九年级数学讲义-22 1 3 二次函数的图象和性质5.ppt
合集下载
人教版九年级数学上册《二次函数图像与性质》课件(共14张PPT)

相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
பைடு நூலகம்
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
|a|越大,抛物线的开口越小;
二次函数y=ax2的性质
y=ax2
a>0
a<0
图象
(0,0)最低点
开口方向 开口向上
开口向下
对称轴 对称轴是y轴,即直线x=0
顶点
顶点坐标是原点(0,0)
最值 当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
当x<0时,y随x的增大而减小 当x<0时,y随x的增大而
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y = x2
3
-3
3
二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中 所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,
谢谢观赏
You made my day!
我们,还在路上……
当x>0时,y随x的增大而增大
增大;当x>0时,y随x的 增大而减小
|a|越大,抛物线的开口越小;
二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
《二次函数的图像和性质》PPT课件 人教版九年级数学

2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
人教版数学九年级上册《二次函数的图像和性质》课件PPT

2
2
2
2
b
1
1,
4ac b2
4
1 2
5 2
12
4
2
2a
y
21
1 2
x
1
2
4a
2
,
4
1 2
2
2
∴顶点为(1,-2),对称轴为直线 x=1。
练习2 用公式法把y 2x2 8x 6 化成
b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
时,函数有最小值,
y最小=
4ac 4a
b
2
,
如果a<0,当
x
b 2a
时,函数有最大值,
y最大=
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1
用配方法把 y 1 x2 3x 5
2
2
化为
y a x h2 k 的形式,求出顶点坐标和对称轴。
分析:我们可以用顶点坐标公式求出图 象的顶点,过顶点作平行于y轴的直线就 是图象的对称轴.在对称轴的一侧再找 两个点,则根据对称性很容易找出另两 个点,这四个点连同顶点共五个点,过 这五个点画出图像.
九年级数学二次函数的图象和性质课件

(h>0)
向下平移k个单位
(k<0)
y=
2
ax
|k|
-
探究
抛物线y = a(x-h)2+k抛物线y=ax2 有什么关系?
y=ax2
向右(h>0)或向左(h<0)平
移|h|个单位长度
2
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
y=ax2+k
=a −h
向右(h>0)或向左(h<0)
平移|h|个单位长度
= a − h 2 +k
1
2
【提问】若将抛物线y= − x2 先向右平移3个单位,再向下平移2个单
思考
位后所得的图象与抛物线 = −
抛物线 =
1
−
2
+1
2
− 1与抛物线y=
1 2
− x
2
1
2
+1
2
− 1有什么关系呢?
有什么关系?
y=
1
−
2
与抛物线y=
+ 1, =
1 2
− x
2
1
−
2
−1
有什么关系?
二次函数"y=ax2+c"的性质
抛物线y = ax2+k
a>0
a<0
k>0
图象
k<0
开口方向
向上
向下
对称轴
y轴(直线x=0)
y轴(直线x=0)
顶点坐标
(0,k)
(0,k)
函数的增减性
向下平移k个单位
(k<0)
y=
2
ax
|k|
-
探究
抛物线y = a(x-h)2+k抛物线y=ax2 有什么关系?
y=ax2
向右(h>0)或向左(h<0)平
移|h|个单位长度
2
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
向上(k﹥0)或
向下(k﹤0)平
移|k|个单位长度
y=ax2+k
=a −h
向右(h>0)或向左(h<0)
平移|h|个单位长度
= a − h 2 +k
1
2
【提问】若将抛物线y= − x2 先向右平移3个单位,再向下平移2个单
思考
位后所得的图象与抛物线 = −
抛物线 =
1
−
2
+1
2
− 1与抛物线y=
1 2
− x
2
1
2
+1
2
− 1有什么关系呢?
有什么关系?
y=
1
−
2
与抛物线y=
+ 1, =
1 2
− x
2
1
−
2
−1
有什么关系?
二次函数"y=ax2+c"的性质
抛物线y = ax2+k
a>0
a<0
k>0
图象
k<0
开口方向
向上
向下
对称轴
y轴(直线x=0)
y轴(直线x=0)
顶点坐标
(0,k)
(0,k)
函数的增减性
二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
22.1.3二次函数的图像与性质 初中初三九年级数学教学课件PPT 人教版

y=2(x+3)2+5 y=-3(x-1)2-2 y = 4(x-3)2+7 y=-5(2-x)2-6
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)y=ax2+c
3)y=a(x-h)2
首页
2 .请说出二次函数y=ax²+c与y=ax²的平移关系。 y=a(x-h)2与y=ax²的平移关系
将抛物线y=ax²沿y轴方向平移c个单位,得抛物线 y =ax²+c 将抛物线y=ax²沿x轴方向平移h个单位,得抛物线 y=a(x-h)2 3 .请说出二次函数y=2(x-3)2与抛物线y=2(x+3)2如何 由y=2x2 平移而来
第3课时 二次函数y=a(x-h)2+k的图
象与性质
一、情景引入 二、合作探究 三、课堂小结
探究点一 二次函数y=a(x-h)2+k 的图象、性质及平移
提出 问题
知识 要点
典例 精析
巩固 训练
四、课后作业
一、情景导入
1.说出下列函数图象的开口方向,对称轴,顶点,最值和 增减变化情况:
1)y=ax2
a<0 向下 x=h (h,k) x=h时, x<h时, y随x的增大而增 有最大 大; x>h时, y随x的增大而 值y=k 减小.
首页
典例精析
例1:求二次函数y=x2- 2x-1的顶点坐标、 对称轴及其最值.
解 y x2 2x 1 x2 2x 111
: (x 1)2 2∴ 顶点坐标为(1,-2), 对称轴是直线x=1.当x=1,时,y最小 值=-2.
首页
y
y=2x2 +1
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1
-3. -2 -1 0.
1. 2. 3.
x
-1
首页
联系: 将函数 y=2x²的图象向右平移1个 单位, 就得到
y=2(x-1)²的图象; 在向上平移2个单位, 得到函数 y=2(x-1)²+1的图象.
相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形. (3)顶点都是最低点.
x
C.①②④
D.②③④
解析:∵- =-1,∴b=2a,即b-2a =0,∴①x=正-1 确;∵当
x=-2时点在x轴的上方,即4a-2b+c>0,②不正确;
∵4a+2b+c=0,∴c=-4a-2b,∵b=2a,∴a-b+c=a-b-4a-2b=-3a-
3对④b=正称-9确轴a,.的∴距综③离上正小所确于述;点,∵(选抛B23 .物,线y2)是到轴对对称称轴图的形距,离点,(即-3,y1>yy1)2,到∴
(4) 在对称轴左侧,都随 x 的增大而减小,在对称 轴右侧,都随 x 的增大而增大.
(5)它们的增长速度相同.
首页
不同点: (1)对称轴不同. (2)顶点不同. (3)最小值不相同.
知识要点
y=a(x 开口 对 顶 最值 -h)²+k 方向 称 点
轴
增减情况
a>0 向上 x=h (h,k) x=h时, x<h时, y随x的增大而减 有最小 小; x>h时,y随x的增大而 值y=k 增大.
首页
首页
ቤተ መጻሕፍቲ ባይዱ
b 2a
例2:(2014·聊城中考)如图是二次函数
y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,
有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=
-9a;④若(-3,y1),(3 ,y2)是抛物线y 上两点,
则y1>y2.其中正确的是 2
()
A.①②③
B.①③④
O2
首页
巩固训练
见《学练优》第33页课堂达标训练第1、2、 3、4、5、6、7、8题
首页
三、课堂小结
y=a(x-h)²+k • 对称轴 直线 x=h • 顶点 (h,k) • 最值 当a>0时 x=h时,y有最小值k
当a<0时 x=h时,y有最大值k
首页
四、课外作业
见《学练优》本课时课后巩固提升
学.科.网
首页
二、合作探究
探究点一 二次函数y=a(x-h)2+k的图象、性质及平
画移 出二次函数y=2x², y=2(x-1)², y=2(x1)²+1的图象,并说一说三个图象的关系?
首页
y
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1 y=2(x-1)2
-3. -2 -1 0.
1. 2. 3.
x
-1
3)y=a(x-h)2
首页
2 .请说出二次函数y=ax²+c与y=ax²的平移关系。 y=a(x-h)2与y=ax²的平移关系
将抛物线y=ax²沿y轴方向平移c个单位,得抛物线 y =ax²+c 将抛物线y=ax²沿x轴方向平移h个单位,得抛物线 y=a(x-h)2 3 .请说出二次函数y=2(x-3)2与抛物线y=2(x+3)2如何 由y=2x2 平移而来
第3课时 二次函数y=a(x-h)2+k的图
象与性质
一、情景引入 二、合作探究 三、课堂小结
探究点一 二次函数y=a(x-h)2+k 的图象、性质及平移
提出 问题
知识 要点
典例 精析
巩固 训练
四、课后作业
一、情景导入
1.说出下列函数图象的开口方向,对称轴,顶点,最值和 增减变化情况:
1)y=ax2
a<0 向下 x=h (h,k) x=h时, x<h时, y随x的增大而增 有最大 大; x>h时, y随x的增大而 值y=k 减小.
首页
典例精析
例1:求二次函数y=x2- 2x-1的顶点坐标、 对称轴及其最值.
解 y x2 2x 1 x2 2x 111
: (x 1)2 2∴ 顶点坐标为(1,-2), 对称轴是直线x=1.当x=1,时,y最小 值=-2.
首页
y
y=2x2 +1
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1
-3. -2 -1 0.
1. 2. 3.
x
-1
首页
联系: 将函数 y=2x²的图象向右平移1个 单位, 就得到
y=2(x-1)²的图象; 在向上平移2个单位, 得到函数 y=2(x-1)²+1的图象.
相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形. (3)顶点都是最低点.
x
C.①②④
D.②③④
解析:∵- =-1,∴b=2a,即b-2a =0,∴①x=正-1 确;∵当
x=-2时点在x轴的上方,即4a-2b+c>0,②不正确;
∵4a+2b+c=0,∴c=-4a-2b,∵b=2a,∴a-b+c=a-b-4a-2b=-3a-
3对④b=正称-9确轴a,.的∴距综③离上正小所确于述;点,∵(选抛B23 .物,线y2)是到轴对对称称轴图的形距,离点,(即-3,y1>yy1)2,到∴
(4) 在对称轴左侧,都随 x 的增大而减小,在对称 轴右侧,都随 x 的增大而增大.
(5)它们的增长速度相同.
首页
不同点: (1)对称轴不同. (2)顶点不同. (3)最小值不相同.
知识要点
y=a(x 开口 对 顶 最值 -h)²+k 方向 称 点
轴
增减情况
a>0 向上 x=h (h,k) x=h时, x<h时, y随x的增大而减 有最小 小; x>h时,y随x的增大而 值y=k 增大.
首页
首页
ቤተ መጻሕፍቲ ባይዱ
b 2a
例2:(2014·聊城中考)如图是二次函数
y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,
有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=
-9a;④若(-3,y1),(3 ,y2)是抛物线y 上两点,
则y1>y2.其中正确的是 2
()
A.①②③
B.①③④
O2
首页
巩固训练
见《学练优》第33页课堂达标训练第1、2、 3、4、5、6、7、8题
首页
三、课堂小结
y=a(x-h)²+k • 对称轴 直线 x=h • 顶点 (h,k) • 最值 当a>0时 x=h时,y有最小值k
当a<0时 x=h时,y有最大值k
首页
四、课外作业
见《学练优》本课时课后巩固提升
学.科.网
首页
二、合作探究
探究点一 二次函数y=a(x-h)2+k的图象、性质及平
画移 出二次函数y=2x², y=2(x-1)², y=2(x1)²+1的图象,并说一说三个图象的关系?
首页
y
y=2x2
5
4.
3.
2.
1.
y=2(x-1)2+1 y=2(x-1)2
-3. -2 -1 0.
1. 2. 3.
x
-1