主又对百姓盘剥,加之战乱不断、瘟疫横行,民不聊生.2、宗教的干涉:这一时期的基督教对各国的干扰极强,甚至对政权的建立、稳定都十分重要.宗教严格的控制文化教育、人们的生活:一方面他们严格要求中下层教士及普通百姓,另一方面,上层教士又和封建势力相勾结,腐败没落,压榨百姓和人民,中世纪的宗教裁判所又有极大的权力,可以处死他们所认为的异端分子,由于思想、科学被严格控制,这一时期的欧洲思想、文化、科学鲜有成就.3、经济的没落,由于盘剥严重、科技落后,这一时期的经济几乎没有发展,没有进步就代表了落后;4、瘟疫盛行:宗教的干涉,科技的落后,医学的不发达,导致瘟疫的盛行,540年~590年查士丁尼瘟疫导致东地中海约2500万人死亡;1346年到1350的鼠疫导致欧洲约2500万人死亡,灾难极大地打击的了欧洲的经济、政治甚至人口的发展.简而言之,这一时期的欧洲百姓生活在一种暗无天日,毫无希望的生活里,所以被称为黑暗时期.2、在欧洲中世纪黑暗时期曾经出现过那些知名的数学家,他们在当时那样的背景下各自做了哪些数学工作??答:罗马人博伊西斯(罗马贵族),曾不顾禁令用拉丁文从古希腊着作的片段中编译了一些算术、几何、音乐、天文的初级读物,他把这些内容称为“四大科”,其中的数学着作还被教会学校作为标准课本使用了近千年之久,但博伊西斯本人还是遭受政治迫害被捕入狱并死在狱中。

7世纪,在英格兰的北部出现了一位博学多才的神学家,这就是被称为“英格兰文化之父”的比德。

在数学方面,比德曾写过一些算术着作,研究过历法及指头计算方法。

当时,对耶稣复活期的推算是教会讨论最热烈的课题之一,据说,这位比德大师就是最先求得复活节的人。

培根是英格兰人(贵族),曾在牛津大学和巴黎大学任教,会多种语言,对当时几乎所有的知识感兴趣,号称“万能博士”。

他提倡科学,重视现实,反抗权威(应为不惧权威)。

他认为,数学的思想方法是与生俱来的,并且是与自然规律相一致的。

在他看来,数学是一切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来,即用数量和尺规刻画的。

培根认为:“寻找和发现真理有两条路,也只有两条路,一种方法是通过感觉和特例飞跃到普遍的公理,然后通过这些原则及一劳永逸的真理发现和判断派生的公理。

另一种方法是从感觉和特例收集公理,不断地逐步上升,这样最后达到更普遍的公理。

这后一种方法是真实的,但尚未有人使用过。

”他号召人们面向自然,进行有目的的试验,去了解自然,征服自然。

虽然培根成为了那个时代的牺牲品,但他的呐喊还是在漫漫黑夜中点燃了人们复苏的愿望。

意大利的列昂纳多.斐波那契是欧洲黑暗时期最出色的数学家。

1202年,斐波那契综合阿拉伯和希腊资料着成一部重要着作《算盘书》,这部着作共15章,主要介绍算术与代数,内容非常丰富,包括:印度—阿拉伯数码的读法与写法;整数与分数的计算;平方根与立方根的求法;线性方程组和二次方程的解法等,给出了数学在实物交易、合股、比例法和测量几何中的应用。

这部着作还给出一个有趣的所谓“兔子问题”。

斐波那契还写过一部纯几何着作《实用几何》,书中运用欧几里得等人的方法介绍了直线型的面积、圆的度量、球和圆柱等。

3.导致欧洲文艺复兴的因素有哪些在欧洲文艺复兴时期主要出现了哪些数学成绩1、城市是文艺复兴的摇篮中世纪晚期意大利由一些重要的和独立城邦国家组成,拥有欧洲最先进的城市社会(有名的如佛罗伦萨、米兰、威尼斯、热那亚和那不勒斯等)。

城市是财富的聚集地,城市是文明的向导。

意大利的贵族通常生活在城市中心,完全参与城市的公共事务。

贵族从事银行业或商业活动,以致到了14世纪和15世纪贵族与上级资产阶级之间实际上已没有什么明显界限了,例:梅蒂奇家族。

工商业和城市的发展,使资产阶级的力量壮大起来,有些与贵族合流,使得上流社会更喜爱文化,更热爱生活,也要求在文化中加入自己喜欢的精神。

图:当时的木屐,反映着时尚的变化。

图:精美的梳子表明了主人的追求。

图:虽是16世纪的城市景象,也反映了时代的变迁,人们热爱生活。

2、意大利地区与古典文明区有着紧密的联系与西欧任何其他地区相比,该地区对古典过去有着强烈得多的感情联系。

此外,在14和15世纪意大利人尤为热衷于重新利用他们的古代遗产,因为此时意大利正想方设法建立一种独立的文化特性,以与和法国关系十分密切的经院哲学相对立。

不仅教皇机构在14世纪大部分时间里迁到了阿维尼翁(从1309年起),随后自1378 至1415年旷日持久的大分裂加剧了意大利和法国之间的敌对情绪,而且在14世纪在各个领域都出现了反经院哲学的思想文化潮流,这使得意大利人自然而然地偏爱古典文献资料提供的另一种文化选择。

罗马模式有助于意大利人创造一个取代法国的哥特建筑艺术风格的艺术选择。

3、意大利经济的繁荣,具有投资文化的财富基础在中世纪晚期的意大利,人们之所以异乎寻常地大量投资于文化事业,是因为城市荣誉感的增强和人均财富的集中。

在第一个阶段,最富有的一些城市竞相兴建辉煌的公共纪念性建筑并资助作家,约1250年出现于意大利。

第二阶段也即在15世纪初到中叶,投资文化成了个人的行为。

在15世纪一百年间,随着多数意大利城市国家屈从于王公家族的世袭统治(最初城市是由行会控制的),资助文化事业便为王公贵族所专擅。

如米兰的维斯孔蒂家族和斯福扎家族;佛罗伦萨的梅迪奇家族(图为梅迪奇家族的洛伦佐);费拉拉的埃斯特家族和罗马教皇等。

4、一些因祸得福的因素在文艺复兴前的200年里,意大利遭受了一系列沉重的打击。

在13世纪,神圣罗马帝国与罗马教廷战火不断,意大利国土遭到严重破坏。

在一场战役中,神圣罗马帝国战败,霍亨斯陶芬王朝在意大利的统治终结。

而教皇无力填补权力的真空,战争同时削弱了他们道德规范和政治力量。

意大利处在分裂状态,但就局部地区来说,却非常有利于思想的自由创造和发挥。

14世纪中叶,欧洲黑死病流行,但瘟疫摧毁的仅仅是人,而非财物,而劫后余生的人们却更懂得了生命的宝贵和人的价值,更懂得享受人生。

代数学在文艺复兴时期取得了重要发展,三、四次方程的解法被发现。

意大利人卡尔达诺在他的着作《大术》中发表了三次方程的求根公式,但这一公式的发现实应归功于另一学者塔塔利亚。

四次方程的解法由卡尔达诺的学生费拉里发现,在《大术》中也有记载。

邦贝利在他的着作中阐述了三次方程不可约的情形,并使用了虚数,还改进了当时流行的代数符号。

符号代数学是由16世纪的法国数学家韦达确立的。

他于1591年出版了《分析方法入门》,对代数学加以系统的整理,第一次自觉地使用字母来表示未知数和已知数。

韦达在他的另一部着作《论方程的识别与订正中,改进了三、四次方程的解法,还建立了二次方程和三次方程方程根与系数之间的关系,现代称之为韦达定理。

三角学在文艺复兴时期也获得了较大的发展。

德国数学家雷格蒙塔努斯的《论各种三角形》是欧洲第一部独立于天文学的三角学着作。

书中对平面三角和球面三角进行了系统的阐述,还有很精密的三角函数表。

哥白尼的学生雷蒂库斯在重新定义三角函数的基础上,制作了更多精密的三角函数表。

法国人笛卡儿于1637年,在创立了坐标系后,成功地创立了解析几何学。

费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。

其将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。

在和帕斯卡在相互通信以及着作中建立了概率论的基本原则——数学期望的概念.4、意大利数学家的三、四次方程解法的主要思想是什么?试通过具体例子说明他们是如何求解三次方程的。

?答: 主要思想是透视理论的创立与三角学的产生 ,如何把三维的现实世界反映到二维的画布上来。

将平面三角与球面三角放在一起处理,给出了球面三角的余弦定理和正弦定理,对于如何解平面与球面三角形做出了较全面的论述。

例 如解三次方程 q px =+3x令33x n m -=,即,)(33331323131323x mn n m n n m n m m x --=-+-= 于是方程变为 .)(3m 31q px x mn n +-=-- 当时,或27m n )(,m 331p p mn q n ===-可以满足方程,故有 ,274m ,2742.2744,2m 3232223222p q n p q n mn m p nm q n mn +=++=++==+-由此得两式相加得 又因为.27422742x ,2742q -,2m ,3323323227423p q q p q q p q n q P q n m p --+++=++=++==-于是从而有5.欧洲数学家为什么要引入对数的概念?试比较纳皮尔和比尔吉引入对数的方法.对数方法是苏格兰的 Merchiston 男爵约翰·纳皮尔1614年在书《Mirifici Logarithmorum Canonis Descriptio》中首次公开提出的,(Joost Bürgi独立的发现了对数;但直到 Napier 之后四年才发表).这个方法对科学进步有所贡献,特别是对天文学,使某些繁难的计算成为可能.在计算器和计算机发明之前,它持久的用于测量、航海、和其他实用数学分支中.约翰·纳皮尔(John Napier,1550~1617),苏格兰数学家、神学家,对数的发明者.Napier出身贵族,于1550年在苏格兰爱丁堡附近的小镇梅奇斯顿(MerchistonCastle,Edinburgh,Scotland)出生,是Merchiston城堡的第八代地主,未曾有过正式的职业.年轻时正值欧洲掀起宗教革命,他行旅其间,颇有感触.苏格兰转向新教,他也成了写文章攻击旧教(天主教)的急先锋(主要文章于1593年写成).其时传出天主教的西班牙要派无敌舰队来攻打,Napier就研究兵器(包括拏炮、装甲马车、潜水艇等)准备与其拚命.虽然Napier的兵器还没制成,英国已把无敌舰队击垮,他还是成了英雄人物.他一生研究数学,以发明对数运算而着称.那时候天文学家Tycho Brahe(第谷,1546~1601)等人做了很多的观察,需要很多的计算,而且要算几个数的连乘,因此苦不堪言.1594年,他为了寻求一种球面三角计算的简便方法,运用了独特的方法构造出对数方法.这让他在数学史上被重重地记上一笔,然而完成此对数却整整花了他20年的工夫.1614年6月在爱丁堡出版的第一本对数专着《奇妙的对数表的描述》("Mirifici logarithmorumcanonis descriptio")中阐明了对数原理,后人称为纳皮尔对数:Nap logX.1616年Briggs(亨利·布里格斯,1561 - 1630)去拜访纳皮尔,建议将对数改良一下以十为基底的对数表最为方便,这也就是后来常用的对数了.可惜纳皮尔隔年于1617年春天去世,后来就由Briggs以毕生精力继承纳皮尔的未竟事业,以10为底列出一个很详细的对数表.并且于1619年发表了《奇妙对数规则的结构》,于书中详细阐述了对数计算和造对表的方法.。

相关文档
最新文档