三角形任意两边的和大于第三边
四年级下册数学教案-7.2 三角形任意两边之和大于第三边 丨苏教版

四年级下册数学教案-7.2 三角形任意两边之和大于第三边丨苏教版一、教学目标1. 让学生理解并掌握三角形任意两边之和大于第三边的性质。
2. 培养学生运用三角形性质解决实际问题的能力。
3. 培养学生合作交流、动手操作的能力。
二、教学内容1. 三角形的概念2. 三角形任意两边之和大于第三边的性质3. 三角形的应用三、教学重点与难点1. 教学重点:三角形任意两边之和大于第三边的性质。
2. 教学难点:如何运用三角形性质解决实际问题。
四、教学过程1. 导入新课通过复习三角形的定义和分类,引导学生思考:三角形的三条边之间有什么关系?2. 探究新知(1)小组合作,探究三角形边长关系。
学生分组,每组准备不同长度的小棒,尝试组成三角形。
引导学生观察、讨论并总结:三角形任意两边之和大于第三边。
(2)讲解三角形边长关系。
教师通过讲解和举例,让学生理解并掌握三角形任意两边之和大于第三边的性质。
3. 巩固练习(1)判断题:判断下列每组小棒是否能组成三角形,并说明理由。
① 2cm、3cm、5cm ② 3cm、4cm、8cm ③ 5cm、5cm、11cm(2)选择题:一个三角形的三条边分别是5cm、12cm、13cm,那么这个三角形是()。
A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形4. 应用拓展(1)生活中的三角形:让学生举例生活中常见的三角形,并说明三角形任意两边之和大于第三边的性质在生活中的应用。
(2)趣味数学:让学生尝试解决一些关于三角形边长关系的趣味题目。
5. 课堂小结教师引导学生回顾本节课所学内容,总结三角形任意两边之和大于第三边的性质,并强调其在实际生活中的应用。
五、课后作业1. 完成练习册相关习题。
2. 观察生活中常见的三角形,思考三角形任意两边之和大于第三边的性质在实际中的应用。
六、教学反思1. 教师要关注学生在探究过程中的表现,及时给予指导和鼓励。
2. 在讲解三角形边长关系时,要注意举例说明,帮助学生理解。
三角形的三边长度关系

三角形的三边长度关系一、什么是三角形的三边长度关系三角形是几何学中最基本的形状之一,由三条边和三个角组成。
三角形的三边长度之间存在一定的关系,这个关系可通过不等式来描述。
在本文中,我们将探讨三角形三边长度关系的原理和性质,并给出相关的数学证明和例子。
二、三边长度关系的基本定理在三角形中,三条边的长度分别为a、b、c,根据三条边的关系,可以得到以下的三个定理。
1. 任意两边之和大于第三边三角形的基本性质之一是,任意两边之和大于第三边。
即对于三角形ABC来说,有以下的关系式成立:a +b > cb +c > aa + c > b这个定理可以直观地理解为,在一个平面上,无法通过两条较短的线段连接起来构成一条较长的线段。
2. 两边之差小于第三边三角形的第二个定理是,两边之差小于第三边。
即对于三角形ABC来说,有以下的关系式成立:a -b | < cb -c | < aa - c | < b这个定理可以通过反证法来证明。
假设存在一个三角形ABC,使得|a - b| >= c,那么可以推出a >= b + c,与第一个定理矛盾,所以这个不等式成立。
3. 两边之和大于第三边的充要条件三角形的第三个定理是,两边之和大于第三边是构成三角形的充要条件。
即对于三角形ABC来说,有以下的关系式成立:a +b >c 且 b + c > a 且 a + c > b证明:假设存在一个三角形ABC,使得a + b > c 且 b + c > a 且 a + c > b不成立。
不失一般性,我们假设a + b <= c。
由于a和b的长度是正数,所以这个不等式不成立。
因此,两边之和大于第三边是构成三角形的必要条件。
三、三边长度关系的数学证明下面我们给出三边长度关系的数学证明,以深入理解这个定理的原理。
1. 任意两边之和大于第三边的证明假设有一个三角形ABC,其中三边分别为a、b、c。
三角形边的关系――任意两边之与大于第三边教案

三角形边的关系——任意两边之和大于第三边一、教学目标1. 让学生理解三角形边的关系,掌握任意两边之和大于第三边的性质。
2. 培养学生运用数学知识解决实际问题的能力。
3. 激发学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 三角形边的关系2. 任意两边之和大于第三边三、教学重点与难点1. 教学重点:让学生掌握三角形边的关系,能够运用任意两边之和大于第三边的性质解决问题。
2. 教学难点:理解并证明任意两边之和大于第三边的性质。
四、教学方法1. 采用讲授法,讲解三角形边的关系和任意两边之和大于第三边的性质。
2. 运用案例分析法,让学生通过实际案例理解并运用三角形边的关系。
3. 采用互动教学法,引导学生积极参与课堂讨论,提高学生的逻辑思维能力。
五、教学步骤1. 导入新课:通过展示三角形模型,引导学生思考三角形边的关系。
2. 讲解三角形边的关系:讲解三角形的三条边之间的相互关系,引导学生理解三角形的基本性质。
3. 引入任意两边之和大于第三边:让学生通过观察和思考,发现并证明任意两边之和大于第三边的性质。
4. 案例分析:让学生通过分析实际案例,运用三角形边的关系和任意两边之和大于第三边的性质解决问题。
5. 课堂讨论:引导学生积极参与课堂讨论,分享自己的解题心得,提高学生的逻辑思维能力。
六、教学拓展1. 引导学生思考:在什么情况下,任意两边之和大于第三边不成立?2. 讲解不可能构成三角形的情况,如两边之和小于或等于第三边。
3. 让学生通过实际例子,体验在特定情况下,无法构成三角形的现象。
七、课堂练习1. 设计练习题,让学生运用三角形边的关系和任意两边之和大于第三边的性质解决问题。
2. 引导学生独立完成练习题,并及时给予解答和指导。
八、作业布置1. 布置相关作业,让学生巩固三角形边的关系和任意两边之和大于第三边的性质。
2. 要求学生在作业中运用所学的知识,解决实际问题。
九、教学反思2. 针对不足之处,提出改进措施,以提高教学质量。
新人教版四年级下册数学三角形任意两边的和大于第三边教学设计教案

新人教版四年级下册数学三角形任意两边的和大于第三边教学设计教案新人教版四年级下册数学三角形任意两边的和大于第三边教学设计教案三角形任意两边的和大于第三边教学目标:1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。
3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。
教学重点:探究三角形三边的关系。
教学难点:对三角形任意两条边的和大于第三边的判断方法。
教学环节问题情境与教师活动学生活动媒体应用设计意图目标达成导入新课一、复习导入二、创设情境1.出示:课本63页例3情境图。
(1)这是小明同学上学的路线。
请大家仔细观察,他可以怎样走?(2)在这几条路线中哪条最近?为什么?2.大家都认为走中间这条路最近,这是什么原因呢?请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那么走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,根据刚才大家的判断,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
三、实验探究1、剪出下面4组纸条(单位:cm)。
(1)6、7、8。
(2)4、5、9。
(3)3、6、10。
(4)8、11、11。
用每组纸条摆三角形。
请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现(1)(4)能摆成三角形,(2)(3)不能摆成三角形。
2、进一步探究三根小棒在什么情况下摆不成三角形。
请不能摆成三角形的同学说出不能摆成三角形的三根小棒的长度。
接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。
学生汇报。
三角形任意两边之和大于第三边

《三角形任意两边之和大于第三边》教学案例与反思教材分析:“三角形任意两边之和大于第三边”是义务教育课程标准实验教科书小学《数学》(人教板)四年级下册中的教学内容。
本课是在学生认识了三角形是什么的基础上进一步认识三角形三边的特征。
同时,通过这堂课的学习,为学生角的分类提供方法。
教学准备:课件、小棒教学目标:1、通过教师启发,学生经历小组合作、动手实践的过程,体会“三角形任意两边之和大于第三边”。
2、通过小组合作的形式,增强学生的合作交流意识。
3、培养学生逻辑思维能力,以及培养学生“猜测—验证—总结”的学习习惯。
教学重点:理解三角形任意两边之和大于第三边教学难点:两边之和等于第三边时不能构成三角形教学过程:一、创设情境大胆猜测导语:今天,老师给大家介绍一位新朋友—小明。
他正从家里出发赶往学校。
请回答从小明家到学校有几条路线?哪一条最近?(指明回答),【课件出示教材82页例3小明家到学校的路线图】(1)为什么大家都认为中间这条路最短?预设生1:因为第1条和第3条路线拐弯了,绕远路,所以中间这条最近。
生2:我生活中这样走过,中间的这条路线最短。
生3:我在图中通过测量得出中间的这条路线最短。
师总结:同学们结合自己的生活经验谈了自己的感受。
那么,如果我们将小明家、邮局、学校这三个位置看成是三角形的三个顶点A、B、C。
他们之间的距离看作是三角形的什么?(指名回答)(2)刚才我们都说中间的路比起经过邮局的路要远。
也就是说AC边比AB和AC的和要长。
假如A、C位置保持不变,B点可以移动,试想一下,怎样操作使得AB加AC的距离与AC的距离相差变小?预设:B点往AC线段靠近。
(靠近:可以联系上节课学习三角形高的定义。
在这里只要学生能感受靠近的感觉。
)课件演示B点向AC线段近。
(B点还未在AC线段上)现在你会选择哪一线段走到C点?为什么?(指明回答。
再次让学生感受三角形两边之和大于第三边。
)(3)猜想一下,当B点在哪的时候,使得AB和BC的距离等于AC距离呢?不知道同学们有没有注意到从刚开始到现在这个图形最大的变化是什么?生:刚才都是三角形,现在变成了一条直线,不是一个三角形。
三角形任意两边之和大于第三边对吗

三角形三边关系是三角形三条边关系的定则,具体内容是在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
直角三角形的两条直角边的平方和等于斜边的平方。
直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
三角形分类
判定法一:
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
判定法二:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
“三角形任意两边的和大于第三边”教案

“三角形任意两边的和大于第三边”教案“三角形任意两边的和大于第三边”教案教学内容:教科书第82页例3。
教学目标: 1.通过探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。
3.通过积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。
教学重点:知道三角形任意两条边的和大于第三边,并运用到实际生活中解决问题。
教学难点:根据三角形三边的关系解释生活中的现象,解决实际问题。
学具:不同长度的小棒。
教学方法:观察法、探究法、动手操作法、小组讨论法教学过程:一、情境导入小明和我们一样每天都按时上学,请看小明到学校的线路图,小明上学共有几条路线?(1)师:这是小明上学的路线。
请同学们仔细观察,他可以怎样走去上学?学生观察后会指出三条可走的路线:生1:线路①小明家――学校生2:线路②小明家――邮局――学校生3:线路③小明家――商店――学校(2)师:想一想,有一天小明起来晚了,你们猜猜他肯定会走哪条路去学校?为什么?讨论后,学生会一致认为小明上学会经常走“线路①”,因为这条路最近。
设计意图:让学生在具体的、熟悉的生活情境中观察、收集数学信息,激活学生的生活经验,并用生活经验解释生活事例。
观察路①和路②围成的是一个什么图形?路和②路③又是一个什么图形?根据大家的判断,走三角形的两条边的和要比第三边大,是不是所有的三角形的三条边都有这样的关系呢?这节课我们一起来研究一下,三角形任意两边的和___第三边二、实验探究 1.实验l(比赛):用三组纸条摆三角形第1、4小组的纸条:6、7、8(厘米)第2、5小组的纸条是:4、5、9(厘米)第3、6小组的纸条是:3、6、10(厘米)学生动手操作,引导学生观察比较,让第2、3、5、6小组的代表说说原因。
学生提出教师不公平的原因:给我们组的纸条有的不够长,所以让第1、4小组赢了。
小学四年级数学三角形任意两边的和大于第三边

4.5.2 三角形任意两边的和大于第三边师:真的吗?来围给我们看看?(生上台围,展示)(2)师:是不是所有的情况都是小于呢?生:我们发现两边的和等于第三边也不能围成三角形。
2+4等于6,就不能围成三角形。
师:也请你围给我们看看?(生展示)检验其余记录下来的情况。
(师生齐算,板书算式)层次2:(1)列举发现师指着板书:这些能围成三角形的三条边又有怎样的关系呢?生:我们发现两条边的和大于第三条边就能围成三角形。
如2+3>4,这样就能围成三角形。
(师板书)师:谁有不同发现?生:我们认为必须每两条边相加,和大于第三条边才能围成三角形。
比如2+3>4、2+4>3、4+3>2(师板书)哪些组还有不同发现?生:我们认为最短的两边的和大于第三条边就能围成三角形。
如只要2+3>4,就能围成三角形。
师:还有吗?(2)辨析师:各自说说理由吧!生:因为如果只考虑一种情况是不行的,有时两条线段的和大于第三条线段,也不能围成三角形。
师:举个例子呢?引导学生引用“不能”的情况来反证。
生:比如在刚才不能围成的情况中:2+6>3、6+3>2、2 +3<6,出现了两个大于的情况,但只要存在两边和小于(等于)第三边的情况,也不能围成三角形。
所以只考虑一种情况是不行的。
师:那么为什么最短的两条线段的和大于最长的线段就能围成三角形呢?生:因为最短的两条线段的和大于最长的线段,那么另外两组边加起来肯定比这一组长。
意思是如果2+3>4,那么2+4肯定>3,4+3肯定>2。
(师用实物在黑板上演示)小结:因为只要最短两边的和大于了最长的边,那么其他任意两边的和都会大于第三条边的。
所以你们两组的观点实际上是一致的。
这也就是三角形三边关系的一个重要结论:三角形任意两边的和大于第三边。
三、巩固应用,内化提高1.通过实验,我们知道了三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?2.请学生独立完成86页练习十四的第4题:在能拼成三角形的各组小棒下面画“√”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学反思】
备 注
(教师复备)
■巩固练习:
1. 通过实验,我们知道了三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?
2. 请学生独立完成练习十五第6题
【课堂小结】在这节课里,你有什么收获?学会了什么知识?是怎样学习的?【作业布置】练习十五 第7、8题。
【板书设计】三角形任意两边的和大于第三边
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距cm)。
(1)6、7、8。 (2)4、5、9。
(3)3、6、10。(4)8、11、11。
用每组纸条摆三角形。
请大家随意拿三根来摆三角形,看看有什么发现?
学生动手操作,发现(1)(4)能摆成三角形,(2)(3)不能摆成三角形。
2、进一步探究三根小棒在什么情况下摆不成三角形。 请不能摆成三角形的同学说出不能摆成三角形的三根小棒的长度。
接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。 学生汇报。
3、师生归纳总结:三角形任意两边的和大于第三边。
▇汇报归纳:三角形任意两边的和大于第三边。
3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。
【重点、难点】探究三角形三边的关系。
对三角形任意两条边的和大于第三边的判断方法。
【教学准备】课件
【学习流程】
■复习引入:
■合作学习、探究新知
一、创设情境
1.出示:课本第62页例3情境图。
(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?
谋道小学数学学科集体备课教案
谋道小学四年级数学学科 执笔:郑太平审核:
授课人: 授课时间:班级:
课题:三角形任意两边的和大于第三边课型:新授
【学习目标】
1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。
(2)在这几条路线中哪条最近?为什么?
2.大家都认为走中间这条路最近,这是什么原因呢?
请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那么走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,根据刚才大家的判断,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?