2020版高考数学模拟试题精编4(无答案)
2020年高考数学全真模拟试卷(四)(含答案解析)

2020年高考数学全真模拟试卷(四)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1.已知在△ABC 中,AB=,AC=BC=,若O 为△ABC 的外心且满足AO x AB y AC =+u u u r u u u r u u u r,则6x y +=( )A. 1B. 3C. 5D. 62.已知AB u u u v=(2,3),AC u u u v =(3,t ),||BC uuu r =1,则AB BC ⋅u u u r u u u r =A. -3B. -2C. 2D. 33.若函数321y x x mx =+++是R 上的单调函数,则实数m 的取值范围是( ) A. 1,3⎛+∞⎫ ⎪⎝⎭B. 1,3⎛⎤-∞ ⎥⎝⎦C. 1,3⎡⎫+∞⎪⎢⎣⎭D.1,3⎛⎫-∞ ⎪⎝⎭4. “43m =”是“直线420x my m -+-=与圆224x y +=相切”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.设A ,B ,C 是半径为1的圆上三点,若AB =AB AC ⋅u u u r u u u r的最大值为( )A.B.32C. 36.若复数2(1i z ii =-是虚数单位),则z 的共轭复数z =( )A. 1i +B. 1i -C. 1i -+D. 1i --7.已知数列{a n }中,12a =,111n n a a +--3=,若n a 1000≤,则n 的最大取值为( )A. 4B. 5C. 6D. 78.若非零向量a r ,b r 满足||||a b =r r ,向量2a b +r r 与b r 垂直,则a r 与b r 的夹角为( ) A. 150°B. 120°C. 60°D. 30°9.已知2333211,,log 32a b cπ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,则a,b,c的大小关系为( )A. a b c>> B. a c b>>C. c a b>> D. c b a>>10.在△ABC中,5sin13A=,3cos5B=,则cos C=()A.5665B.3365- C.5665或1665- D.1665-11.已知函数()sin3cosf x a x x=-的图像的一条对称轴为直线56xπ=,且12()()4f x f x⋅=-,则12x x+的最小值为( )A.3π- B. 0 C.3πD.23π12.某几何体的三视图如图所示,则它的体积为()A.23B.43C.13D.16第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.设正三棱锥P -ABC 的高为H ,且此棱锥的内切球的半径R =17H ,则22H PA =_______.14.下列四个结论中,错误的序号是___________.①以直角坐标系中x 轴的正半轴为极轴的极坐标系中,曲线C的方程为22sin()2804a πρρθ-++-=,若曲线C 上总存在两,则实数a 的取值范围是()()3,11,3--⋃;②在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越宽,说明模型拟合精度越高;③设随机变量~(2,),~(3,)B p B p ξη,若5(1)9P ξ≥=,则6(2)27P η≥=;④已知n 为满足1232727272727(3)S a C C C C a =++++⋅⋅⋅⋅⋅⋅+≥能被9整除的正数a 的最小值,则1()nx x -的展开式中,系数最大的项为第6项. 15.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( ) A. 22παβ-=B. 22παβ+=C. 2παβ+=D. 2παβ-=16.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+u u u v u u u v u u u v,则BP BC ⋅=u u u v u u u v ______. 三、解答题(本题共7道小题,每小题10分,共70分)17.如图,在三棱柱ABC -A 1B 1C 1中,D 、E 分别是AC 、BB 1的中点.(Ⅰ)证明:BD ∥平面AEC 1;(Ⅱ)若这个三棱柱的底面是等边三角形,侧面都是正方形,求二面角1A EC B --的余弦值.18.在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为522525x y ⎧⎪⎪⎨⎪⎪⎩=,=-(t 为参数). (1)求C 与l 的直角坐标方程;(2)过曲线C 上任意一点P 作与l 垂直的直线,交l 于点A ,求PA 的最大值. 19.在△ABC 中,3sin 2sin ,tan 35A B C ==.(1)求cos2C ;(2)若1AC BC -=,求△ABC 的周长.20.已知函数()y f x =与函数xy a =(0,a >且1)a ≠图象关于y x =对称 (Ⅰ)若当[]0,2x ∈时,函数(3)f ax -恒有意义,求实数a 的取值范围; (Ⅱ)当2a =时,求函数())(2)g x f x f x =⋅最小值. 21.已知函数()2cos 3cos )f x x x x =+. (I )求函数()f x 的最小正周期和对称中心坐标; (II )讨论()f x 在区间[0,]2π上的单调性.22.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,tan ()a b A a b => . (Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围.23..某大型工厂有5台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为12.已知1名工人每月只有维修1台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得10万元的利润,否则将亏损3万元.该工厂每月需支付给每名维修工人1.5万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有2名维修工人,求工厂每月能正常运行的概率;(2)已知该厂现有4名维修工人.(ⅰ)记该厂每月获利为X万元,求X的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?试卷答案1.B【分析】由余弦定理可得,2cos6BAC∠=,再根据数量积的定义可求出AO AB⋅u u u r u u u r,AC AB⋅u uu r u u u r,然后依据AO x AB y AC=+u u u r u u u r u u u r,利用数量积运算性质计算AO AB⋅u u u r u u u r,即可求出。
2020年高考数学(理)全真模拟卷(四)(全国版含答案解析)

故选 B.
【点睛】
本题考查读懂条件程序框图的功能,比较指对数的大小,属于简单题.
1
7.直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的 ,则该椭圆的离
4
心率为 ( )
1
A.
3
1
B.
2
4
2
C.
3
3
D.
4
【答案】B 【解析】
试题分析:不妨设直线 l : x y 1 ,即 bx cy bc 0 椭圆中心到 l 的距离 cb
| bc | 2b b2 c2 4
e c 1 ,故选 B. a2
考点:1、直线与椭圆;2、椭圆的几何性质.
【方法点晴】本题考查直线与椭圆、椭圆的几何性质,涉及方程思想、数形结合思想和转化化归思
想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 不妨设直线
需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置
上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作
答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
读懂程序框图,可知输出 a , b , c 中最大的数,然后对 a, b, c 三个数进行判断,得到答案.
【详解】
由程序框图知,输出 a , b , c 中最大的数,
a
1
0.5 2
,
b
0.9
1 4
,
c
log5
0.3
2020最新高考数学模拟测试含解答(20200404103106)

平面 PAD
∴ BG ∥ 平 面 PAD
∵ EF ∥ BG ∴ EF ∥ 平 面 PAD
(7 分)
(II)∵ BG⊥平面 PDC,EF∥BG ∴EF⊥平面 PDC
2
(B) cos
1
2
1 sin
2
(D) sin
1
2
( C)
(文)已知曲线 C 与 C′ 关于直线 x y 2 0对称,若 C 的方程为
, x2 y2 4x 4y 7 0
则 C′的方程为
()
(A ) x 2 y2 8x 8y 31 0
(B) x 2 y2 8x 8y 31 0
(C) x2 y 2 8x 8 y 31 0
又 CD=2a, DP=a,
CP CD 2 DP2 5a
△ PBC 中, G 为 PC 中点,∴ BG⊥PC
易得 BG 3 a, HG 1 a, BH a
2
2
∴ △ BGH 为直角三角形,且
BG ⊥ GH ∴ GB ⊥平面 PDC
(5 分)
∴GB⊥CD 又 CD⊥HB ∴CD⊥平面 BGH ∴平面 BGH ∥
( 12 )有一位同学写了这样一个不等式: x 2 1 c 1 c ( x R) ,他发现,
x2 c
c
当 c=1 ,2 ,
3 时,不等式对一切实数 x 都成立,由此他作出如下猜测:
①当 c 为所有自然数时,不等式对一切实数 x 都成立;
②只存在有限个自然数 c,对 x R不等式都成立;
③当 c 1时,不等式对一切 x R都成立;
已 知 z1=3+4 i , z2=65 cos i sin ) (
2
5
sin(
2020年全国高考数学(理科)仿真冲刺模拟试卷4(含答案)

.2020年全国高考数学(理科)仿真冲刺模拟试卷4注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[金山中学]已知集合2340A x xx ,1B x x ,则A BR I e ()A .B .0,4C .1,4D .4,2.[湘钢一中]已知i 为虚数单位,若复数1i2i a 是纯虚数,则实数a 等于()A .2B .12C .12D .23.[玉溪一中]若向量a ,b 的夹角为π3,且2a,1b ,则向量2ab 与向量a 的夹角为()A .π3B .π6C .2π3D .5π64.[凯里一中]已知1cos 4,则πsin22()A .18B .18C .78D .785.[宁乡一中]函数1e 2cos 1xf xx 的部分图象可能是()A .B .C .D .6.[天津一中]设1F 、2F 分别为双曲线222210,0xy a b ab的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F ,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A .340xyB .350xy C .430x y D .540x y 7.[天一大联考]已知πsin0,0,2f x A xB A的图象如图所示,则函数f x 的对称中心可以为()A .π,06B .π,16C .π,06D .π,168.[首师附中]秦九韶是我国南宋时期的数学家,他在《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图是实现该算法的程序框图,执行该程序框图,若输入n ,x 的值分别为4,2,则输出v 的值为()A.5 B.12 C.25 D.509.[济宁一模]已知直三棱柱111ABC A B C的底面为直角三角形,且两直角边长分别为1和3,此三棱柱的高为23,则该三棱柱的外接球的体积为()A.8π3B.16π3C.32π3D.64π310.[牡丹江一中]牡丹江一中2019年将实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为北京大学环境科学专业,按照17年北大高考招生选考科目要求物、化必选,为该生安排课表(上午四节、下午四节,上午第四节和下午第一节不算相邻),现该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻,则该生该天课表有()种.A.444 B.1776 C.1440 D.156011.[蚌埠质检]已知F为抛物线24y x的焦点,O为原点,点P是抛物线准线上一动点,若点A在抛物线上,且5AF,则PA PO的最小值为()A.5B.25C.13D.21312.[湘钢一中]已知3ln44xf x xx,224g x x ax,若对10,2x,21,2x,使得12f xg x成立,则a的取值范围是()A.1,8B.258ln2,16C.15,84D.5,4第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[天一大联考]不等式组2024020xx yx y,表示的平面区域的面积为________.14.[东北三校]42x y x y的展开式中23x y的系数是__________.15.[宁乡一中]ABC△中,角A,B,C所对的边分别为a,b,c,已知58a b,2A B,则cosB_________.16.[河南联考]如图,ABC△是等腰直角三角形,斜边2AB,D为直角边BC上一点(不含端点),将ACD△沿直线AD折叠至1AC D△的位置,使得1C在平面ABD外,若1C在平面ABD上的射影H恰好在线段AB上,则AH的取值范围是______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)[顺义统考]已知na是等差数列,n b是等比数列,且22b,516b,112a b,34a b.(1)求nb的通项公式;(2)设n n nc a b,求数列nc的前n项和.18.(12分)[山东实验中学]为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:(1)根据上述统计数据填下面的2×2列联表,并判断是否有95%的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),.给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为,试求随机变量的分布列和数学期望.参考数据:参考公式:22n ad bcKa b c d a c b d,其中n a b c d.19.(12分)[西城一模]如图,在多面体ABCDEF中,梯形ADEF与平行四边形ABCD所在平面互相垂直,AF DE∥,DE AD,AD BE,112AF AD DE,2AB.(1)求证:BF∥平面CDE;(2)求二面角B EF D的余弦值;(3)判断线段BE上是否存在点Q,使得平面CDQ平面BEF?若存在,求出BQBE的值,若不存在,说明理由.20.(12分)[凉州二诊]椭圆长轴右端点为A,上顶点为M,O为椭圆中心,F为椭圆的右焦点,且21MF FAu u u u r u u u r,离心率为22.(1)求椭圆的标准方程;(2)直线l交椭圆于P、Q两点,判断是否存在直线l,使点F恰为PQM△的垂心?若存在,求出直线l的方程;若不存在,请说明理由.21.(12分)[济南模拟]已知函数21ln02af x x x x a.(1)讨论f x的单调性;.(2)若1ea,试判断f x的零点个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[安庆二模]在平面直角坐标系xOy中,直线l的参数方程为252x m ty t(t为参数).以原点O为极点,以x轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆C的方程为25sin,l被圆C截得的弦长为2.(1)求实数m的值;(2)设圆C与直线l交于点A、B,若点P的坐标为,5m,且0m,求PA PB的值.23.(10分)【选修4-5:不等式选讲】[成都实验中学]已知函数22f x x x a,a R.(1)当1a时,解不等式5f x;(2)若存在x满足0023f x x,求a的取值范围...绝密★启用前2020年全国高考数学(理科)仿真冲刺模拟试卷4答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C 【解析】由题意得234014A x xx x x x或,∴14AxxR e ,∴141,4A B x xR I e .故选C .2.【答案】D 【解析】∵1i 2i221i a aa,∴20a,210a ,即2a,故选D .3.【答案】B 【解析】设向量2a b 与a 的夹角为,∵a ,b 的夹角为π3,且2a ,1b ,∴22π1222cos 4221632a a b a a b aab ,2221224244214232aba baa bb,∴263cos22223a ab a ab,又∵0,π,∴π6,故选B .4.【答案】D【解析】由题得22π17sin2cos22cos 121248.故选D .5.【答案】A【解析】∵11f ,∴舍去B ,∵0e 2cos10f ,∴舍去D ,∵2x时,1e2cos 1x f xx ,∴1e2sin 1e 20x fxx ,故选A .6.【答案】C 【解析】依题意212PF F F ,可知三角形21PF F 是一个等腰三角形,2F 在直线1PF 的投影是其中点,由勾股定理知,可知2212444PF cab ,根据双曲定义可知422bca ,整理得2cb a ,代入222cab 整理得2340bab ,求得43b a,∴双曲线渐进线方程为43yx ,即430xy.故选C .7.【答案】 D 【解析】由图可知3122A,3112B,7ππ2π1212T,∴2,由ππ22π122k k Z ,π2,得π3,故π2sin 213f x x.令π2π3xk kZ ,得ππ26k xkZ ,则0k时,π6x.故选D .8.【答案】 C【解析】模拟程序的运行,可得:2x,4n ,1v ,i 3,满足进行循环的条件i 0,5v ,i 2,满足进行循环的条件i 0,12v ,i 1,满足进行循环的条件i 0,25v,i0,不满足进行循环的条件i0,退出循环,输出v 的值为25.故选C .9.【答案】 C【解析】如图所示,将直三棱柱111ABCA B C 补充为长方体,则该长方体的体对角线为22223+3+1=4,设长方体的外接球的半径为R ,则24R,2R ,∴该长方体的外接球的体积3432ππ33V R ,∴该三棱柱的外接球的体积3432ππ33VR,故选C .10.【答案】 B【解析】首先理、化、生、史、地、政六选三,且物、化必选,∴只需在生、史、地、政四选一有14C 4种;.然后对语文、外语排课进行分类,第1类:语文外语有一科在下午第一节,则另一科可以安排在上午四节课任意一节,剩下的四科可全排列,共114244C C A192种;第2类:语文外语都不在下午第一节,则下午第一节可在除语数外三科的另三科中选择13C ,语文和外语可都安排在上午,可以是上午第一、三,上午一、四、上午二、四节3种,也可一科在上午任一节一科在下午第二节14C4,其他三科可以全排列,共123323C 34A A252;∴总共有41922521776种.故选B .11.【答案】 D【解析】不妨A 为第一象限中的点,设,A a b (0b ).由抛物线的方程得1,0F ,则15AF a ,故4a,∴4,4A ,A 关于准线1x的对称点为6,4A ,故52213PAOPPAOPA O,当且仅当A ,P ,O 三点共线时等号成立,故选D .12.【答案】 A 【解析】∵3ln 44x f x x x ,0,2x,∴221311301444xxfx xxx x,(3舍去)从而01x ,0f x ;12x ,0fx ;即1x 时,f x 取最小值12,因此1,2x,使得21242xax成立,724x a x的最小值,∵724x x在1,2上单调递减,∴724x x的最小值为271288,因此18a,故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】 3【解析】依据不等式组画出可行域,如图阴影部分所示,平面区域为ABC △,其中2,0A ,0,2B ,2,3C ,∴1232S AC.故答案为3.14.【答案】16【解析】∵444222xyxyx x yy x y,又42x y展开式的通项为4414C 2kkkkkT xy ,求42xyxy的展开式中23x y 的系数,只需令2k或3k,故所求系数为3432244C 2C 216.故答案为16.15.【答案】45【解析】∵58a b ,∴5sin 8sin A B ,∵2AB ,∴5sin28sin BB ,10sin cos 8sin B B B ,∵sin 0B,∴4cos 5B.16.【答案】1,2【解析】∵在等腰Rt ABC △中,斜边2AB ,D 为直角边BC 上的一点,∴2ACBC,90ACB,将ACD △沿直AD 折叠至1AC D △的位置,使得点1C 在平面ABD 外,且点1C 在平面ABD 上的射影H 在线段AB 上,设AHx ,∴12AC AC ,10,2CD C D,190AC D,CH平面ABC ,∴12AH AC ,当2CD时,B 与D 重合,1AH ,当2CD时,112AHAB ,.∵D 为直角边BC 上的一点,∴0,2CD ,∴AH 的取值范围是1,2.故答案为1,2.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)121,2,3,n n b n L;(2)2312122nnS nn .【解析】(1)设n b 的公比为q .∵22b ,516b ,∴3521682b q b ,∴2q ,211b b q,∴11121,2,3,n n nb b qn L.(2)由(1)知12n n b ,∴11b ,48b ,设等差数列n a 的公差为d ,∵112a b ,34a b ,∴12a ,3128a a d,∴3d,∴31na n ,因此1312n n nnc a b n ,从而数列n c 的前n 项和12231123125311222121222nn nn n n S n nn LL.18.【答案】(1)2×2列联表见解析,无95%的把握;(2)期望为125,分布列见解析.【解析】(1)列联表如下图所示:22100402020202.7783.84160406040K,故没有95%把握认为以50岁为分界点对“新农村建设”政策的支持度有差异.(2)依题意,的所有可能取值为0,1,2,3,4,且观众支持“新农村建设”的概率为6031005,且34,5B ,∴040432160C55625P,131432961C55625P,2224322162C55625P,3134322163C55625P ,44432814C55625P,∴的分布列为∴的数学期望为312455E.19.【答案】(1)见解析;(2)63;(3)17BQ BE.【解析】(1)由底面ABCD 为平行四边形,知AB CD ∥,又∵AB平面CDE ,CD平面CDE ,∴AB ∥平面CDE .同理AF ∥平面CDE ,又∵AB AF A I ,∴平面ABF ∥平面CDE .又∵BF平面ABF ,∴BF ∥平面CDE .(2)连接BD ,∵平面ADEF 平面ABCD ,平面ADEF I 平面ABCDAD ,DEAD ,∴DE平面ABCD .则DEDB ,又∵DEAD ,AD BE ,DE BE E I ,∴AD平面BDE ,则ADBD ,故DA ,DB ,DE 两两垂直,∴以DA ,DB ,DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系,则0,0,0D ,1,0,0A ,0,1,0B ,1,1,0C ,0,0,2E ,1,0,1F ,∴0,1,2BEu u u r,1,0,1EFu u u r,0,1,0n为平面DEF 的一个法向量.设平面BEF 的一个法向量为,,x y z m,由0BEuu u r m ,0EFu u u rm ,得200y z xz ,令1z,得1,2,1m,∴6cos ,3m n m nm n.如图可得二面角B EF D 为锐角,∴二面角B EF D 的余弦值为63.(3)结论:线段BE 上存在点Q ,使得平面CDQ平面BEF ,证明如下:设0,,2BQ BEuu u ru uu r ,0,1,∴0,1,2DQDBBQuu u ru u u r u uu r .设平面CDQ 的法向量为,,a b c u,.又∵1,1,0DCu uu r ,∴0DQuu u ru ,0DCu u u ru ,即120b c ab,令1b,得11,1,2u.若平面CDQ平面BEF ,则0m u,即11202,解得10,17.∴线段BE 上存在点Q ,使得平面CDQ 平面BEF ,且此时17BQBE.20.【答案】(1)2212xy;(2)存在直线l :43yx满足要求.【解析】(1)设椭圆的方程为222210xy a b ab,半焦距为c .则,0A a 、0,M b 、,0F c 、,MF c b u u u u r、,0FA ac u u u r,由21MF FA u u u u r u u u r ,即221acc,又22c a,222abc 解得2221a b,∴椭圆的方程为2212x y.(2)∵F 为MPQ △的垂心,∴MF PQ ,又0,1M ,1,0F ,∴1MF K ,1PQK ,设直线PQ :y xm ,11,P x y ,22,Q x y ,将直线方程代入2212xy,得223+422x mx m1243m x x ,212223mx x ,22412220mm ,33m且1m ,又PF MQ u u u r uu u u r ,111,PF x y u uu r ,22,1MQ x y uu u u r,∴2121210x x x y y y ,即21212120mx x x x mm,由韦达定理得2340m m ,解得43m 或1m (舍去)。
名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

2020年全国高考模拟理科数学卷(4)考试时间120分钟 总分150分第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设U =R ,A ={x |x 2-3x -4>0},B ={x |x 2-4<0},则=B A C U I )(A .{x |x ≤-1,或x ≥2}B .{x |-1≤x <2}C .{x |-1≤x ≤4}D .{x |x ≤4}2.若复数2()(1)m i mi ++是实数,则实数m 的值为( ) A. -1 B.-2 C.1 D.23.A .4163π-B .403C .8163π-D .3234. 已知某程序框图如图所示,则执行该程序后输出的结果是A .1-B .21C .1D .25. 在数列{}n a 中,12341,23,456,78910,a a a a ==+=++=+++则10a = ( ) A. 495 B.500 C.505 D.5106. ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )4A .100,3⎡⎤⎢⎥⎣⎦B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭UC .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭U8. 设()()2,cos sin cos cos 2a R f x x a x x x π⎛⎫∈=-+-⎪⎝⎭满足()(0)3f f π-=,求函数()f x 在11,424ππ⎡⎤⎢⎥⎣⎦上的最大值 ( ) A.1 B.2 C.3 D.9. 在R 上定义的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间[]2,1是减函数,则函数)(x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数10. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种B. 147种C. 144种D. 141种11. 已知椭圆()2222:10x y C a b a b+=>>,12,F F 为其左、右焦点,P 为椭圆C 上除长轴端点外的任一点,G 为12F PF ∆内一点,满足123PG PF PF =+u u u v u u u v u u u u v,12F PF ∆的内心为I ,且有12IG F F λ=u u v u u u u v(其中λ为实数),则椭圆C 的离心率e =( ) A .13 B .12 C .23D12. 在三棱锥A —BCD 中,AB =AC ,DB =DC ,4AB DB +=,AB ⊥BD ,则三棱锥 A —BCD 的外接球的体积的最小值为( )A. 3B. 43πC. 3D. 323π第Ⅱ卷本卷包括必考题和选考题两部分. 第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4 小题,每小题5 分.13. 若向量12,2a =,b a b ==且-,则a b =+ 。
2020年高考理科数学模拟试题含答案及解析5套)

绝密 ★ 启用前2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( )A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππ大致的图象是( )A .B .C .D .此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为( ) A .14B .15C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为( ) A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==体ABCD 的外接球的表面积为( ) A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦=( )A .2017B .2018C .2019D .202012.[]0,1上单调递增,则实数a 的取值范围( ) A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020年全国高考数学(理科)仿真冲刺模拟试卷4(含答案)

18.(12 分)[山东实验中学]为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问 卷随机调查了年龄在 20 周岁至 80 周岁的 100 人,他们年龄频数分布和支持“新农村建设”人数如 下表:
(1)根据上述统计数据填下面的 2×2 列联表,并判断是否有 95%的把握认为以 50 岁为分界点对 “新农村建设”政策的支持度有差异;
极点,以 x 轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆 C 的方程为 2 5sin , l 被圆 C 截得的弦长为 2 . (1)求实数 m 的值;
(2)设圆C 与直线l 交于点 A、 B ,若点 P 的坐标为 m, 5 ,且 m 0 ,求 PA PB 的值.
23.(10 分)【选修4-5:不等式选讲】
21 221
为( )
A. 3x 4y 0
B. 3x 5y 0
C. 4x 3y 0
D. 5x 4y 0
7.[天一大联考]已知
f x
Asinx B A 0, 0,
π 的图象如图所示,则
2
对称中心可以为( )
A. ,0
π
π
π
B.
π
,1
6 6
6 6
C. ,0
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.[金山中学]已知集合 A
x x2 3x 4 0
, B x x 1,则
AI B (
)
R
A.
B. 0,4
C. 1,4
D. 4,
2.[湘钢一中]已知 i 为虚数单位,若复数1 ai2 i是纯虚数,则实数 a 等于( )
2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

绝密★启用前2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题 1.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则MN =( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<答案:A根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 解:∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 点评:本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-答案:B根据共轭复数定义及复数模的求法,代入化简即可求解. 解:z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 点评:本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案:A根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 解:∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 点评:本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=,则实数λ的值是( ) A .-1 B .7C .1D .1或7答案:C根据平面向量数量积的坐标运算,化简即可求得λ的值. 解:由平面向量数量积的坐标运算,代入化简可得cos 105AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 点评:本题考查了平面向量数量积的坐标运算,属于基础题.5.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论: (1)焦距长约为300公里; (2)长轴长约为3988公里; (3)两焦点坐标约为()150,0±; (4)离心率约为75994. 其中正确结论的个数为()A .1B .2C .3D .4答案:B根据椭圆形轨道,设该椭圆长轴长为a ,半焦距为c ,先求得月球的半径r ,再根据近月点与月球表面距离为100公里,有100a c r -=+,远月点与月球表面距离为400公里,有400a c r +=+,然后两式联立求解. 解:设该椭圆长轴长为a ,半焦距为c ,依题意可得月球半径约为1347617382⨯=, 所以1001738183840017382138a c a c -=+=⎧⎨+=+=⎩,解得1988150a c =⎧⎨=⎩所以离心率150751988994c e a ===,可知结论(1)(4)正确,(2)错误; 因为没有给坐标系,焦点坐标不确定,所以(3)错误. 故选:B 点评:本题主要考查椭圆的几何性质,还考查了阅读抽象应用的能力,属于基础题. 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,且321c b -=,则cos C ()A .12-B .3C .12D 6 答案:A根据1a =,321c b -=,由正弦定理边化为角得到3sin 2sin sin C B A -=,由A B C π++=,得到()3sin 2sin sin C A C A -+=,再根据6A π=求解.解:由321c b -=,得32c b a -=,即3sin 2sin sin C B A -=, 所以()3sin 2sin sin C A C A -+=, 而6A π=,所以3sin 2sin sin 66C C ππ⎛⎫-+= ⎪⎝⎭, 即3113sin 2sin cos 222C C C ⎛⎫-+= ⎪ ⎪⎝⎭, 解得1cos 2C =-. 故选:A 点评:本题主要考查正弦定理和三角恒等变换,还考查了运算求解的能力,属于中档题. 7.函数()2cos2cos221xxf x x =+-的图象大致是( ) A . B .C .D .答案:C根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项. 解:∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--,()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故选:C. 点评:本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.8.设x ,y 满足约束条件2010x y x y x m -+≥⎧⎪+-≥⎨⎪≤⎩,若2z x y =+的最大值大于17,则实数m 的取值范围为() A .()4,+∞ B .13,2⎛⎫+∞⎪⎝⎭C .()6,+∞D .()5,+∞答案:D先作出不等式组表示的平面区域,然后平移直线l :20x y +=,当直线l 在y 轴上的截距最大时,z 取得最大值求解. 解:作出不等式组表示的平面区域如图所示,作出直线l :20x y +=,并平移,当直线l 经过点(),2m m +时,直线在y 轴上的截距最大,z 取得最大值, 因为2z x y =+的最大值大于17, 所以2217m m ++>,解得5m >. 故选:D 点评:本题主要考查线性规划求最值,还考查了数形结合的方法的能力,属于基础题. 9.七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为A .112B .18C .14D .316答案:D这是一个几何概型模型,设包含7块板的正方形边长为4,求得正方形的面积,即为雄鸡的面积,然后求得雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和,代入公式求解. 解:设包含7块板的正方形边长为4,正方形的面积为4416⨯=, 则雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和为1212132⨯⨯+⨯=, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡几头或鸡尾(阴影部分)的概率为316p. 故选:D 点评:本题主要考查几何概型的概率,还考查了阅读抽象应用的能力,属于基础题.10.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为()A .2π B .3π C .4π D .6π 答案:C设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.设AE BF a ==,则()()23119333288B EBFaa V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 9322222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 点评:本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是() A .①②③ B .①③④C .①④D .③④答案:B 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证. 解: ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即=1a =,①正确; ∴()sin 2sin 3π⎛⎫==- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈, 当0k =时,12x x +取最小值23π,所以①③④正确,②错误.故选:B 点评:本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.12.如图,在ABC 中,AB 4=,点E 为AB 的中点,点D 为线段AB 垂直平分线上的一点,且4DE =,固定边AB ,在平面ABD 内移动顶点C ,使得ABC 的内切圆始终与AB 切于线段BE 的中点,且C 、D 在直线AB 的同侧,在移动过程中,当CA CD +取得最小值时,ABC 的面积为()A .12524-B .6512-C .12518-D .658-答案:A以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,利用圆的切线长定理,得到C 点的轨迹是以A 、B 为焦点的双曲线在第一象限部分,然后利用直线段最短,得到点C 的位置,再求三角形的面积. 解: 如图,以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,则()2,0A -,()2,0B ,()0,4D ,设ABC 的内切圆分别切BC 、AC 、AB 于F ,G ,H 点,∵3124CA CB AG BF AH HB -=-=-=-=<,所以C 点的轨迹是以A 、B 为焦点的双曲线的第一象限部分,且1a =,2c =,2223b c a =-=,∴C 的轨迹方程为()220,03y x x y ->>.∵2CA CB -=,∴2CA CB =+,∴2CA CD CB CD +=++, 则当点C 为线段BD 与双曲线在第一象限的交点时,CA CD +最小, 如图所示:线段BD 的方程为()4202y x x =-≤≤,将其代入22330x y --=,得216190x x -+=,解得835x =+835x =-,∴426512y x =-=, ∴()835,6512C -. ∴ABC 的面积为()146512125242⨯⨯=. 故选:A 点评:本题主要考查双曲线的定义,圆的切线长定理以及三角形的面积,还考查了数形结合的思想和运算求解的能力,属于中档题. 二、填空题13.若函数()()()()()2log 2242x x f x f x x ⎧->⎪=⎨+≤⎪⎩,则()()5f f -=__________. 答案:1利用分段函数,先求()5f -,再求()()5f f -的值.解: ∵()()()5130f f f -=-==,∴()()()()5041ff f f -===.故答案为:1 点评:本题主要考查分段函数求函数值问题,还考查了运算求解的能力,属于基础题. 14.若()()613x a x -+的展开式中3x 的系数为45-,则实数a =__________. 答案:13利用通项公式得到()()613x a x -+的展开式中含3x 的项为:()()23236633x C x a C x ⋅-⋅,再根据系数为45-,建立方程求解.解:因为()()613x a x -+的展开式中含3x 的项为:()()()232336633135540x C x a C x a x ⋅-⋅=-,∴13554045a -=-,解得13a =. 故答案为:13点评:本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 15.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.答案:323π 根据题意,画出空间几何体,设BE EC BC ,,的中点分别为M N O ,,,并连接AM CM AO DN NO DO OE ,,,,,,,利用面面垂直的性质及所给线段关系,可知几何体ABCDE 的外接球的球心为O ,即可求得其外接球的体积. 解:由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图所示,设BE EC BC ,,的中点分别为M N O ,,, 连接AM CM AO DN NO DO OE ,,,,,,, 则OM BE ⊥,ON CE ⊥.因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE , 所以OM ⊥平面ABE ,ON ⊥平面DEC , 易得2OA OB OC OD OE =====,则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==. 故答案为:323π. 点评:本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16.若函数()2ln 2f x x x ax x =--有两个不同的极值点,则实数a 的取值范围为__________. 答案:10,4e ⎛⎫ ⎪⎝⎭由函数()2ln 2f x x x ax x =--有两个不同的极值点,则()ln 40f x x ax '=-=有两个不同的根,转化为方程ln 4x a x =有两个不同解,即函数()g x ln 4xx=的图象与直线y a =有两个公共点求解.解:由()ln 40f x x ax '=-=,得ln 4xa x=, 记()ln 4x g x x =,则()21ln 4xg x x-'=, 当()0,x e ∈时,()0g x '>,()g x 单调递增,当(),x e ∈+∞时,()0g x '<,()g x 单调递减. 又∵()14g e e=,当0x →时,()g x →-∞,当x →+∞时,()0g x →. 因为函数()2ln 2f x x x ax x =--有两个不同的极值点, 所以方程ln 4xa x=有两个不同的解, 即函数()g x 的图象与直线y a =有两个公共点, 故实数a 的取值范围为10,4e ⎛⎫ ⎪⎝⎭. 故答案为:10,4e ⎛⎫ ⎪⎝⎭点评:本题主要考查导数与函数的极值点以及导数与函数的零点问题,还考查了数形结合的思想和运算求解的能力,属于中档题. 三、解答题17.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,//DF GE ,2222AB AG DG DF ====.(1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小. 答案:(1)见解析;(2)23π(1)根据面面垂直性质及线面垂直性质,可证明BE FG ⊥;由所给线段关系,结合勾股定理逆定理,可证明FE FG ⊥,进而由线面垂直的判定定理证明FG ⊥平面BEF .(2)建立空间直角坐标系,写出各个点的坐标,并求得平面AFB 和平面EFB 的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角A BF E --的大小. 解:(1)证明:∵平面DGEF ⊥平面ABEG ,且BE GE ⊥, ∴BE ⊥平面DGEF , ∴BE FG ⊥,由题意可得2FG FE ==, ∴222FG FE GE +=,∵FE FG ⊥,且FE BE E ⋂=, ∴FG ⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--,()1,1,1FB =-,()0,1,1FE =-.设平面AFB 的法向量是()111,,n x y z =,则11111111100000x y z x z FA n x y z y FB n --==⎧⎧⎧⋅=⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎩,令11x =,()1,0,1n =,由(1)可知平面EFB 的法向量是()0,1,1m GF ==,∴1cos<,222n m n m n m⋅>===⨯⋅,由图可知,二面角A BF E --为钝二面角,所以二面角A BF E --的大小为23π. 点评:本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18.在等差数列{}n a 中,12a =,35730a a a ++=.(1)求数列{}n a 的通项公式;(2)记23n n a an b =+,当*n N ∈时,1n n b b λ+>,求实数λ的取值范围.答案:(1)2n a n =(2)实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭(1)根据12a =,35730a a a ++=,利用“1,a d ”法求解.(2)由(1)得到2349n naa n n nb =+=+,将()114949n n n n λ+++>+对*n N ∀∈恒成立,转化为5419nλ<⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立求解. 解:(1)在等差数列{}n a 中,3575330a a a a ++==,∴510a =,所以{}n a 的公差51251a a d -==-, ∴()112n a a n d n =+-=. (2)∵2349n naa n n nb =+=+,∴()114949n n n n λ+++>+对*n N ∀∈恒成立,即4499595444949419n n n n n n n n λ⨯+⨯⨯<=+=+++⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立, 又∵55974441341199n+≥+=⎛⎫++ ⎪⎝⎭,∴9713λ<,即实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭.点评:本题主要考查等差数列的基本运算以及有关数列的不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()02F ,的距离小1.(1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222221C x y -++=:上一动点,过点P 作曲线1C 的两条切线,切点分别为A B 、,求直线AB 斜率的取值范围.答案:(1)28x y =;(2)13,44⎡⎤⎢⎥⎣⎦(1)设(),M x y ,根据题意可得点M 的轨迹方程满足的等式,化简即可求得动点M 的轨迹1C 的方程;(2)设出切线PA PB 、的斜率分别为12k k ,,切点()12,A x x ,()22,B x y ,点()P m n ,,则可得过点P 的拋物线的切线方程为()y k x m n =-+,联立抛物线方程并化简,由相切时0∆=可得两条切线斜率关系12,k k +12k k ;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出12,y y ,可求得4AB mk =,结合点()P m n ,满足()()22221x y -++=的方程可得m 的取值范围,即可求得AB k 的范围.解:(1)设点(),M x y ,∵点M 到直线1y =-的距离等于1y +, ∴11y +=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA PB 、的斜率都存在,分别设为12k k ,,切点()12,A x x ,()22,B x y ,设点()P m n ,,过点P 的拋物线的切线方程为()y k x m n =-+,联立()28y k x m n x y⎧=-+⎨=⎩,化简可得28880x kx km n -+-=,∴26432320k km n ∆=-+=,即220k km n -+=, ∴122m k k +=,122n k k =. 由28x y =,求得导函数4xy '=, ∴114x k =,2211128x y k ==,2222228x y k ==,∴222121212121224424ABy y k k k k m k x x k k --+====--, 因为点()P m n ,满足()()22221x y -++=, 由圆的性质可得13m ≤≤,∴13444AB m k ≤=≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 点评:本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.20.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案()a 规定每日底薪100元,外卖业务每完成一单提成2元;方案()b 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)[)[)[)[)[)[]2535354545555565657575858595,,,,,,,,,,,,,七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案()a 的概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 答案:(1)0.4;(2)1127;(3)应选择方案()a ,理由见解析 (1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案()a 的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案()a 的概率;(3)设骑手每日完成外卖业务量为X 件,分别表示出方案()a 的日工资和方案()b 的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择. 解:(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为0.2,0.15,0.05,∵020*******++=...., ∴()P A 估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C ,为“甲、乙、丙、丁四名骑手中恰有()01234ii =,,,,人选择方案()a ”, 则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()11002,*Y X X N =+∈,方案()b 的日工资()215054*15055454*X X N Y X X X N ≤∈⎧=⎨+->∈⎩,,,,,所以随机变量1Y 的分布列为()1160005180005200022200324002260015280005224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.......;同理,随机变量2Y 的分布列为()21500318003230022800153300052035E Y =⨯+⨯+⨯+⨯+⨯=.......∵()()21EY E Y >,∴建议骑手应选择方案()a . 点评:本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.21.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-.(1)若函数()f x 在()0+∞,上单调递减,且函数()g x 在02,上单调递增,求实数m 的值;(2)求证:()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭(*n N ∈,且2n ≥).答案:(1)1;(2)见解析(1)分别求得()f x 与()g x 的导函数,由导函数与单调性关系即可求得m 的值; (2)由(1)可知当0x >时,()ln1x x +<,当02x π<<时,sin x x <,因而()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,,,构造()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,由对数运算及不等式放缩可证明()()1111ln 1sin11+sin 1+sin 1sin 2212231n n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+=-<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,从而不等式可证明. 解:(1)∵函数()f x 在()0+∞,上单调递减, ∴()101mf x x'=-≤+,即1m x ≤+在()0+∞,上恒成立, ∴1m ,又∵函数()g x 在02,上单调递增,∴()cos 0g x m x '=-≥,即cos m x ≥在02,上恒成立,m 1≥,∴综上可知,1m =.(2)证明:由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0+∞,上为减函数,()sin g x x x =-在02,上为增函数,而()()00,00f g ==,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <. ∴()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,, ∴()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()111ln 1sin1ln 1+sin ln 1+sin ln 1sin 12231n n ⎛⎫⎛⎫⎛⎫=+++⋯++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭ ()111sin1sinsin sin 12231n n <+++⋯+⨯⨯-⨯()11111111111122312231n n n n ⎛⎫⎛⎫⎛⎫<+++⋯+=+-+-+⋯+- ⎪ ⎪ ⎪⨯⨯-⨯-⎝⎭⎝⎭⎝⎭122n=-< 即()()111ln 1sin11+sin 1+sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦, ∴()()()2*1111sin11+sin 1+sin 1sin ,212231e n N n n n ⎛⎫⎛⎫⎛⎫+⋯+<∈≥⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭,. 点评:本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题. 22.在直角坐标系xOy 中,直线l 的方程为0x y a -+=,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线6πθ=与l 的交点为M ,与曲线C 的交点为A ,B ,且4OA OB OM +=,求实数a 的值.答案:(1)l :cos sin 0a ρθρθ-+=,C :24cos 4sin 40ρρθρθ--+=(2)12a =- (1)先消去参数得到C 的普通方程,然后利用cos x ρθ=,sin y ρθ=分别代入,得到直线和曲线C 的极坐标方程.(2)在极坐标系中,设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭,将π6θ=代入24cos 4sin 40ρρθρθ--+=,然后利用韦达定理求解.解:(1)将cos x ρθ=,sin y ρθ=代入方程0x y a -+=中,得到直线l 的极坐标方程为cos sin 0a ρθρθ-+=;曲线C 的普通方程为()()22224x y -+-=,即224440x y x y +--+=, 所以曲线C 的极坐标方程为24cos 4sin 40ρρθρθ--+=.(2)在极坐标系中,可设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭, 将π6θ=代入24cos 4sin 40ρρθρθ--+=,得()2240ρρ-+=,∴232ρρ+=,∵4OA OB OM +=,∴1ρ=即1π,26M ⎛⎫ ⎪ ⎪⎝⎭,将1π,26M ⎛⎫ ⎪ ⎪⎝⎭代入cos sin 0a ρθρθ-+=,得()111sin cos 222a ρθθ=-=⨯=-. 点评:本题主要考查参数方程,普通法方程极坐标方程间的转化以及直线与曲线的位置关系,还考查了运算求解的能力,属于中档题.23.已知不等式112x x ++-≤的解集为{}x a x b ≤≤.(1)求实数a 、b 的值;(2)设0m >,0n >,且满足122a b m n-=,求证:1212m n ++-≥. 答案:(1)1a =-,1b =(2)见解析(1)利用绝对值的几何意义,去绝对值求解.(2)由(1)得到1122m n+=,利用三角不等式转化为1212m n m n ++-≥+,再利用基本不等式求解.解:(1)原不等式等价于①122x x <-⎧⎨-≤⎩,∴x ∈∅; ②1122x -≤≤⎧⎨≤⎩,∴11x -≤≤; ③122x x >⎧⎨≤⎩,∴x ∈∅. 所以原不等式的解集为{}11x x -≤≤,∴1a =-,1b =.(2)∵122a b m n -=,∴1122m n+=, ∴()()1211212m n m n m n ++-≥++-=+()111122222222n m m n m n m n ⎛⎫⎛⎫=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当22n m m n =,即1m =,12n =时取等号, ∴1212m n ++-≥.点评:本题主要考查绝对值不等式的解法以及三角不等式和基本不等式的应用,还考查了运算求解的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省数学高考模拟试题精编四【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答. 题号 一 二三 总分11 12 13 14 15 16 17 18 19 20 21 得分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z =1+i2-i (其中是虚数单位),则复数z 在坐标平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(理)已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是真命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )>0B .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 D.p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0(文)已知命题p :∃x 0∈R ,x 20+2x 0+2≤0,则綈p 为( ) A .∃x 0∈R ,x 20+2x 0+2>0 B .∃x 0∈R ,x 20+2x 0+2<0 C .∀x ∈R ,x 2+2x +2≤0 D.∀x ∈R ,x 2+2x +2>0 3.(理)如图所示,要使电路接通即灯亮,开关不同的闭合方式有( ) A .11种 B .20种 C .21种 D .12种(文)已知向量a 、b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=( ) A .3 2 B .2 2 C. 2 D .14.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )6.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( ) A.14 B.13 C.12 D.327.(理)下列四个判断:①某校高三(1)班的人数和高三(2)班的人数分别是m 和n ,某次测试数学平均分分别是a ,b ,则这两个班的数学平均分为a +b2;②从总体中抽取的样本(1,2.5),(2,3.1),(3,3.6),(4,3.9),(5,4.4),则回归直线y ∧=b ∧x +a ∧必过点(3,3.6);③已知ξ服从正态分布N (1,22),且p (-1≤ξ≤1)=0.3,则p (ξ>3)=0.2 其中正确的个数有( ) A .0个 B .1个 C .2个 D .3个(文)某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ∧=0.66x +1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( ) A .83% B .72% C .67% D .66%8.阅读程序框图(如图),如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( )A.{x∈R|0≤x≤log23}B.{x∈R|-2≤x≤2}C.{x∈R|0≤x≤log23或x=2}D.{x∈R|-2≤x≤log23或x=2}9.(理)设方程10x=|lg(-x)|的两个根分别为x1、x2,则( )A.x1x2<0 B.x1x2=1C.x1x2>1 D.0<x1x2<1(文)定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( )A.f(-1)<f(3) B.f(0)>f(3)C.f(-1)=f(3) D.f(0)=f(3)10.等差数列{a n}的前n项和为S n,公差为d,已知(a8+1)3+2013(a8+1)=1,(a2006+1)3+2013(a2006+1)=-1,则下列结论正确的是( )A.d<0,S2013=2013 B.d>0,S2013=2013C.d<0,S2013=-2013 D.d>0,S2013=-2013答题栏题号12345678910答案二、填空题(本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上) 11.过抛物线y2=2px(p>0)的焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△AOB的形状为________.12.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为________.13.(理)如图,阴影部分由曲线y=x与y轴及直线y=2围成,则阴影部分的面积S=________. (文)曲线y=x3-2x+3在x=1处的切线方程为________.14.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm3.15.观察下面两个推理过程及结论:(1)若锐角A ,B ,C 满足A +B +C =π,以角A ,B ,C 分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,(2)若锐角A ,B ,C 满足A +B +C =π,则⎝ ⎛⎭⎪⎫π2-A 2+⎝ ⎛⎭⎪⎫π2-B 2+⎝ ⎛⎭⎪⎫π2-C 2=π,以角π2-A 2,π2-B 2,π2-C2分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式: cos 2A2=cos 2B2+cos 2C 2-2cos B 2cos C 2sin A2.则:若锐角A ,B ,C 满足A +B +C =π,类比上面推理方法,可以得到的一个等式是________. 三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程及演算步骤) 16.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3. (1)若cos(α+C )=-35,0<α<2π3,求cos α;(2)若sin C +sin(A -B )=3sin 2B ,求△ABC 的面积S . 17.(理)(本小题满分12分)已知函数g (x )=2a ln(x +1)+x 2-2x (1)当a ≠0时,讨论函数g (x )的单调性;(2)若函数f (x )的图象上存在不同两点A ,B ,设线段AB 的中点为P (x 0,y 0),使得f (x )在点Q (x 0,f (x 0))处的切线与直线AB 平行或重合,则说函数f (x )是“中值平衡函数”,切线叫做函数f (x )的“中值平衡切线”.试判断函数g (x )是否是“中值平衡函数”?若是,判断函数g (x )的“中值平衡切线”的条数;若不是,说明理由.(文)(本小题满分12分)已知函数f (x )=ax 3+bx 2+cx +d (a >0)的零点的集合为{0,1},且x =13是f (x )的一个极值点. (1)求ba的值;(2)试讨论过点P (m,0)且与曲线y =f (x )相切的直线的条数.18.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点D .求证:直线l 过定点,并求出该定点的坐标. 19.(理)(本小题满分13分)如图已知:菱形ABEF 所在平面与直角梯形ABCD 所在平面互相垂直,AB =2AD =2CD =4,∠ABE =60°,∠BAD =∠CDA =90°,点H ,G 分别是线段EF ,BC 的中点. (1)求证:平面AHC ⊥平面BCE ;(2)点M 在直线EF 上,且GM ∥平面AFD ,求平面ACH 与平面ACM 所成角的余弦值. (文)(本小题满分13分)如图,已知三棱柱ABC -A 1B 1C 1.(1)若M 、N 分别是AB 、A 1C 的中点,求证:MN ∥平面BCC 1B 1;(2)若三棱柱ABC -A 1B 1C 1的各棱长均为2,∠B 1BA =∠B 1BC =60°,P 为线段B 1B 上的动点,当PA +PC 最小时,求证:B 1B ⊥平面APC .20.(本小题满分13分)已知数列{a n }的前n 项和S n 和通项a n 满足S n =12(1-a n ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =na n ,求证:b 1+b 2+…+b n <34.21.(理)(本小题满分13分)空气质量指数PM2.5(单位:μg/m 3)表示每立方米空气中入肺颗粒物的含量,这个值越高,就代表空气污染越严重(如下表): PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250 空气质量级别 一级 二级 三级 四级 五级 六级 空气质量类别 优良轻度污染中度污染重度污染严重污染某市某年8月8日~9月6日(30天)对空气质量指数PM2.5进行监测,获得数据后得到如图所示的条形图:(1)以该数据为依据,求该城市一个月内空气质量类别为良的概率;(2)在上述30个监测数据中任取2个,设X为其中空气质量类别为优的天数,求X的分布列和数学期望.(文)(本小题满分13分)某车间将10名技术工人平均分为甲、乙两个小组加工某种零件.已知甲组每名技术工人加工的零件合格的分别为4个、5个、7个、9个、10个,乙组每名技术工人加工的零件合格的分别为5个、6个、7个、8个、9个.(1)分别求出甲、乙两组技术工人加工的合格零件的平均数及方差,并由此比较这两组技术工人加工这种零件的技术水平;(2)假设质检部门从甲、乙两组技术工人中分别随机抽取1人,对他们加工的零件进行检测,若抽到的2人加工的合格零件之和超过12个,则认为该车间加工的零件质量合格,求该车间加工的零件质量合格的概率.。