新人教版七年级上册数学第3章-一元一次方程全章教案

合集下载

人教版七年级上册数学第三章一元一次方程教学设计

人教版七年级上册数学第三章一元一次方程教学设计
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,激发学生主动学习的积极性。
2.使学生认识到数学在现实生活中的重要性,增强学生的应用意识。
3.培养学生面对问题时的耐心和毅力,提高学生克服困难的信心。
4.培养学生的团队精神,让学生学会与人合作、交流,共同解决问题。
二、学情分析
七年级上册的学生经过前两章的学习,已经具备了一定的数学基础和解决问题的能力。在此基础上,他们对一元一次方程的学习既有挑战性,又是提高数学素养的契机。学生在小学阶段已经接触过简单的方程,对方程有一定的认识,但对方程的解法和应用还较为陌生。因此,在本章节的教学中,教师需要关注以下几点:
3.教师简要介绍一元一次方程的定义和特点,为学生后续学习打下基础。
(二)讲授新知
1.教师详细讲解一元一次方程的定义、未知数、已知数和解的概念。
2.通过具体的例题,讲解等式的性质,如两边同时加上或减去、乘以或除以同一个数,方程的解不变。
3.引导学生掌握一元一次方程的解法,如移项、合并同类项等。
4.教师示范解题过程,强调注意事项,如符号变化、化简步骤等。
2.分步教学,循序渐进:将一元一次方程的解法分解为若干个步骤,引导学生逐步掌握,降低学习难度。
3.合作探究,互帮互助:组织学生进行小组合作,共同探究一元一次方程的解法,培养学生的合作意识和团队精神。
4.精讲精练,巩固提高:在课堂上,教师精选典型例题进行讲解,让学生在练习中巩固所学知识,提高解题能力。
2.完成课本第三章第一节后的练习题,包括基础题和拓展题。基础题旨在巩固一元一次方程的基本概念和解法,拓展题则旨在提高学生的思维能力和知识运用能力。
3.针对本节课的学习内容,编写至少三道一元一次方程的题目,并尝试给出解题思路。通过出题和解答,培养学生的问题提出和解决能力。

新人教版七年级数学上册第三章一元一次方程的解法教案设计

新人教版七年级数学上册第三章一元一次方程的解法教案设计

新人教版七年级数学上册第三章一元一次方程的解法教案设计一、教学目标1. 了解一元一次方程的定义与性质。

2. 研究解一元一次方程的基本步骤和方法。

3. 掌握使用逆运算解一元一次方程的技巧。

4. 运用所学知识解决实际问题。

二、教学准备1. 教材:新人教版七年级数学上册。

2. 教具:黑板、粉笔、教学PPT、题练册。

三、教学过程1. 导入- 通过简单的问题引入一元一次方程的概念,激发学生的兴趣。

- 用生活中的例子说明一元一次方程的应用场景。

2. 知识讲解- 结合教材内容,讲解一元一次方程的定义和性质。

- 介绍解一元一次方程的基本步骤和方法,包括两边加减同一个数、两边乘除同一个非零数等。

- 强调使用逆运算解一元一次方程的重要性和技巧。

3. 案例演练- 提供一些简单的实例,引导学生通过运用所学方法解一元一次方程。

- 让学生积极参与,提供解题思路,讲解解题过程。

4. 讲解技巧与方法- 教授一些解一元一次方程的常见技巧与方法,如整理方程、消元法等。

- 指导学生如何有效地应用这些技巧解决较复杂的方程。

5. 综合练- 提供一些综合性的题,要求学生将所学知识灵活运用解决实际问题。

- 强调解题过程的合理性和正确性,鼓励学生多思考,多尝试。

6. 运用扩展- 引导学生思考一元一次方程在实际生活中的应用,例如用于解决购物、旅行等问题。

- 鼓励学生运用所学知识解决更复杂的实际问题。

7. 总结归纳- 对本节课所学内容进行总结概括,强调解一元一次方程的重要性和应用价值。

四、教学评价1. 教师实时检查学生课堂表现,观察他们对知识的掌握情况。

2. 针对学生的理解程度和解题能力,进行个别辅导和巩固训练。

3. 提供题练册,让学生课后进行自主练,发现问题并及时解决。

五、教学反思本课设计以简单明了的步骤和方法为主线,通过案例演练和综合练习,培养学生解一元一次方程的能力和运用能力。

同时,引导学生思考方程在实际生活中的应用,激发学生学习数学的兴趣。

七年级数学上册第三章《一元一次方程》教学设计1新人教版

七年级数学上册第三章《一元一次方程》教学设计1新人教版

教学目标:1.知识与技能:掌握一元一次方程的基本概念,能够解一元一次方程。

2.过程与方法:培养学生的逻辑思维能力,培养学生解决实际问题的能力。

3.情感态度价值观:培养学生的合作意识,培养学生的数学思维能力。

教学重点:1.理解一元一次方程的概念及求解方法。

2.掌握方程的基本性质,能够利用方程解决实际问题。

教学难点:1.将实际问题转化为方程。

2.解决复杂实际问题。

教学准备:1.教师准备教学课件和活动材料。

2.学生准备教材、笔记本和计算器。

教学过程:一、引入(15分钟)1.现实生活中的问题:如何求两个数之和为50的两个数?二、概念讲解(20分钟)1.解释什么是方程、一元一次方程。

2.讲解方程的基本性质:等式两边加(减)同一个数,等式仍然成立;等式两边乘(除)同一个不等于零的数,等式仍然成立。

3.讲解“解方程”的概念。

三、解一元一次方程(40分钟)1.解方程的基本方法:等式两边同时加(减)同一个数,等式仍然成立;等式两边同时乘(除)同一个不等于零的数,等式仍然成立。

2.讲解具体的数学符号表示和步骤。

3.利用实例讲解解方程的过程。

4.操练解方程的方法。

四、应用(25分钟)1.解决生活实际问题:如有两个数,它们之和是30,其中一个是另一个的3倍,求这两个数。

2.引导学生找出问题中的未知数和已知条件,将问题转化为方程。

3.步骤演示解决问题的过程。

五、总结(10分钟)1.总结解一元一次方程的基本方法。

2.检查学生对解一元一次方程的掌握情况。

拓展延伸:1.组织学生分组进行解决实际问题的竞赛,加深对一元一次方程解题的理解。

2.给学生布置一些实际生活中的问题,要求学生用方程解决问题,并在下节课进行讲解与分享。

人教版数学七年级上册第三章一元一次方程(教案)

人教版数学七年级上册第三章一元一次方程(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课的核心素养目标主要包括以下几方面:
1.理解与运用:使学生理解一元一次方程的概念,掌握其解法,并能将其应用于解决实际问题。
2.思维能力:培养学生逻辑思维和分析问题的能力,提高他们从实际问题中抽象出一元一次方程的能力。
3.数学表达:训练学生运用数学语言表达问题和解决问题的过程,提高他们的数学表达能力。
举例:在讲解移项难点时,可以使用数轴辅助教学,让学生直观地看到移项时数字的正负变化。对于合并同类项,可以通过具体的例题,如2x+3x-5x=4,让学生通过实际计算来理解合并的过程。在方程建模方面,可以给出如“小明买了3本书和一支笔花了32元,已知每本书的价格相同,求每本书的价格”这样的问题,引导学生如何设未知数并建立方程。至于解的检验,通过具体方程的解,如x=2,展示如何将x=2代入原方程进行验证,确保解的正确性。
-解方程的步骤:详细讲解移项、合并同类项、化简等基本解法,确保学生能够熟练运用。
-实际问题的方程建模:通过具体例题,展示如何从实际问题中抽象出一元一次方程,并运用解方程的方法求解。
-方程解的检验:教授并强调解方程后必须进行检验,确保解是正确的。
举例:在教学过程中,以方程3x-7=11为例,重点讲解移项(将-7移至等号右边)、合并同类项(将11和-7合并)和化简(求解x)的过程。

新人教版七年级上册数学第3章-一元一次方程全章教案

新人教版七年级上册数学第3章-一元一次方程全章教案

第三章 一元一次方程从算式到方程§一元一次方程(一)教学目标:知识与技能: 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; {情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。

教学重点:从实际问题中寻找相等关系教学难点:从实际问题中寻找相等关系教学过程:一、情境引入提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:)问题1:从上图中你能获得哪些信息(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:()50701510702301513+⨯--=- ()50701310502301513+⨯-+=- 。

问题3:能否用方程的知识来解决这个问题呢二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山 千米,王家庄距秀水 千米.2、引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示你能表示其他各段路程的车速吗问题3:根据车速相等,你能列出方程吗)根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:507035x x -+= , 依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程: 50507032x -+= 3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z 等字母);'(2)根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

最新新人教版初中七年级数学上册第三章《一元一次方程》教案

最新新人教版初中七年级数学上册第三章《一元一次方程》教案

新人教版初中七年级数学上册第三章《一元一次方程》精品教案一、教学目标:知识与技能:1.通过本节知识的学习,使学生清楚了方程、一元一次方程的概念。

2.体会字母表示数的好处,画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程(从算式到代数)是数学的一大进步。

过程与方法:1.会将实际问题抽象为数学问题,通过列方程解决问题;2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系得符号化方法;3.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系。

情感态度与价值观:增强用数学的意识,激发学习数学的热情。

二、教学重点:会根据实际问题列出一元一次方程。

三、教学难点:会根据实际问题列出一元一次方程。

四、教学过程设计:一、选择题1.在①2x+3y-1;②1+7=15-8+1;③1-12x=x+1④x+2y=3中方程有( )个. ( ) A.1 B.2 C.3 D.42.若方程3ax -4=5(a 已知,x 未知)是一元一次方程,则a 等于( ) A.任意有理数 B.0 C.1 D.0或13.x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3 D.3x-6=04.x 、y 是两个有理数,“x 与y 的和的13等于4”用式子表示为( ) A.1()43x y += B.143x y += C.143x y ++= D.以上都不对 二、填空题5.在方程①732-=-x ②32=-b a ③963-=+y y ④212=x ⑤y y 31421=-中是一元一次方程的是 。

三、解答题6.王浩妈妈买了6千克香蕉和3千克苹果,共花去51元钱,但她忘了香蕉的价格,只记得苹果每千克5元,她想考一考正上七年级的王浩,你能替王浩得出香蕉的价格吗? 附答案:1.B 2.C 3.D 4.A 5.①③⑤6.解:设香蕉的单价为x 元,根据题意,得51356=⨯+x七年级数学(上册)第 2 课 3.1.2 等式的性质一、教学目标:知识与技能:1.会利用等式的两条性质解方程.过程与方法:2.利用天平,通过观察、分析得出等式的两条性质.情感态度与价值观:培养学生参与数学活动的自信心、合作交流意识.二、教学重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程.三、教学难点:由具体实例抽象出等式的性质.四、教学过程设计:达标测评题(时间约5分钟,题目、题型要根据本节内容灵活把握)一、选择题1.下列方程的解是x=2的有().A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 2.下列各组方程中,解相同的是().A .x=3与2x=3B .x=3与2x+6=0C .x=3与2x-6=0D .x=3与2x=5 二、填空题3.在等式2x-1=4,两边同时________得2x=5. 4.在等式5x=5y ,两边都_______得x=y . 5.在等式-13x=4的两边都______,得x=______. 三、解答题6.用等式的性质解方程(1)x+2=5; (2)-3x=15; (3)23x-1=5. 附答案:1.A2.C3. 加14. 除以55.乘-3 , x=-12 6.解:(1)两边减2,得x+2-2=5-2 ,于是 x=3(2)两边同除以-3,得31533-=--x ,于是 x=-5 (3)两边加1,得23x-1+1=5+1,化简,得23x=6,两边同乘23,得x=9。

人教版初中数学七年级上册第三章:一元一次方程(全章教案)

人教版初中数学七年级上册第三章:一元一次方程(全章教案)

人教版初中数学七年级上册第三章:一元一次方程(全章教
案)
第三章一元一次方程
本章的内容包括:一元一次方程及其相关的概念,等式的性质;一元一次方程的解法;利用一元一次方程分析与解决实际问题.方程是一种重要的描述现实世界的数学模型.教材以实际问题为主线引入方程和方程的解的概念,探索等式的性质以及解一元一次方程,然后通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想.在中考中只要考查一元一次方程的解法以及列一元一次方程解应用题,既可能单独命题,也可能结合其他知识综合命题,题型主要是填空题、选择题和解答题.【本章重点】
1.理解和掌握一元一次方程的解法.
2.能利用一元一次方程解应用题.
【本章难点】
1
上一页下一页。

人教版七年级数学上册《 第三章 一元一次方程 》教学设计

人教版七年级数学上册《 第三章 一元一次方程 》教学设计

人教版七年级数学上册《第三章一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生继初中代数初步知识学习之后,进一步深化对数学概念的理解和运用的关键章节。

本章通过引入一元一次方程,让学生掌握方程的解法,提高解决实际问题的能力。

教材内容主要包括一元一次方程的概念、解法以及应用。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。

但对于一元一次方程这一概念,可能还存在一定的难度,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够应用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.一元一次方程的概念。

2.一元一次方程的解法。

3.一元一次方程在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例分析,让学生理解和掌握一元一次方程的解法;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.教材、教案、课件。

2.练习题、测试题。

3.教学工具(如黑板、粉笔、多媒体设备等)。

七. 教学过程1.导入(5分钟)利用实例引入一元一次方程的概念,让学生思考和讨论,引导学生发现一元一次方程的特点。

2.呈现(10分钟)讲解一元一次方程的定义,通过示例演示一元一次方程的解法。

让学生跟随老师一起解方程,确保学生能够掌握解法。

3.操练(10分钟)让学生独立完成练习题,老师巡回指导。

针对学生出现的问题进行讲解和解答。

4.巩固(10分钟)通过案例分析,让学生应用一元一次方程解决实际问题。

让学生分组讨论,分享解题过程和心得。

5.拓展(10分钟)引导学生思考:如何判断一个方程是否是一元一次方程?如何求解一元一次方程?让学生进行小组讨论,老师点评并总结。

6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的概念和解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级上册数学第3章-一元一次方程全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 一元一次方程3.1从算式到方程§3.1.1一元一次方程(一)教学目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。

教学重点:从实际问题中寻找相等关系教学难点:从实际问题中寻找相等关系教学过程:一、情境引入提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:()50701510702301513+⨯--=- ()50701310502301513+⨯-+=- 问题3:能否用方程的知识来解决这个问题呢?二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山 千米,王家庄距秀水 千米.2、引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示你能表示其他各段路程的车速吗问题3:根据车速相等,你能列出方程吗?根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程: 507035x x -+= , 依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程: 50507032x -+= 3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z 等字母);(2)根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

2、思考:对于上面的问题,你还能列出其他方程吗如果能,你依据的是哪个相等关系如果直接设元,还可列方程:70605x += 如果设王家庄到青山的路程为x 千米,那么可以列方程:12060;335x x x +== 说明:要求出王家庄到翠湖的路程,只要解出方程中的x 即可,我们在以后几节课中再来学习.四、初步应用1、例题(补充):根据下列条件,列出关于x 的方程:(1)x 与18的和等于54;(2)27与x 的差的一半等于x 的4倍.本例题可以先让学生尝试解答,然后教师点评.解:(1)x +18=54;(2)12(27-x )=4x. 2、练习(补充):(1)列式表示:① 比a 小9的数; ② x 的2倍与3的和;③ 5与y 的差的一半; ④ a 与b 的7倍的和.(2)根据下列条件,列出关于x 的方程:(1) 12与x 的差等于x 的2倍;(2)x 的三分之一与5的和等于6.五、课堂小结1、本节课我们学了什么知识?2、你有什么收获?说明方程解决许多实际问题的工具。

六、作业设计课本P84~85:1、5§3.1.1 一元一次方程(二)教学目标:1.理解一元一次方程、方程的解等概念;2.掌握检验某个值是不是方程的解的方法;3.培养学生根据间题寻找相等关系、根据相等关系列出方程的能力;4.体验用估算方法寻求方程的解的过程,培养学生求实的态度。

教学重点:寻找相等关系、列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?学生回答,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8.这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本第67页的例1。

对于基础比较差的学生,教师可以作如下提示:(1)选择一个未知数,设为x,(2)对于这三个问题,分别考虑:用含x的式子表示这台计算机的检修时间;用含x的式子分别表示长方形的长和宽;用含x的式子分别表示男生和女生的人数.(3)找一个问题中的相等关系列出方程.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流:选“已使用的时间”可列方程:2 450-150x=1 700.选“还可使用的时间”可列方程:150x=2 450-1 700.问题2:在第(3)题中,你还能设其他的未知数为x吗?在学生独立思考、小组讨论的基础上交流:设这个学校的男生数为x ,那么女生数为(x+80),全校的学生数为(x+x+80).列方程:x +80=52%(x+x +80).三、建立概念1.概念的建立.让学生在观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:(1)23-x=一7: (2)2a-b=3(3)y+3=6y-9; (4)0.32 m-(3+0.02 m) =0.7.(5)x 2=1 (6)11423y y -= 2.引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.四、估算求解列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以像课本那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等. 实际问一元一次方设未知数 列方程五、课堂练习练习课本第82页中练习六、课堂小结着重引导学生从以下几个方面进行归纳:①这节课我们学习了什么内容?②用列方程的方法解决实际问题的一般思路是什么?③列方程的实质就是用两种不同的方法来表示同一个量.④估算是一种重要的方法.思考:课本第81页中的“思考”.(目的是体验用估算的方法有时会很麻烦)七、作业设计课本第84--85页习题3.1第2,6,7,8题第11题.§3.1.2 等式的性质(一)教学目标:1.了解等式的两条性质;2.会用等式的性质解简单的(用等式的一条性质)一元一次方程;3.培养学生观察、分析、概括及逻辑思维能力;4.渗透“化归”的思想.教学重点:理解和应用等式的性质教学难点:应用等式的性质把简单的一元一次方程化成“x=a”教学过程:一、提出问题用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1) 3x-5=22; (2) 0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按课本第71页图2.1-2的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8-11=8-11”.3.表示:问题1:你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?字母a、b、c可以表示具体的数,也可以表示一个式子。

4.观察课本P71图2.1-3,你又能发现什么规律你能用实验加以验证吗在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.三、应用举例方程是含有未知数的等式,我们可以运用等式的性质来解方程。

例1课本第72页例2中的第(1)、(2)题.分析:所谓“解方程”,就是要求出方程的解“x=’’因此我们需要把方程转化为“x=a(a为常数)”形式。

问题 1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:(1)两边减7,得、x+7-7=26-7,x=19. I问题2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和结果的形式.例2(补充)小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元.四、课堂练习1.分别说出下列各式子的系数3x,-7m,35y,a,-x,12n-2.利用等式的性质解下列方程(1) x-5=6 (2)0.3x=45(3)-y=0.6 (4)12 3y=-3.七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人数。

相关文档
最新文档