电动汽车的四种驱动电机

合集下载

纯电动汽车电驱动系统的分类

纯电动汽车电驱动系统的分类

纯电动汽车驱动技术浅析三部曲—中篇纯电动汽车电驱动系统的分类围绕纯电动汽车驱动技术三部曲,笔者在梳理新能源动力总成开发过程中的关键技术,为动力总成的设计和测试生产提供理论基础和参考。

计划分为3个篇章来分析纯电动汽车动力总成中电驱动关键技术,今天围绕纯电动汽车的电驱系统的分类进行介绍。

电机驱动系统定义根据车辆动力电池状态和整车动力需求,把车载储能或发电装置输出的电能转成机械能,并通过传动装置将能量传递到驱动轮,并在车辆制动时把部分车辆机械能转化成电能回馈到储能装置中。

电机驱动系统分类按照电驱动系统不同分为以下三类:纯电动汽车,油电混合式电车,插电混合式电车。

1. 纯电动汽车按照电机不同可以分为以下四类:单电机驱动系统,双电机驱动系统,轮毂电机驱动系统和轮边电机驱动系统。

● 单电机驱动系统工作原理特点:电机替代发动机,保持原有的变速箱、机械传动不变。

优点:结构简单、技术含量低、整车改动小、可靠性高、成本低。

● 双电机驱动系统工作原理特点:双侧电机独立驱动,取消了变速箱、机械传动轴、机械差速器。

优点:结构简单、动力由电缆实现柔性连接,布置灵活,有效利用空间。

● 轮毂电机驱动系统工作原理优点:轮毂电机具有高效、节能、轻量化、小型化等优点,电动汽车终极解决方案。

轮毂电机将动力、传动、制动整合到轮毂内,变中央驱动为分布式驱动,省掉 了变速器、传动轴、差速器,减少80%的传动部件、减轻30%自身重量。

● 轮边电机驱动系统特点:双侧电机独立驱动、电机在轮毂外侧、电机通过减速器驱动车轮。

优点:结构简单、有效利用了轮边空间、适合重型大扭矩车辆。

2. 油电式混合动力汽车按照布置形式不同可以分为串联式,并联式和混联式动力汽车。

● 串联式混合动力汽车特点:机械功率流和电功率流串联、纯电驱动车轮,增加了制动能量回收利用功能。

优点:功率流简单、能量管理方便、节能。

缺点:系统不紧凑,技术含量低。

已经被淘汰。

● 并联式混合动力● 混联式混合动力目前常用形式,适用于4×4轮式混合动力,优势明显。

电机驱动系统(完整)

电机驱动系统(完整)

八、开关磁阻电机控制系统
1. 开关磁阻电机结构
定、转子为结构双凸结构。 定、转子齿满足错位原理, 即错开1/m转子齿距。 通电一周,转过一个转子齿。 需要转子位置传感器。
6/4极的开关磁阻电动机
2. 开关磁阻电动机工作原理
靠磁通收缩产生转矩
转矩:
开关磁阻电机的 转矩瞬时值正比于 电流的平方, 也正比于电感对转 子位置角的变化率。
+
+C
-C
PWM 输入
电动“1” 回馈制动“ 0”
驱动信号 输出
6. 无刷直流电机及其控制系统的优缺点
优点: 1. 具有直流电机的控制特性。 2. 控制相对简单。 3. 电机效率高,体积小。
缺点: 1. 由于永磁材料贵,电机价格较贵。 2. 过热容易导致永久性失磁。 3. 弱磁运行较困难。 4. 需要转子位置传感器。
功率变换器主电路
交流电机电枢绕组
六、无刷直流电机控制系统
1. 系统构成
三相功率 变换器
控制电路 控制器
永磁 同步电机
转子位置 传感器
自控式永磁 同步电机

2.无刷直流电机与永磁同步电机差别
B0(e0)
永磁同步电机
0
无刷直流电机
2π ωt
一对极下不同的气隙磁密分布图
3.无刷直流电机工作原理
有6个定子空间磁势。
A iA
根据转子位置传感器检
测到的转子位置和要求
FBA
FCA
转向来决定产生哪一个
X
磁势。
产生的平均转矩最大。 FBC
S
Z
iC
C
FAC
F0
N
FCB
Y
iB

电动汽车的驱动形式

电动汽车的驱动形式

电动汽车的驱动形式
(1)第一种驱动形式。

为一种典型的电机中央驱动形式。

此种驱动形式是参考了传统内燃机汽车的驱动形式,发动机以驱动电机代替,离合器、变速器和差速器则不变。

(2)第二种驱动形式。

由于驱动电机能在较大的速度范围内提供相对恒定的功率.因此多速变速器可被一个固定速比减速器(即只有一挡,传动比恒定)代替,此时离合器也可省去,如图2-3所示。

此种驱动形式可以节省机械传动系统的质量和体积。

另外可以减少操作难度。

(3)第三种驱动形式。

与第二种形式类似,只是驱动电机、固定速比减速器和差速器被整合为一体,布置在驱动轴上。

此时,整个传动系统被大大简化和集成化,另外从再生制动的角度出发,这种驱动形式较容易实现汽车动能的回收再利用。

(4)第四种驱动形式。

取消了差速器,取而代之的是两个独立的驱动电机,每个驱动电机单独完成一侧车轮的驱动任务,称为双电机电动轮驱动形式。

当车辆转弯时,两侧的电机就会分别工作在不同的速度下,不过这种驱动形式需要更加复杂的控制系统。

(5)第五种驱动形式。

相较于第四种驱动形式,第五种进一步简化了驱动系统:驱动电机与车轮之间取消了传统的传动轴,变成电机直接驱动车轮前进,同时一个单排的行星齿轮机构充当固定速比变速器,用来减小转速和增强转矩,以满足不同工况的功率和转矩需求。

此种驱动形式称为内转子式轮毂电机驱动形式。

(6)第六种驱动形式。

完全舍弃驱动电机和驱动轮之间的传动装置后,轮毂电机的外转子直接连接在驱动轮上,此时驱动电机转速控制与车轮转速控制融为一体,称为外转子式轮毂电机驱动形式。

新能源汽车驱动电机的工作原理

新能源汽车驱动电机的工作原理

新能源汽车驱动电机的工作原理一、引言在过去的几十年中,汽车行业一直在致力于减少对环境的污染并提高能源效率。

新能源汽车作为未来发展的趋势,得到了越来越多的关注和研究。

其中,驱动电机是新能源汽车的核心部件之一,决定了汽车的动力性能和能源利用效率。

本文将详细探讨新能源汽车驱动电机的工作原理。

二、新能源汽车驱动电机的分类根据不同的工作原理和结构特点,新能源汽车的驱动电机可以分为直流电机(DC motor)和交流电机(AC motor)。

而交流电机又可以细分为感应电机(induction motor)和永磁同步电机(permanent magnet synchronous motor)。

2.1 直流电机直流电机是最早被使用在汽车上的驱动电机,它的主要特点是结构简单、可靠性高,但效率相对较低。

直流电机通过与电源进行整流和调节电流方向的控制来实现转速的调节,为汽车提供动力。

2.2 感应电机感应电机是目前应用最广泛的驱动电机之一,它的结构简单、适用范围广,并且具有良好的负载适应性。

感应电机是通过在电机转子上感应出涡流来产生转矩,从而驱动汽车运动。

2.3 永磁同步电机永磁同步电机是当前新能源汽车中应用最广泛的驱动电机之一,它的主要特点是效率高、输出功率密度大。

永磁同步电机通过电磁场与转子磁场的同步来产生转矩,实现汽车的动力输出。

无论是直流电机还是交流电机,新能源汽车的驱动电机都是通过电能转换为机械能来提供车辆的动力。

以下将分别详细介绍它们的工作原理。

3.1 直流电机的工作原理直流电机的工作原理可以分为电磁感应原理和电磁吸力原理两个方面。

3.1.1 电磁感应原理当直流电流通过电机的线圈时,线圈中会产生一个磁场。

根据左手定则,线圈中的电流方向与线圈中的磁场方向垂直。

同时,在电枢上也有一个磁场,由于电流方向相反,两个磁场之间会相互排斥或吸引,产生转矩,使电机转动。

3.1.2 电磁吸力原理当电机转子转动时,它的磁场会与线圈中的磁场相互作用,产生电磁感应电动势。

电动汽车电机的类型及其特点

电动汽车电机的类型及其特点

电动汽车电机的类型及其特点发布时间:2015—8—5 16:38:34由于电动汽车的环保、节能、轻便的特性,使得电动汽车越来越受到各个国家的重视.目前,电动汽车处于高速发展的阶段,作为电动汽车核心部件的电动汽车电机主要有直流电动机、交流三相感应电动机、永磁无刷直流电动机、开关磁阻电动机等。

一有刷直流电动机有刷直流电动机的主要优点是控制简单、技术成熟。

具有交流电机不可比拟的优良控制特性。

在早期开发的电动汽车上都采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。

但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。

另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。

鉴于直流电动机存在以上缺陷,在新研制的电动汽车上已基本不采用直流电动机。

二交流三相感应电动机交流三相感应电动机是应用得最广泛的电动机.其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件.结构简单,运行可靠,经久耐用.交流感应电动机的功率覆盖面很宽广,转速达到12000~15000r/min。

可采用空气冷却或液体冷却方式,冷却自由度高。

对环境的适应性好,并能够实现再生反馈制动。

与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。

三永磁无刷直流电动机永磁无刷直流电动机是一种高性能的电动机。

它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。

加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。

此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。

永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景.四开关磁阻电动机开关磁阻电动机是一种新型电动机,该系统具有很多明显的特点:它的结构比其它任何一种电动机都要简单,在电动机的转子上没有滑环、绕组和永磁体等,只是在定子上有简单的集中绕组,绕组的端部较短,没有相间跨接线,维护修理容易。

新能源汽车四种常用电机驱动系统详解

新能源汽车四种常用电机驱动系统详解

新能源汽车四种常用电机驱动系统详解我国车用电机在全球资源条件下具有明显的比较优势,发展潜力较大。

从新能源汽车的产业链来看,受益端将主要集中在核心零部件领域。

国内车用驱动电机行业现状:电机业中的小行业、但制造门槛高,电机驱动系统还存在较多差距与不足,但国内政策扶持将加快产业步伐。

作为新能源汽车的核心部件(电池、电机、电控)之一,图1,驱动电机及其控制系统未来发展前景可观。

驱动电机系统简介新能源汽车具有环保、节约、简单三大优势。

在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。

相对于自动变速箱,电机结构简单、技术成熟、运行可靠。

传统的内燃机能高效产生转矩时的转速限制在一个窄的范围内,这就是为何传统内燃机汽车需要庞大而复杂的变速机构的原因;而电动机可以在相当宽广的速度范围内高效产生转矩,在纯电动车行驶过程中不需要换挡变速装置,操纵方便容易,噪音低。

与混合动力汽车相比,纯电动车使用单一电能源,电控系统大大减少了汽车内部机械传动系统,结构更简化,也降低了机械部件摩擦导致的能量损耗及噪音,节省了汽车内部空间、重量。

电机驱动控制系统是新能源汽车车辆行使中的主要执行结构,驱动电机及其控制系统是新能源汽车的核心部件(电池、电机、电控)之一,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。

电动汽车中的燃料电池汽车FCV、混合动力汽车HEV和纯电动汽车EV三大类都要用电动机来驱动车轮行驶,选择合适的电动机是提高各类电动汽车性价比的重要因素,因此研发或完善能同时满足车辆行驶过程中的各项性能要求,并具有坚固耐用、造价低、效能高等特点的电动机驱动方式显得极其重要。

驱动电机系统是新能源车三大核心部件之一。

电机驱动控制系统是新能源汽车车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。

电动汽车的整个驱动系统包括电动机驱动系统与其机械传动机构两个部分。

新能源汽车驱动电机分类及其特点

新能源汽车驱动电机分类及其特点

新能源汽车驱动电机分类及其特点一、直流电机:直流电机是新能源汽车最早应用的电机之一,其特点是结构简单、可适应宽范围的工作条件。

直流电机具有起动扭矩大、调速性能好、控制方便等特点,适用于电动汽车的低速高扭矩运行。

直流电机的缺点是惯量大、效率低、寿命短、无法很好地适应高速运行的需求。

随着技术的进步,直流电机的性能逐渐改进,目前主要应用于中小型电动车和混合动力汽车。

二、交流异步电机:交流异步电机是目前新能源汽车中最为常用的驱动电机之一,其特点是结构简单、便于制造、效率高、运行稳定。

交流异步电机的优点是具有较高的功率密度和扭矩密度,适用于中高速运行的场景。

但是,交流异步电机的控制和调速性能相对较差,难以实现无级调速等高级控制功能。

三、交流同步电机:交流同步电机是新能源汽车中技术含量较高的一类电机,其特点是效率高、控制性能好、适应性强。

交流同步电机有较高的能量转换效率,通过电子控制可以实现精确的转速控制。

交流同步电机的缺点是在低转矩运行时效能下降,起动能力相对较弱。

交流同步电机主要用于高速电动汽车和纯电动轻型车辆。

四、永磁同步电机:永磁同步电机是新能源汽车中效率最高的一种驱动电机,其特点是高效率、高功率密度和起动加速性能好。

永磁同步电机的主要优点是具有较高的转矩和功率密度,且在宽速度范围内都能保持高效率。

永磁同步电机的缺点是制造和维护成本较高,且在高速运行时容易发生电磁噪音和磨损。

永磁同步电机广泛应用于电动汽车和混合动力汽车中。

综上所述,不同类型的新能源汽车驱动电机各有特点,适用于不同的工况和需求。

未来随着技术的发展,各类驱动电机将继续优化,以提升其效率和性能,推动新能源汽车行业的发展。

浅谈新能源汽车常用的驱动电机类型及原理

浅谈新能源汽车常用的驱动电机类型及原理

5加速数控机床的全面升级改造对于小型轴类盘类等零件加工,在市场中多采用CA6140型车床,该车床可以控制主轴的正转和反转,进而实现切削速度的调整,并且该车床的刀架也可以进行横向纵向的综合性进给运动,从而能够实现多个方向的加工。

并且在换刀点能够自动改变不同的刀具,使得传统普通加工模式也较为快速。

该车床中有润滑泵和冷却泵,能够较好的控制加工的温度,防止产生热应力,同时润滑泵能够使车床各部件的工作更加顺畅。

通过控制主轴的启停和旋转状况,从而能够使刀架按照一定的速度进行移动。

上述这些特征均可以作为数控系统改造的基础,对于该车床的相关资料以及技术标准进行探究,进而制定出较为完善的改造方案。

5.1主传动系统改造普通机床改造过程中,对于原有的传动系统和变速系统可以给予保留,因为数控机床也需要这一套运动系统进行运转。

可以将该系统进行科学的结合,从而减少改造料,并且节约改造成本。

除此以外,对于主传动系统的改造应注重自动化程度的提升,能够在机床运动过程中实现自动控制切削的速度和切削的模式。

将该型号机床中的主轴电机进行替换,采用交流调速电机,从而实现无极变速功能,从而对自动化档位的控制提供较好的基础。

5.2数控系统设计数字控制系统应做到较高的信号控制时效性,并且对于数据处理的速度和相关指令的传递符合国家的标准。

由于自行开发数控系统难度较高,需要较多的人力物力进行长期系统的研制,可以直接采用市面上较为成熟的数控系统,比如型号为NIM-9702的数控系统。

5.3刀架的相关设计刀架必须有良好的结构,从而能够保障车床切削以及加工的性能,本研究中采用的刀床为卧室刀床,将刀架的方案替换成自动换刀方案,这样能够和自动化系统进行联动,采用的刀架为四工位螺旋转位刀架,因此能够满足车床自动化控制的需要。

6结束语数控机床不仅实现高精度且高效率的工作,在当今发展过程中,对于数控机床也赋予了新的任务,目前需要数控机床更加智能化开放化,并且结合信息时代进行网络化,从而使控制更加便捷,管理更加高效,生产过程变得更加绿色和环保,这些发展方向均为未来数控机床的发展提供了较为清晰的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步电机是目前工业中应用十分广泛的一类电机, 其特点是定、转子由硅钢片叠压而成,两端用铝盖封装, 定、转子之间没有相互接触的机械部件,结构简单,运行 可靠耐用,维修方便。交流异步电机与同功率的直流电动 机相比效率更高,质量约轻了二分之一左右。如果采用矢 量控制的控制方式,可以获得与直流电机相媲美的可控性 和更宽的调速范围。由于有着效率高、比功率较大、适合 于高速运转等优势,交流异步机是目前大功率电动汽车上 应用最广的电机。目前,交流异步电机已经大规模化生产, 有着各种类型的成熟产品可以选择。但在高速运转的情况 下电机的转子发热严重,工作时要保证电机冷却,同时异 步电机的驱动、控制系统很复杂,电机本体的成本也偏高, 相比较于永磁式电动机和开关磁阻电机而言,异步电机的 效率和功率密度偏低,对于提高电动汽车的最大行驶里程 不利。
电动汽车的四种驱动电机
1、电动汽车对于驱动电机的要求 目前对于电动汽车性能的评定,主要是考虑以下三个性能指标: (1)最大行驶里程(km):电动汽车在电池充满电后的最大行驶里程; (2)加速能力(s):电动汽车从静止加速到一定的时速所需要的最小时间; (3)最高时速(km/h):电动汽车所能达到的最高时速。 2、电动汽车的驱动特点所设计的电机,相比于工业用电机有着特殊的性 能要求: (1)电动汽车驱动电机通常要求可以频繁的启动/停车、加速/减速、转矩控 制的动态性能要求较高; (2)为减少整车的重量,通常取消多级变速器,要求在低速或爬坡时,电 机可以提供较高的转矩,要承受4-5倍的过载; (3)要求调速范围尽量大,整个调速范围内还需要保持较高的运行效率; (4)电机设计时尽量设计为高额定转速,同时尽量采用铝合金外壳,高速 电机体积小,有利于减少电动汽车的重量; (5)电动汽车应具有最优化的能量利用,具有制动能量回收功能,再生制 动回收的能量一般要达到总能量的10%-20%; (6)电动汽车所使用的电机工作环境更加复杂、恶劣,要求电机在有着很 好的可靠性和环境适应性,同时还要保证电机生产的成本不能过高。
2、四种常用的驱动电机 (1)直流电动机 在电动汽车发展的早期,大部分的电动汽车都采用 直流电动机作为驱动电机,这类电机技术较为成熟, 有着控制方式容易,调速优良的特点,曾经在调速 电动机领域内有着最为广泛的应用。但是由于直流 电动机有着复杂的机械结构,例如:电刷和机械换 向器等,导致它的瞬时过载能力和电机转速的进一 步提高受到限制,而且在长时间工作的情况下,电 机的机械结构会产生损耗,提高了维护成本。此外, 电动机运转时电刷冒出的火花使转子发热,浪费能 量,散热困难,也会造成高频电磁干扰,影响整车 性能。由于直流电动机有着以上缺点,目前的电动 汽车已经基本将直流电机淘汰。
(4)开关磁阻电机
开关磁阻电机作为一种新型电机,相比其 他类型的驱动电机而言,开关磁阻电机的 结构最为简单,定、转子均为普通硅钢片 叠压而成的双凸极结构,转子上没有绕组, 定子装有简单的集中绕组,具有结构简单 坚固、可靠性高、质量轻、成本低、效率 高、温升低、易于维修等诸多优点。而且 它具有直流调速系统的可控性好的优良特 性,同时适用于恶劣环境,非常适合作为 电动汽车的驱动电机使用。
(3)永磁式同步电动机
永磁式电动机根据定子绕组的电流波形的不同可分为两种类 型,一种是无刷直流电机,它具有矩形脉冲波电流;另一种 是永磁同步电机,它具有正弦波电流。这两种电机在结构和 工作原理上大体相同,转子都是永磁体,减少了励磁所带来 的损耗,定子上安装有绕组通过交流电来产生转矩,所以冷 却相对容易。由于这类电机不需要安装电刷和机械换向结构, 工作时不会产生换向火花,运行安全可靠,维修方便,能量 利用率较高。 永磁式电动机的控制系统相比于交流异步电机的控制系统来 说更加简单。但是由于受到永磁材料工艺的限制,使得永磁 式电动机的功率范围较小,一般最大功率只有几十千万,这 是永磁电机最大的缺点。同时,转子上的永磁材料在高温、 震动和过流的条件下,会产生磁性衰退的现象,所以在相对 复杂的工作条件下,永磁式电机容易发生损坏。而且永磁材 料价格较高,因此整个电机及其控制系统成本较高。
相关文档
最新文档