离散数学-第七章-图论

合集下载

离散数学第七章图论习题课

离散数学第七章图论习题课
利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集


应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

离散数学图论

离散数学图论

例:把下面的m叉树改写为二叉树。
14
第七章 图论
信 息 科 学 与 工 程 学 院
练习:把下面的有序树改写为二叉树。
。 。 。。 。 。。 。 。 。 知识点提示:
。 。。
。 。 。

课下自学
此方法可推广至有序森林到二叉树的转换。 此方法具有可逆性。
15
第七章 图论
信 息 科 学 与 工 程 学 院
给定一棵2叉树T,设它有t片树叶。设v为T的一个分枝点, 则v至少有一个儿子,最多有两个儿子。若v有两个儿 子,在由v引出的两条边上,左边的标上0,右边的标 上1;若v有一个儿子,在由v引出的边上可标上0,也
可标上1。设vi为T的任一片树叶,从树根到vi的通路
上各边的标号组成的0,1串组成的符号串放在vi处,t 片树叶处的t个符号串组成的集合为一个二元前缀码。
定义7-8.5
在根树中, 科 一个结点的通路长度为从树根到此结点的通路中的边 学 数。 与 分枝点的通路长度称为内部通路长度。 树叶的通路长度称为外部通路长度。
工 程 学 院
。 。 。 。。 A 。 。 。。
18
第七章 图论
信 息 科
定理7-8.2
若完全二叉树有n个分枝点,且内部通路长度总和为L,外 部通路长度总和为E,则 E=L+2n。 证明:
学 与 工 程 学 院
对分枝点数目n进行归纳证明。

当n=1时,如右图所示,
L=0, E=2,


显然, E=L+2n成立。
19
第七章 图论
信 息 科 学
定理7-8.2 若完全二叉树有n个分枝点,且内部通路长度总 和为L,外部通路长度总和为E,则 E=L+2n。 证明:

离散数学7-1图论

离散数学7-1图论

图7-1.9 不同构的图
作业
P279 (1) (4)
如图7-1.6中的(a)和(b)互为补图。
[定义] 子图(subgraph) 设图G=<V,E>,如果有图G’= <V’,E’>,若有 V’ V ,E’ E,则称图G’是图G的子图。 [定义] 生成子图(spanning subgraph) 如果图G的子图G’包含G的所有结点,则称该图 G’为G的生成子图。如图7-1.8中G'和G"都是 G的生成子图。
[定义] 相对于图G的补图 设图G'=〈V',E'〉是图G=〈V,E〉的子图,若 给定另外一个图G"=〈V",E"〉使得E"=EE', 且 V" 中仅包含 E"的边所关联的结点。则 称G"是子图G'的相对于图G的补图。
图7-1.7 (c )为(b)相对于(a)的补图
如图 7-1.7 中的图 (c) 是图 (b) 相对于图 (a) 的补 图。而图 (b) 不是图 (c) 相对于图 (a) 的补图 , 因为图(b)中有结点c。在上面的一些基本概 念中,一个图由一个图形表示,由于图形的结 点的位置和连线长度都可任意选择 , 故一个 图的图形表示并不是唯一的。下面我们讨 论图的同构的概念。
表7-1.1
结 点 出 度 入 度
a 2 0
b 1 1
c 0 2
d 1 1
结 点 出 度
入 度
v1 1 1
v2 0 2
v3 2 0
v4 1 1
分析本例还可以知道 , 此两图结点的度数也 分别对应相等,如表7-1.1所示。
两图同构的一些必要条件: 1.结点数目相等; 3.边数相等; 3.度数相等的结点数目相等。 需要指出的是这几个条件不是两个图同构的 充分条件,例如图7-1.9中的(a)和(b)满足上 述的三个条件,但此两个图并不同构。

离散数学——图论

离散数学——图论

2021/10/10
11
哥尼斯堡七桥问题
❖ 把四块陆地用点来表示,桥用点与点连线表 示。
2021/10/10
12
❖ 欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
2021/10/10
2
图论的发展
❖ 图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。
❖ 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。
2021/10/10
3
❖ 一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。
❖ P(G)表示连通分支的个数。连通图的连通 分支只有一个。
2021/10/10
40
练习题---图的连通性问题
❖ 1.若图G是不连通的,则补图是连通的。 ❖ 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
2021/10/10
41
❖ 2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
❖ 例子
2021/10/10
29
多重图与带权图
❖ 定义多重图:包含多重边的图。 ❖ 定义简单图:不包含多重边的图。 ❖ 定义有权图:具有有权边的图。 ❖ 定义无权图:无有权边的图。
2021/10/10
30

《离散数学》word版

《离散数学》word版

第七章图在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。

例如用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。

图论起源于18世纪,它是研究由线连成的点集的理论。

一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。

由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。

由此经数学抽象产生了图的概念。

研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。

7.1 图的基本概念7.1.1图的定义7.1.1.1无向图定义7.1.1 设A,B是任意集合。

集合{(a,b)|aA且bB}称为A和B的无序积,记为A&B。

在无序积中,两个元素间的顺序是无关紧要的,即(a,b)=(b,a)。

定义7.1.2 无向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为结点(顶点)。

E是一个V&V的多重子集,其元素称为边(无向边)。

我们可用平面上的点来表示顶点,两点间的连线表示边,从而将任一个无向图用图形表示出来。

[例7.1.1]无向图G=<V,E>,其中V={a,b,c,d,e,f},E={(a,b),(a,c),(a,d),(b,b),(b,c),(b,c),(b,d),(c,d)}。

7.1.1.2有向图定义7.1.3 有向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为顶点,E是一个V V的多重子集,其元素称为有向边或弧,简称为边。

注:1)在有向图G=<V,E>中,若e=〈u,v〉,则称u和v为e的起点和终点;2)自回路既可看成是有向边又可看成是无向边;3)去掉有向图中边的方向得到的图称为该有向图的基图。

《离散数学之图论》课件

《离散数学之图论》课件

二分图
二分图是指一个图中的所有顶点可 以被分成两个不相交的集合,即两 个集合内的点之间没有边。

树是一种特殊的无向图,他是一个 无环连通图。
图的表示
1
邻接矩阵
邻接矩阵是表示图的最直观的一种方法,它将图中的每个点与其他点之间的连接 关系用一个矩阵来表示。
2
邻接表
邻接表是图中比较常见的一种数据结构,用于存储有向图或无向图中顶点的邻接 关系。
Kruskal算法是一种贪心算
2 自反闭包
3 反对称闭包
在一个有向图中,如果由顶 点i到顶点j有路径,由顶点j 到顶点k有路径,则从i到k也 有路径。这种情况称为传递 闭包。
在一个有向图中,如果自己 只能到自己,则称之为自反 闭包。
在一个有向图中,如果存在 有向边从i到j,同时存在一 个从j到i的反向边,则称之 为反对称闭包。
3
关联矩阵
关联矩阵是一个图矩阵,它将图中的所有点和边都表示为元素,可以将和特定边 相关的点和总结点联系起来。
图的遍历
1 深度优先遍历
深度优先遍历是从图中的起始点开始,递归地访问所有可达的顶点。它通常用堆栈来实 现。
2 广度优先遍历
广度优先遍历是从图中的起始点开始访问每一层可达的顶点。它通常用队列来实现。
最短路径
Dijkstra算法
Dijkstra算法是一种用来求图中单个源点到其他所有点 的最短路径的平均算法。
Floyd算法
Floyd算法是一种用于发现非负权重图中所有点对之间 的最短路径的算法。
最小生成树
1
Prim算法
Prim算法用于寻找加权无向连通图的最小生
Kruskal算法
2
成树,该树包含了关键点并且保证了所有点 都连通。

离散数学第七章图的基本概念

离散数学第七章图的基本概念

4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为方便起见,常将无序对{a,b}记为(a,b)
定义1.1 一个无向图是一个有序的二元组<V,E>,
记为G,其中
(1)V≠称为结点集,元素称为结点或顶点;
第 (2)E称为边集,它是无序积V&V的多重子集,
七 其元素称为无向边,简称为边。


常把无向图记为G=<V,E>

12/22/2019 9:31 PM
5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1



v2


12/22/2019 9:31 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
E={(v0,v3),(v1,v3),(v1,v3),(v2,v3),(v0,v0)}

v0
v1
第 七
G
v3
v2
G2
平行边

简单图
多重图
( 图

不含平行边也不含环) 12/22/2019 9:31 PM7Βιβλιοθήκη 离 散 数 学旧金山
丹佛
洛杉矶
第 七 章


12/22/2019 9:31 PM
底特律
芝加哥
纽约 华盛顿
散 数
解: K4的所有非同构的生成子图如下图所示。

第 七 章


12/22/2019 9:31 PM
33

二、路与回路

数 定义2.1 设G为无向标定图,G中结点与边 学 的 交 替 序 列 =vi0ej1vi1ej2…ejlvil 称 为 vi0 到
vil的路。vi0,vil分别称为的始点和终点, 中边的条数称为它的长度。
怎样定义有向图的同构?
第 七 章


12/22/2019 9:31 PM
28

散 例7、
数 学
a
d
第 七 章


12/22/2019 9:31 PM
b

c
c' (a)
a' (b) d' (d)
b' (c)
29




1
2
6
10
7
9 8
2
5
3

3
4
七 章
彼得松图(petersen)


12/22/2019 9:31 PM

散 数 学
一个具n有=410个顶点,每 个结点m的=度45 都为6的图,
v1
有多少顶结条点边度?之和为810
e5
e1
e3 e4
v2 e2
v3
v4
定理1.1 设G=<V,E>为无向图, |V(G)|= n, |E(G)|=m,则
n
握手定理 deg(vi) 2m

i 1
即使出现多重边和环,这
W(G)=2
39
离 设G=<V,E>为无向图
散 数
(1)设eE,用G-e表示从G中去掉边e,称为删
c
d
G″´
d
G″
27
离 定义1.8 设G1=<V1,E1>,G2= <V2,E2>为两个无向
散 数
图,若存在一一映射

g: V1 V2
对于vi,vjV1,
(vi,vj)E1 当且仅当 (g(vi),g(vj))E2,
并且(vi,vj)与(g(vi),g(vj))的重数相同,
则称G1与G2是同构的,记作G1 G2
华盛顿
11

散 数
e0

v1
v5
v3
孤立点
标定图
非标定图
e1 e3
v2
在无向图G=<V,E>中,若ek= (vi,vj) ∈E,则称vi,vj 为
e2 边ek的端点,
e4
ek与vi或ek与vj是彼此关联的;
(v3e,5 v4) v4
关联次数 邻接点、邻接边
第 七 章


12/22/2019 9:31 PM
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。


12/22/2019 9:31 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章


12/22/2019 9:31 PM
底特律
芝加哥
纽约 华盛顿
4

散 设A、B是两个集合,称


A&B={{a,b}|aA, bB}
为A与B的无序积。
35
有向图中,路、回路等概念与无向图类似


b


e1
e4
a
e2
d
e5 e3
c
(e ,e ,e ,e ,e )是迹,不是通路,因
5
1
2
3
4
第 为(c,a,b,c,d,b)中b,c均出现了
七 章
两次。(c,d,b,c)是圈。


12/22/2019 9:31 PM
36


数 学
定理2.1 在n阶图中,若从结点vi到vj(vivj) 存在一条路,则从vi到vj存在长度不大于n-1的路。
a e
b c 图G d
a
b e
c d
图 G3
23
离 散 数 学
k4
G
第 七 章


12/22/2019 9:31 PM
G
24
离 定义1.6 设G=<V,E>,G’= <V’,E’>为两个图,
散 数
若V’ V且E’ E,则称G’为G的子图,G为
学 G’的母图,记作G’G;
又若V’V或E’ E,则称G’为G的真子图。

任意一个连通无向图的任两个不同结
七 点都存在一条通路。



12/22/2019 9:31 PM
38

非连通图G可分为几个不相连通的子图,
散 每一子图本身都是连通的。称这几个子图为
数 学
G的连通分支,G的连通分支数记为W(G)。
k4
B A


W(G)=1



12/22/2019 9:31 PM
viV1
viV2
偶数
e1 v1
偶数 v2
偶数
第 七 章
e3
e2
e4
因此|V2 |为偶数

v3
v4

12/22/2019 9:31 PM
18
离 例4、已知无向图G中结点数n与边数m相等,2度
散 数 学
结点与3度结点各2个,其余结点的度数均为1,试 求G的边数m。
解:由握手定理
n
2m deg(vi) =22+ 32+ 1(n-4)
推论 在n阶图中,若从结点vi到vj(vivj)存在一 条路,则从vi到vj存在长度小于n的通路。
第 七 章


12/22/2019 9:31 PM
37

散 数
定义2.2
设无向图G=<V,E>, u,vV,若
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。
1
5
6
10 7 8
9
4
30
离 散 数 学

第 七 章


12/22/2019 9:31 PM
31
离 散 数 学
两个图同构必有: (1)结点数相同;
但不是充分条件
(满足这三个条件的两图 不一定同构)
第 (2)边数相同;

章 (3)度数列相同


12/22/2019 9:31 PM
32
离 例8、 画出K4的所有非同构的生成子图。
v3
章 图
degv+3 (v1)=3
degv+4(v2)= deg+(v4)=1 dve2g+(v3)=0
论 ddeegg-1((2vv/2112/))2==019dd9e:3eg1gP(M-v(4v)2=)=2ddeegg-((vv42))==1deg(dve3g)=-(3v3)=2
14
离 散 数

定义1.5 设G=<V,E>为n阶无向简单图, 以V为结点集,以所有使G成为完全图Kn的添加 边组成的集合为边集的图,称为G的相对于完 全图的补图,记作 G




k4
G

12/22/2019 9:31 PM
G
22

图 K5 a



b
e
c
d
a
b
e


c
d

图 G1


12/22/2019 9:31 PM
相关文档
最新文档