六年级数学下册《变量之间的关系》复习练习
2022年必考点解析鲁教版(五四制)六年级数学下册第九章变量之间的关系达标测试试题(含解析)

六年级数学下册第九章变量之间的关系达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆周长公式2C r π=,下列说法正确的是( ).A .C r 、、π是变量,2是常量B .C 是变量, r π、 是常量 C .r 是变量, C π、 是常量D .C r 、是变量 , 2π、是常量 2、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②3、某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则( )A .定价是常量B .销量是自变量C .定价是自变量D .定价是因变量 4、在圆的面积公式2S R π=中,常量与变量分别是( )A .π是常量,,S R 是变量B .2是常量,,,S R π是变量C .2是常量,R 是变量D .2是常量,,S R 是变量5、一个容器中装有一定质量的糖,向容器中加入水,随着水量的增加,糖水的浓度将降低,这个问题中自变量和因变量分别是( )A .糖,糖水的浓度B .水,糖水C .糖,糖水D .水,糖水的浓度6、在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .速度v 是变量B .时间t 是变量C .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量7、用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .y =n (100m +0.6) B .y =n (100m )+0.6 C .y =n (100m +0.6) D .y =n (100m )+0.6 8、已知,A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B ,乙骑摩托车以40千米/时的速度由起点B 前往终点A .两人同时出发,各自到达终点后停止.设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t 之间函数关系的是( )A .B .C .D .9、圆的面积计算公式为2S R π=(R 为圆的半径),变量是( ).A .πB .,R SC .,R πD .,,R S π10、佳佳花3000元买台空调,耗电0.7度/小时,电费1.5元/度.持续开x 小时后,产生电费y (元)与时间(小时)之间的函数关系式是( )A . 1.05y x =B .0.7y x =C . 1.5y x =D .3000 1.5y x =+第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、圆的半径为r ,圆的面积S 与半径r 之间有如下关系:2S r π=.在这关系中,常量是______.2、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.3、若球体体积为V ,半径为R ,则343V R π=.其中变量是_______、_______,常量是________. 4、一名老师带领x 名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y 元,则y 与x 的关系式为______.5、矩形的周长为50,宽是x ,长是y ,则y =____.6、函数y =中自变量x 的取值范围是__________.7、随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.8、如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.三、解答题(3小题,每小题10分,共计30分)1、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么?(3)当t 每增加1秒,v 的变化情况相同吗?在哪个时间段内,v 增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.2、某公空车每天的支出费用为600元,每天的乘车人数x (人)与每天利润(利润=票款收入-支出费用)y (元)的变化关系,如下表所所示(每位委文的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)观察表中数据可知,当乘客量达到________人以上时,该公交车才不会亏损;(2)当一天乘客人数为500人时,利润是多少?(3)请写出公交车每天利润y (元)与每天乘车人数x (人)的关系式.3、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t .现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/min .李明在手机话费卡中存入30元,记此后他的手机通话时间为min t ,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,周长为C ,圆周率(圆周长与直径之比)为π.(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.-参考答案-一、单选题1、D【解析】【分析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由2C r π=,得C、r是变量,2π是常量,故D正确故选:D【点睛】此题考查常量与变量,难度不大2、A【解析】【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.3、C【解析】【分析】根据自变量、因变量、常量的定义即可得.【详解】由表格可知,定价与销量都是变量,其中,定价是自变量,销量是因变量,故选:C .【点睛】本题考查了常量与变量、自变量与因变量,掌握理解相关概念是解题关键.4、A【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】解:∵在圆的面积公式2S R π=中,S 与R 是改变的,π是不变的;∴π是常量,,S R 是变量.故选A .【点睛】本题考查了常量与变量的知识,属于基础题,正确理解定义是解题关键.5、D【解析】【分析】根据对浓度的认识解答本题,糖的质量不变,加的水越多,糖水的浓度度越小,糖水的浓度随着加入水的变化而变化,据此解答即可.【详解】解:随着水的加入,糖水浓度变小,自变量是加入的水量,因变量是糖水的浓度.故选:D .【点睛】此题考查的是常量与变量的概念,掌握其概念是解决此题的关键.6、C【解析】【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则速度v 和时间t 都是变量,路程s 是常量故选:C .【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.7、A【解析】【分析】 由题意可得每本书的价格为100m 元,再根据每本书需另加邮寄费6角即可得出答案; 【详解】解:因为用m 元钱在网上书店恰好可购买100本书, 所以每本书的价格为100m 元, 又因为每本书需另加邮寄费6角,所以购买n 本书共需费用y =n (100m +0.6)元; 故选:A .本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.8、B【解析】【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【详解】解:根据题意,两人同时相向出发,甲到达B地时间为:12020=6小时,乙到达A地:12040=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:12060(02)60120(23)20(36)s t ts t ts t t=-⎧⎪=-⎨⎪=⎩故选B.点评:此题主要考查了函数图象,根据题意得出关键转折点是解题关键.9、B【解析】【分析】变量就是在一个变化过程中发生变化的量,数值不发生变化的量是常量,根据定义判断即可.解:圆的面积计算公式为2S R π=(R 为圆的半径),变量是:R ,S . 故选:B .【点睛】本题考查了常量与变量的定义,属于基础定义题型,正确理解概念是关键.10、A【解析】【分析】根据耗电0.7度/小时,电费1.5元/度,列出函数关系式即可.【详解】解:由题意得: 1.50.7 1.05y x x =⨯=,故选A .【点睛】本题主要考查了列函数关系式,解题的关键在于能够准确理解题意.二、填空题1、π【解析】【分析】利用常量定义可得答案.【详解】解:公式S =πR 2中常量是π,故答案为:π.【点睛】本题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.2、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222⨯+=枚棋子,第n个“上”字需用42n+枚棋子.故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.π3、R V43【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为343V R π=, ∴R 是自变量,V 是因变量,43π是常量. 故答案为:R ,V ,43π. 【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.4、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.5、y=-x+25【解析】【分析】根据矩形的对边相等,周长表示为2x+2y ,由已知条件建立等量关系,再变形即可.【详解】解:∵矩形的周长为50,∴2x+2y =50,整理得:y=-x+25.【点睛】本题关键是根据长、宽与周长的关系,列出等式.6、x≥2【解析】【详解】根据二次根式的性质,被开方数大于等于0,可得x-2≥0,解得x≥2.7、20t v= 【解析】【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间t 即可得出答案.【详解】 解:∵20602060km ⨯= ∴小华爸爸下班时路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =. 【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.8、()5016S x x =<<【解析】【分析】 根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x , ∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<.故答案为:()5016S x x =<<.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.三、解答题1、(1)时间与速度;时间;速度;(2)0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)不相同;第9秒时;(4)1秒.【解析】【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大;(4)由题意得:120千米/小时=12010003600⨯(米/秒), 由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>,所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.2、(1)300;(2)400;(3)y =2x -600【解析】【分析】(1)根据表格中的数据,当y 大于0时,相应的x 的取值即可;(2)根据表格中的变量之间的变化关系,可得“每增加50人,利润将增加100元”,可求出答案;(3)“每增加50人,利润将增加100元”也就是“每增加1人,利润将增加2元”,根据乘坐人数可得利润即可.【详解】解:(1)当y =0时,x =300,当x >300时,y >0,故答案为:300;(2)200+100×(50040050-)=400(元), 答:一天乘客人数为500人时,利润是400元;(3)由表格中的数据变化可知,当乘坐人数为300人时,利润为0元,每增加50人,利润就增加100元,每减少50人,利润就减少100元,所以利润y =0+30050x -×100=2x -600, 即:y =2x -600,答:公交车每天利润y (元)与每天乘车人数x (人)的关系式为y =2x -600.【点睛】本题考查函数关系式,理解表格中“每天的利润y 元”与“乘坐的人数x ”之间的变化关系是正确解答的关键.3、(1)变量x ,y ;常量4.(2)变量t ,w ;常量0.2,30.(3)变量r ,C ;常量π.(4)变量x ,y ;常量10.【解析】【分析】根据常量与变量的定义求解即可.【详解】解:(1)由题意可知,变量为x ,y ,常量为4;(2)由题意可知,变量为t ,w ,常量为0.2,30;(3)由题意可知,变量为r ,C ,常量为π;(4)由题意可知,变量为x ,y ,常量为10.【点睛】本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.。
难点解析鲁教版(五四制)六年级数学下册第九章变量之间的关系综合训练试卷(精选含答案)

六年级数学下册第九章变量之间的关系综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一盒圆珠笔有16支,售价24元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 间的关系式为( ).A .12y x =B .18=y xC .23y x =D .32y x = 2、如图,李大爷用24米长的篱笆靠墙围成一个矩形()ABCD 菜园,若菜园靠墙的一边()AD 长为x (米),那么菜园的面积y (平方米)与x 的关系式为( )A .(12)2x x y -=B .(12)y x x =-C .(24)2x x y -=D .(24)y x x =-3、在ABC 中,它的底边为a ,底边上的高为h ,则面积12S ah =,若h 为定长,则此式中( ).A .S ,a 是变量B .S ,a ,h 是变量C .a ,h 是变量D .以上都不对4、在圆的面积公式2S r π=中,变量有( )A .0个B .1个C .2个D .3个5、弹簧挂上物体后会伸长(在允许挂物重量范围内),测得一弹簧的长度y (cm)与所挂的物体的重量x (kg)间有下表的关系:下列说法不正确的是( )A .弹簧不挂重物时的长度为10cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .物体质量每增加1kg ,弹簧长度y 增加0.5cmD .所挂物体质量为7kg 时,弹簧长度为14cm6、用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .y =n (100m +0.6) B .y =n (100m )+0.6 C .y =n (100m +0.6) D .y =n (100m )+0.6 7、下表是某报纸公布的世界人口数据情况:表中的变量是( )A .仅有一个,是时间(年份)B .仅有一个,是人口数(亿)C .有两个,是时间和人口数D .一个也没有8、在用图象表示变量之间的关系时,下列说法最恰当的是( )A .用水平方向的数轴上的点表示因变量B .用竖直方向的数轴上的点表示自变量C .用横轴上的点表示自变量D .用横轴或纵轴上的点表示自变量9、某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为( )A .115元B .105元C .95元D .85元10、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是( )A .自变量是传播速度,因变量是温度B .温度越高,传播速度越快C .当温度为10℃时,声音10s 可以传播3360mD .温度每升高10℃,传播速度增加6m/s第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、一辆汽车出发时邮箱内有油48升,出发后每行驶1 km 耗油0.6升,如果设剩油量为y (升),行驶路程为x (km).则y 与x 的关系式为_________________;这辆汽车行驶35 km 时,汽车剩油____升;当汽车剩油12升时,行驶了_______千米.2、每度生活用电的电费为0.53元,某用户5月份所交电费y(元)与这个月用电量x(度)之间的关系式为___________,若通过查电表知道x =80度,那么该用户应付电费____元.3、圆的半径为r ,圆的面积S 与半径r 之间有如下关系:2S r π=.在这关系中,常量是______.4、下面的表格列出了一个实验室的部分统计数据,表示皮球从高处落下时,弹跳高度x与下降高度y的关系:x=时,y=_________.根据表格中两个变量之间的关系,则当1205、计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的关系式是_____,其中变量是_____,常量是_____.6、一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm.如果挂上的物体的总质量为x千克时,弹簧的长度为为ycm,那么y与x的关系可表示为y=______.7、每个同学购买一本课本,课本的单价是4.5元,总金额为y(元),学生数为n(个),则变量是_____,常量是_____.8、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;三、解答题(3小题,每小题10分,共计30分)1、某市举行“迷你马拉松”长跑比赛,运动员从起点甲地出发,跑到乙地后,沿原路线再跑回点甲地.设该运动员离开起点甲地的路程s(km)与跑步时间t(min)之间的函数关系如图所示.已知该运动员从甲地跑到乙地时的平均速度是0.2 km/min,根据图像提供的信息,解答下列问题:(1)a= km;(2)组委会在距离起点甲地3km处设立一个拍摄点P,该运动员从第一次过P点到第二次过P 点所用的时间为24min.①求AB所在直线的函数表达式;②该运动员跑完全程用时多少min?2、一销售员向某企业推销一种该企业生产必需的物品,若企业要40件,则销售员每件可获利40元,销售员(在不亏本的前提下)为扩大销售量,而企业为了降低生产成本,经协商达成协议,如果企业购买40件以上时,每多要1件,则每件降低1元.(1)设每件降低x(元)时,销售员获利为y(元),试写出y关于x的函数关系式.(2)当每件降低20元时,问此时企业需购进物品多少件?此时销售员的利润是多少?3、圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?-参考答案-一、单选题1、D【解析】【分析】根据总价=单价×数量列出函数解析式.【详解】解:依题意有单价为24÷16=32,则有32y x =.故选D.【点睛】本题考查了一次函数的实际应用,根据题意,找到所求量的等量关系是解决问题的关键.本题需先求出单价.2、C【解析】【分析】根据篱笆长可得2AB+x=24,先表示出矩形的长,再由矩形的面积公式就可以得出结论.【详解】解:由题意得:2AB+x=24,∴AB=242x-;∴()242-=x x y故选:C【点睛】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.【解析】【分析】 根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积12S ah =,若h 为定长,就是说h 为固定长的意思,即是常量;底边为a ,长度具体是多长,不确定,是变量,S 随a 的变化而变化,也是变量.【详解】 解:∵三角形的面积12S ah =,h 为定长,即三角形的高不变; ∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S 和a 是变量,h 是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.4、C【解析】【分析】圆的面积S 随半径r 的变化而变化,所以S ,r 都是变量,其中r 是自变量,S 是因变量.【详解】解:在圆的面积公式2S r π=中,变量为S ,r ,变量有2个.故选:C .【点睛】本题考查了变量和常量,变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解析】【分析】根据0x =时,y 的值可判断选项A ,根据函数的定义可判断选项B ,根据x 与y 之间对应关系的变化可判断选项C 、D .【详解】0x =时,10y =∴弹簧不挂重物时的长度为10cm ,则选项A 正确y 是随x 的变化而变化的∴x 与y 都是变量,且x 是自变量,y 是因变量,则选项B 正确当物体质量每增加1kg ,弹簧长度y 增加的长度为1110.50.5()21cm -=-,则选项C 正确 设当所挂物体质量为7kg 时,弹簧长度为acm 则100.570a -=- 解得13.5()a cm =,则选项D 不正确故选:D .【点睛】本题考查了函数的概念,掌握理解函数的相关概念是解题关键.6、A【解析】【分析】 由题意可得每本书的价格为100m 元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m 元钱在网上书店恰好可购买100本书, 所以每本书的价格为100m 元, 又因为每本书需另加邮寄费6角,所以购买n 本书共需费用y =n (100m +0.6)元; 故选:A .【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.7、C【解析】【分析】根据事物的变化过程中发生变化的量是变量,数值不变的量是常量,可得答案.【详解】解;观察表格,得时间在变,人口数在变,故C 正确.故选C .【点睛】本题考查常量与变量,解题的关键是能够了解常量与变量的定义.8、C【解析】【分析】用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.【详解】解:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.故选:C.【点睛】本题考查了平面直角坐标系,应识记且熟练掌握画图象的基础知识.9、D【解析】【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.10、A【解析】【分析】根据所给表格,结合变量和自变量定义可得答案.【详解】解:A、自变量是温度,因变量是传播速度,故原题说法错误;B、温度越高,传播速度越快,故原题说法正确;C、当温度为10℃时,声音10s可以传播3360m,故原题说法正确;D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;故选:A.【点睛】此题主要考查了常量与变量,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.二、填空题1、y=48-0.6x 27 60【解析】【详解】(1)由题意可得,y与x的关系式是:y=48−0.6x;(2)当x=35时,y=48−0.6×35=48−21=27,当y=12时,12=48−0.6x,解得,x=60,即这辆汽车行驶35km时,剩油27升;汽车剩油12升时,行驶了60千米.2、 y=0.53x 42.4【解析】【详解】【分析】根据:电费y(元)=单价×数量,得y=0.53x;把x=80代入所列函数关系式y=0.53x,即可求解.【详解】根据:电费y(元)=单价×数量,可知,某用户5月份交电费y(元)与这个月用电量x (度)之间的关系式为:y=0.53x,当自变量x=80时,直接代入函数解析式得:y=0.53×80=42.4元.故答案为(1)y=0.53x ,(2)42.4.【点睛】找到所求量的等量关系是解决问题的关键;当已知函数解析式时,求函数值就是求代数式的值.3、π【解析】【分析】利用常量定义可得答案.【详解】解:公式S=πR2中常量是π,故答案为:π.【点睛】本题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.4、240【解析】【分析】观察表格数据可知,y是x的两倍,由此即可求解.【详解】解:第一组数据:x=25,y=50第二组数据:x=40,y=80第三组数据:x=50,y=100第四组数据:x=75,y=150由此可以得到y=2x当x=120是,y=2×120=240故答案为:240.【点睛】本题主要考查了根据表格找到两个变量之间的关系,解题的关键在于能够准确找到等量关系求解.5、50naa,n 50【解析】略6、10+1.5x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可,根据函数的定义判断自变量及因变量.弹簧的总长度y(cm)可以表示为y=10+1.5x【详解】y=10+1.5x,所挂物体总质量x,弹簧的总长度y【点睛】此题考查二元一次函数的应用,难度不大7、 y、n 4.5【解析】【详解】由题意可得: 4.5y n ,∴在上述问题中,变量是:y n 、;常量是:4.5.故答案为(1)y n 、;(2)4.5.8、V =100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V 与h 的关系为V =100h ;故答案为:V =100h .【点睛】本题主要考查了列函数关系式,题目比较简单.三、解答题1、(1)5千米.(2)直线AB 解析式为s =-t +.60分.【解析】【详解】试题分析:(1)根据路程=速度×时间,即可求出a 值;(2)①根据点O 、A 的坐标,利用待定系数法即可求出线段OA 的函数表达式,根据一次函数图象上点的坐标特征可求出第一次经过点P 的时间,进而可得出第二次经过点P 的时间,再根据点A 的坐标及(39,3),利用待定系数法即可求出AB 所在直线的函数表达式;②根据一次函数图象上点的坐标特征,求出AB 所在直线的函数表达式中当s =0时t 的值,此题得解.试题解析:解:(1)∵从甲地跑到乙地时的平均速度是0.2 km /min 用时25分钟,∴a =0.2×25=5(千米).故答案为5.(2)①设线段OA 的函数表达式为s =mt +n ,将O (0,0)、A (25,5)代入s =mt +n 中,得:0255n m n =⎧⎨+=⎩,解得:150m n ⎧=⎪⎨⎪=⎩,∴线段OA 的函数表达式为s =15t (0≤t ≤25),∴当s =15t =3时,t =15.∵该运动员从第一次过P 点到第二次过P 点所用的时间为24min ,∴该运动员从起点到第二次经过P 点所用的时间是15+24=39(min ),∴直线AB 经过点(25,5),(39,3).设AB 所在直线的函数表达式为s =kt +b ,将(25,5)、(39,3)代入s =kt +b 中,得:255393k b k b +=⎧⎨+=⎩,解得:17607k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 所在直线的函数表达式为s =﹣17 t +607. ②该运动员跑完赛程用的时间即为直线AB 与x 轴交点的横坐标,∴当s =0时,﹣17t +607=0,解得:t =60,∴该运动员跑完赛程用时60分钟.点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)①根据点的坐标,利用待定系数法求出AB 所在直线的函数表达式;③根据一次函数图象上点的坐标特征,求出该运动员跑完全程所用时间.2、(1)21600(040)y x x =-≤≤;(2)企业购进60件,销售员利润1200元.【解析】【分析】(1)根据题意每件降低x 元时代表企业在40件的基础上多要x 件,而此时销售员每件可获利为40-x ,由获利=件数⨯每件获利即可得关系式 ;(2)每件降低20元,证明在40件的基础上多要20件,再代入(1)的关系式可得销售员此时获利.【详解】解:(1)根据题意每件降低x 元时代表企业在40件的基础上多要x 件,而此时销售员每件可获利为40-x ,则销售员可获利:2(40)(40)1600y x x x =+-=- ,因题意规定销售员为不亏本的前提,所以自变量0x 40≤≤,综上可知函数关系式为21600(040)y x x =-≤≤;(2)每件降低20元,证明在40件的基础上多要20件,即此时企业需要购进60件,根据(1)的关系式,当x=20时,销售员获利21600201200y =-=.【点睛】本题主要考查了找函数关系式,正确得出y 与x 的函数关系是解题关键.3、 (1)2 5千米/分,15千米/分;(2)30分钟;(3)8:05和8:50.【解析】【分析】(1)根据观察横坐标,可得去超市的时间,从超市返回的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;(2)根据观察横坐标,可得答案;(3)根据路程除以速度,可得时间.【详解】解:(1)由横坐标可知,去超市用了10分钟,从超市返回用了20分钟,由纵坐标可知,家到超市的距离是4千米,故去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分).(2)由横坐标可知,在超市逗留的时间是40-10=30(分钟).(3)去超市的过程中,2÷25=5(分钟),返回的过程中,2÷15=10(分钟),40+10=50(分钟). 故圣诞老人在8:05和8:50时离家2千米.故答案为(1)25千米/分,15千米/分;(2)30分钟;(3)8:05和8:50.【点睛】本题考查了函数图象,观察函数图象获取信息是解题关键.。
精品试题鲁教版(五四制)六年级数学下册第九章变量之间的关系专项训练练习题(精选含解析)

六年级数学下册第九章变量之间的关系专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,它的底边为a,底边上的高为h,则面积12S ah,若h为定长,则此式中().A.S,a是变量B.S,a,h是变量 C.a,h是变量D.以上都不对2、某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元3、在三角形面积公式S=12ah,a=2中,下列说法正确的是( )A.S,a是变量,12,h是常量B.S,h是变量,12是常量C.S,h是变量,1,a是常量2D.S,h,a是变量,1是常量24、2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v为110千米/时,若用s (千米)表示小亮家汽车行驶的路程,行驶时间用t (小时)表示,下列说法正确的是()A.s是自变量, t是因变量B.s是自变量, v是因变量C.t是自变量, s是因变量D.v是自变量, t是因变量5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……. 用s1 、s2分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是()A.B.C.D.6、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.7、下表是某报纸公布的世界人口数据情况:表中的变量()A.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是时间(年份) D.一个也没有8、用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为()A.r B.πC.2 D.2π9、某次实验中,测得两个变量m和v之间的4组对应值如表,则m与之间的关系接近于下列各式中的()A.v=2m B.v=m²-1 C.v=3m+1 D.v=3m-110、刘师傅到加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是().A.金额B.单价C.数量D.金额和数量第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、邓教师设计一个计算程序,输入和输出的数据如表所示,当输入数据是正整数n 时,输出的数据是________.2、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.3、如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为()2m S ,一边长为()m a ,那么在60,S ,a 中,变量有________________个.4、若球体体积为V ,半径为R ,则343V R π=.其中变量是_______、_______,常量是________.5、图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y (本)和借书学生人数x (人)之间的函数关系式是_____________.6、按下面的运算程序,输入一个实数3x =,那么输出值y =______.7、小颖准备乘出租车到距家超过3km 的科技馆参观,出租车的收费标准如下:则小颖应付车费y(元)与行驶里程数x(km)之间的关系式为____.8、一名老师带领x名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y元,则y与x的关系式为______.三、解答题(3小题,每小题10分,共计30分)1、小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A 表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.2、某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系:(1)上面表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)用x表示通话时间,用y表示电话费,请写出随着x的变化,y的变化趋势是什么?3、如图,长方形ABCD的边长分别为AB=12cm,AD=8cm,点P、Q从点A出发,P沿线段AB运动,点Q沿线段AD运动(其中一点停止运动,另一点也随着停止),设AP=AQ=xcm在这个变化过程中,图中阴影部分的面积y(cm2)也随之变化.(1)写出y与x的关系式(2)当AP由2cm变到8cm,图中阴影部分的面积y是如何变化的?请说明理由-参考答案-一、单选题1、A【解析】【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积12S ah=,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积12S ah=,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,h是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.2、D【解析】【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.3、C【解析】【分析】根据常量就是在变化过程中不变的量,变量就是可以取到不同数值的量求解即可.【详解】在三角形面积公式S=12ah,a=2中,S,h是变量,12,a是常量.故选C.【点睛】本题考查了常量与变量,根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系,常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.4、C【解析】【分析】根据题意可知路程s是随着时间t的变化而变化的,联系因变量和自变量的概念解答即可【详解】题中有两个变量:t、s,由于变量路程s随着变量时间t的变化而变化,所以t是自变量,s是因变量.故选C.【点睛】本题主要考查了自变量和因变量的判定,回忆自变量和因变量的概念:在一个不断变化的数量中,如果一个变量y随着另一个变量x的变化而变化,那么我们把x叫做自变量,y叫因变量.5、A【解析】【分析】根据题意,兔子的路程随时间的变化分为3个阶段,由此即可求出答案.【详解】解:根据题意:s1一直增加;s2有三个阶段,第一阶段:s2增加;第二阶段,由于睡了一觉,所以s2不变;第三阶段,当它醒来时,发现乌龟快到终点了,于是急忙追赶,s2增加;∵乌龟先到达终点,即s1在s2的上方.故选:A.【点睛】本题考查变量之间的关系.能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6、C【解析】【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.7、C【解析】【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故C正确;故选:C.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.8、D【解析】【分析】由常量与变量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可求得答案.【详解】∵C=2πr,π是圆周率,∴2π是常量,C与r是变量.故选:D.【点睛】此题考查了常量与变量.注意掌握常量与变量的定义是解此题的关键,注意π是圆周率,是常量.9、B【解析】【分析】利用已知数据代入选项中,得出符合题意的关系式.【详解】解:当m=1,代入v=m2-1,则v=0,当m=2,则v=3,当m=3,v=8,故m与v之间的关系最接近于关系式:v=m2-1.故选:B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.10、D【解析】【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D .【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.二、填空题1、31n n - 【解析】【分析】观察表格中的数据可得:各个式子的分子是输入的数字,分母是输入数字的3倍减1,据此解答即可.【详解】解:因为各个式子的分子是输入的数字,分母是输入数字的3倍减1,所以当输入数据是正整数n 时,输出的数据是:31n n -. 故答案为:31n n -.【点睛】本题考查了利用表格表示变量之间的关系和数据规律的探求,分别找出式子的分子与分母的规律是解本题的关键.2、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222n+枚棋子.⨯+=枚棋子,第n个“上”字需用42故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.3、2【解析】【分析】根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可【详解】解:∵篱笆的总长为60米,∴S =(30-a )a =30a -a 2,∴面积S 随一边长a 变化而变化,∴S 与a 是变量,60是常量故答案为:2.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量. 4、 R V43π 【解析】【分析】根据函数常量与变量的知识点作答.【详解】 ∵函数关系式为343V R π=, ∴R 是自变量,V 是因变量,43π是常量. 故答案为:R ,V ,43π. 【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.5、y=1500-3x【解析】【分析】由题知借走了3x本,则剩下1500-3x本,写出函数关系式即可.【详解】由题知借走了3x本,则剩下1500-3x本,则剩下的数y(本)和借书学生人数x(人)之间的函数关系式是y=1500-3x.【点睛】此题主要考查了函数关系式,正确理解题意是解题关键.6、9【解析】【分析】先根据图表列出函数关系式,然后计算当3x=时y的值.【详解】y x.当3x=时,(1)25(31)259故填9.【点睛】本题考查程序流程图、代数式求值和用关系式表示变量之间的关系,在本题中根据流程图列函数关系式,要注意减法和乘法要先算减法时,需给减法带上括号.7、y=1.8x+2.6(x≥3)【解析】【分析】根据3千米以内收费8元,超过3千米,每增加1千米收费1.8元列代数式即可解答.【详解】解:由题意得,所付车费y=1.8(x-3)+8=1.8x+2.6(x≥3).故答案为:y=1.8x+2.6(x≥3).【点睛】本题考查了通过列代数式确定函数解析式,读懂题意、列出代数式是解答本题的关键.8、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.三、解答题1、(1)t ,s ,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A 点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t ,因变量是距离或s ;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h ; 图中点A 表示:小亮出发2.5小时后,离度假村的距离为10km ;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.2、(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)y 随着x 的增大而增大.【解析】【分析】(1)根据观察表格,可得变量,根据变量间的关系,可得自变量、因变量;(2)根据单价、时间、话费间的关系,可得函数关系式,根据正比例函数的性质,可得答案.【详解】解:(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)由表格数据可知y =0.4x ,y 随着x 的增大而增大.【点睛】本题考查变量,解题关键是能够看出两个变量之间的变化关系.3、(1)21962y x =-;(2)y 由294cm 变到264cm ,理由见详解. 【解析】【分析】(1)表示出APQ 的面积,用长方形的面积减去APQ 的面积可得y 与x 的关系式;(2)当AP 由2cm 变到8cm ,由(1)中y 与x 的关系式计算出相应的y 的值,可知其变化.【详解】解:(1)21122APQ S AP AQ x =⋅=,长方形的面积为212896cm ⨯=,所以21962y x =-; (2)当AP 等于2cm 时,即2x =时,221962962942y cm =-⨯=-=,当AP 等于8cm 时,即8x =时,2219689632642y cm =-⨯=-=, 所以当AP 由2cm 变到8cm ,图中阴影部分的面积y 由294cm 变到264cm .【点睛】本题考查了和动点有关的图形的面积,灵活的表示出阴影部分的面积是解题的关键.。
鲁教版六年级下册第九章《变量间关系》变量间关系真题演练

变量间的关系历年真题操练 一、选择题 1.2019年河北体育中考取,男生将进行1000米跑步测试,王亮跑步速度V (米/分)与测试时间t (分)的函数图象是( )A. B.C. D.2. 在以下图的三个函数图象中,有两个函数图象能近似地刻画以下 a ,b 两个情境:情境a :小芳走开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校; 情境b :小芳从家出发,走了一段行程后,为了赶时间,以更快的速度行进.则情境 a ,b 所对应的函数图象分别是( ) A.③、② B.②、③ C.①、③ D.③、①周日,小涛从家沿着一条笔挺的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y (单位:m )与他所用的时间t (单位:min )之间的函数关系以下图,以下说法中正确的选项是()A . B . C. D .小涛家离报亭的距离是 900m 小涛从家去报亭的均匀速度是 60m/min 小涛从报亭返回家中的均匀速度是 80m/min小涛在报亭看报用了15min第1页小明骑自行车上学,开始以正常速度匀速行驶,但行至半途自行车出了故障,只能停下来修车,车修睦后,因怕耽搁上课,加快了骑车速度,下边是小明离家后他到学校剩下的行程s对于时间t的函数图象,那么切合小明行驶状况的图象大概是()A. B. C. D.为了增强爱国主义教育,每周一学校都要举行威严的升旗仪式,同学们凝望着徐徐上涨的国旗,以下哪个函数图象能近似地刻画上涨的国旗离旗杆顶端的距离与时间的关系()A. B.C. D.某人匀速跑步到公园,在公园里某处逗留了一段时间,再沿原路匀速步行回家,这人离家的距离y与时间x的关系的大概图象是()A. B.C. D.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,以下说法错误的选项是()第2页A.C.乙先出发的时间为0.5小时甲出发0.5小时后两车相遇B.D.甲的速度是80千米/小时甲到B地比乙到A地早小时8. 礼拜六清晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA-AB-BC是她出发后所在地点离家的距离s(km)与行走时间t(min)之间的函数关系,则以下图形中能够大概描绘蕊蕊妈妈行走的路线是()A. B. C. D.如图,是一种古代计时器--“漏壶”的表示图,在壶内盛必定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们依据壶中水面的地点计算时间.若用x表示时间,y表示壶底到水面的高度,下边的图象合适表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()A. B.C. D.10.如图是甲、乙两车在某时段速度随时间变化的图象,以下结论错误的选项是()第3页A.乙前4秒行驶的行程为48米B.在0到8秒内甲的速度每秒增添4米/秒C.两车到第3秒时行驶的行程相等在4至8秒内甲的速度都大于乙的速度二、填空题11.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰巧相等,则此温度的摄氏度数为______℃.12.甲、乙两人在一条笔挺的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不一样的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系以下图,当乙抵达终点A时,甲还需______分钟抵达终点B.13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,此中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系以下图.若丙也从甲出发的地方沿同样的方向骑自行车行驶,且与甲的速度同样,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发______秒.14.甲、乙两人以同样路线前去离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前去目的地所行驶的行程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶______千米.15.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在今后所跑的路程y(米)与时间t(秒)之间的函数关系以下图,则此次越野跑的全程为______米.三、解答题(某天清晨,王老师从家出发步行前去学校,途中在路边一小吃店用早饭,如图是王老师(从家到学校这一过程中的全部行程s(米)与时间t(分)之间的关系.((1)他家与学校的距离为______米,从家出发到学校,王老师共用了______分钟;((2)王老师从家出发______分钟后开始用早饭,花了______分钟;((3)王老师用早饭前步行的速度是______米/分,用完早饭此后的速度是 ______米/(分.(甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y (千米)与时间t(时)的关系以下图,依据所供给的信息,回答以下问题:(1)货车在乙地卸货逗留了多长时间?(2)货车来回速度,哪个快?返回速度是多少?(18.甲骑自行车、乙骑摩托车沿同样路线由A地到B地,行驶过程中行程与时间关系的图(象以下图,依据图象解答以下问题:(1)谁先出发?先出发多少时间?谁先抵达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包含起点和终点)第4页李大爷按每千克2.1元批发了一批黄瓜到镇上销售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低销售.售出黄瓜千克数x与他手中拥有的钱数y元(含备用零钱)的关系以下图,联合图象回答以下问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜销售的价钱是多少?(3)卖了几日,黄瓜卖相不好了,随后他按每千克降落 1.6元将节余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?4)请问李大爷亏了仍是赚了?若亏(赚)了,亏(赚)多少钱?甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系以下图,乙车的速度是60km/h1)求甲车的速度;2)当甲乙两车相遇后,乙车速度变成a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟抵达终点,求a的值.第5页答案和分析【答案】1.C2.D3.D4.D5.A6.B7.D8.B9.B10.C-40181514.22001000;25;10;10;50;100解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货逗留了1小时;2)∵7.5-4.5=3<3.5,∴货车返回速度快,=70(千米/时),∴返回速度是70千米/时.18.解:由图象可知:(1)甲先出发;先出发10分钟;乙先抵达终点;先到5分钟.(2)甲的速度为=0.2公里/每分钟,乙的速度为=0.4公里/每分钟.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.解:(1)由图可得农民自带的零钱为50元.2)(410-50)÷100=360÷100=3.6(元).答:降价前他每千克黄瓜销售的价钱是 3.6元;3)(530-410)÷()=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;4)530-160×2.1-50=144(元).答:李大爷一共赚了144元钱.解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;第6页(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经查验,a=75是原分式方程的解,a的值是75.【分析】解:由题意得:Vt=1000,因此V=,是反比率函数,且1000=4×250,应选C.依据速度、时间及行程之间的关系获得函数关系式,从而判断其图象即可.本题考察了函数的图象,能够从实质问题中整理出函数模型是解答本题的要点,难度不大.解:∵情境a:小芳走开家不久,即离家一段行程,此时①②③都切合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都切合,又去学校,即离家愈来愈远,此时只有③返回,∴只有③切合情境a;∵情境b:小芳从家出发,走了一段行程后,为了赶时间,以更快的速度行进,即离家愈来愈远,且没有逗留,∴只有①切合,应选D依据图象,一段一段的剖析,再一个一个的清除,即可得出答案;本题考察函数图象问题,主要考察学生的察看图象的能力,同时也考察了学生的表达能力,用了数形联合思想,题型比较好,可是一道比较简单犯错的题目.A1200m A不切合题意;3.解:、由纵坐标看出小涛家离报亭的距离是,故B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的均匀速度是80m/min,故B不切合题意;C、返回时的分析式为y=-60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50-30=20min,返回时的速度是1200÷20=60m/min,故C不切合题意;D、由横坐标看出小涛在报亭看报用了30-15=15min,故D切合题意;应选:D.依据特别点的实质意义即可求出答案.本题考察由图象理解对应函数关系及其实质意义,应把全部可能出现的状况考虑清楚.解:因为开始以正常速度匀速行驶---停下修车---加迅速度匀驶,可得S先迟缓减小,再不变,在加快减小.应选:D.因为开始以正常速度匀速行驶,接着停下修车,此后加迅速度匀驶,因此开始行驶路S是均匀减小的,接着不变,此后速度加快,因此S变化也加快变小,由此即可作出选择.本题主要考察了学生从图象中读守信息的能力.解决此类识图题,同学们要注意剖析此中的“要点点”,还要擅长剖析各图象的变化趋向.第7页解:设旗杆高h,国旗上涨的速度为v,国旗离旗杆顶端的距离为S,依据题意,得S=h-vt,∵h、v是常数,∴S是t的一次函数,∵S=-vt+h,-v<0,∴S随v的增大而减小.应选A.设旗杆高h,国旗上涨的速度为v,依据国旗离旗杆顶端的距离S=旗杆的高度-国旗上涨的距离,得出S=h-vt,再利用一次函数的性质即可求解.本题考察了函数的图象,一次函数的性质,依据题意得出国旗离旗杆顶端的距离与时间的函数关系式是解题的要点.解:图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园逗留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,而且这段的速度小于于第一阶段的速度,则C错误.应选B.依据在每段中,离家的距离随时间的变化状况即可进行判断.本题考察了函数的图象,理解每阶段中,离家的距离与时间的关系,依据图象的斜率判断运动的速度是解决本题的要点.7.解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100-70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到抵达A地,故甲车整个过程所用时间为: 1.75-0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75-1=(小时),故此选项错误,切合题意.应选:D.依据已知图象分别剖析甲、乙两车的速度,从而剖析得出答案.本题考察了利用函数的图象解决实质问题,解决本题的要点正确理解函数图象横纵坐标表示的意义,理解问题的过程,就可以经过图象获得函数问题的相应解决.解:察看s对于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴能够大概描绘蕊蕊妈妈行走的路线是B.应选B.依据给定s对于t的函数图象,剖析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进第8页行运动,由此即可得出结论.本题考察了函数的图象,解题的要点是剖析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,依据函数图象剖析出大概的运动路径是要点.9.解:由题意知:开始时,壶内盛必定量的水,因此y的初始地点应当大于0,能够清除A、D;因为漏壶漏水的速度不变,因此图中的函数应当是一次函数,能够清除C选项;因此B选项正确.应选:B.由题意知x表示时间,y表示壶底到水面的高度,而后依据x、y的初始地点及函数图象的性质来判断.主要考察了函数图象的读图能力和函数与实质问题联合的应用.要能依据函数图象的性质和图象上的数据剖析得出函数的种类和所需要的条件,联合实质意义获得正确的结论.A4秒的速度不变,为12/12×4=4810.解:、依据图象可得,乙前米秒,则行驶的行程为米,故A正确;B、依据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增添到32米/秒,则每秒增添=4米秒/,故B正确;C、因为甲的图象是过原点的直线,斜率为4,因此可得v=4t(v、t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,因此两车到第3秒时行驶的行程不相等,故C错误;D、在4至8秒内甲的速度图象向来在乙的上方,因此甲的速度都大于乙的速度,故D正确;因为该题选择错误的,应选C.前4s内,乙的速度-时间图象是一条平行于x轴的直线,即速度不变,速度×时间=行程.甲是一条过原点的直线,则速度均匀增添;求出两图象的交点坐标,3秒时两速度大小相等,3s前甲的图象在乙的下方,因此3秒前路程不相等;图象在上方的,说明速度大.本题考察了函数的图形,经过此类题目的练习,能够培育学生剖析问题和运用所学知识解决实质问题的能力,能使学生领会到函数知识的适用性.解:依据题意得x+32=x,解得x=-40.故答案是:-40.依据题意得x+32=x,解方程即可求得x的值.本题考察了函数的关系式,依据摄氏度数值与华氏度数值恰巧相等转变成解方程问题是要点.12.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16m,第9页解得x=千米/分钟,相遇后乙抵达A站还需(16×)÷=2分钟,相遇后甲抵达B站还需(10×)÷=20分钟,当乙抵达终点A时,甲还需20-2=18分钟抵达终点B,故答案为:18.依据行程与时间的关系,可得甲乙的速度,依据相遇前甲行驶的行程除以乙行驶的速度,可得乙抵达A站需要的时间,依据相遇前乙行驶的行程除以甲行驶的速度,可得甲抵达B站需要的时间,再依占有理数的减法,可得答案.本题考察了函数图象,利用同行程与时间的关系得出甲乙的速度是解题要点.解:由图可知:①50秒时,甲追上乙,②300秒时,乙抵达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,50x-50×4=100,x=6,设丙比甲晚出发a秒,则(50+45-a)×6=(50+45)×4+100,a=15,则丙比甲晚出发15秒;故答案为:15.①先依据图形信息可知:300秒时,乙抵达目的地,由出发去距离甲1300米的目的地,得甲到目的地是1300米,而乙在甲前面100米处,因此乙距离目的地1200米,由此计算出乙的速度;②设甲的速度为x米/秒,依据50秒时,甲追上乙列方程求出甲的速度;③丙出发95秒追上乙,且丙比乙不是同时出发,可设丙比甲晚出发a秒,列方程求出a的值.本题是函数图象的信息题,又是行程问题,第一要明确三个量:行程、时间和速度,题中有三人:甲、乙、丙,正确读出图形中甲、乙相遇及抵达目的地的时间是本题的要点;要点理解图象中x与y所表示的含义,也是本题的难点.解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18-6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1-=千米,故答案为:.依据函数的图形能够获得甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.本题考察了函数的图象,解题的要点是从函数图象中整理出进一步解题的信息,同时考察了同学们的读图能力.第10页15.解:设小明从1600处到终点的速度为a米/秒,小刚从1400米处到终点的速度为b米/秒,,解得:,故此次越野跑的全程为:1600+300×2=1600+600=2200(米),即此次越野跑的全程为2200米.故答案为:2200.依据函数图象能够列出相应的二元一次方程组,从而能够解答本题.本题考察了一次函数的应用、二元一次方程组的应用,解题的要点是明确题意,列出相应的方程组,利用数形联合的思想解答问题.16.11000米,从家出发到学校,王老师共用了25分钟;解:()他家与学校的距离为(2)王老师从家出发10分钟后开始用早饭,花了10分钟;(3)王老师用早饭前步行的速度是50米/分,用完早饭此后的速度是100米/分.故答案为:1000,25,10,10,50,100.1)依据函数图象的纵坐标,可得学校与家的距离,依据函数图象的横坐标,可得从家到学校的时间;2)依据函数图象的横坐标,可得吃早饭的时间;3)依据函数图象的纵坐标,可得行程,依据函数图象的横坐标,可得时间,依据行程与时间的关系,可得答案.本题考察了函数图象,察看函数图象的横坐标得出时间,纵坐标得出行程是解题要点.(1)依据函数图象经过是信息可知,4.5-3.5=1,由此得出货车在乙地卸货逗留的时间;(2)比较货车来回所需的时间,即可得出货车来回速度的大小关系,依据行程除以时间即可求得速度.本题主要考察了函数图象,对于一个函数,假如把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点构成的图形就是这个函数的图象.解决问题的要点是从函数图象中获得要点的信息.18.把数和形联合在一同,正确理解函数的图象和性质.由图象可知:(1)甲乙出发的先后和抵达终点的先后;(2)由行程6公里和运动的时间,可分别求出他们的速度;(3)联合图形可知他们都内行驶的时间段.联合图形理解函数的图象和性质.1y轴的交点就是李大爷自带的零钱.19.()图象与2)0到100时线段的斜率就是他每千克黄瓜销售的价钱.3)计算出降价后卖出的量+未降价卖出的量=总合的黄瓜.4)赚的钱=总收入-批发黄瓜用的钱.本题主要考察了函数图象,以及利用一次函数的模型解决实质问题的能力和读图能力.要先依据题意列出函数关系式,再代数求值.解题的要点是要剖析题意依据实质意义正确的列出分析式,再把对应值代入求解,并会依据图示得出所需要的信息.(1)依据函数图象可知甲2小时行驶的行程是(280-120)km,从而能够求得甲的速度;(2)依据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变成a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟抵达终点,能够列出分式方程,从而能够求得a的值.第11页本题考察分式方程的应用、函数图象,解题的要点是明确题意,找出所求问题需要的条件,利用数形联合的思想解答问题.第12页。
鲁教版六年级下用表格表示变量之间的关系练习49题及参考答案(难度系数0.64)

六年级用表格表示变量之间的关系(0.64)一、单选题(共27题;共54分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A. 时间B. 骆驼C. 沙漠D. 体温【答案】A【考点】常量、变量2.用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为()A. rB. πC. 2D. 2π【答案】 D【考点】常量、变量3.湖州与杭州之间的高速路程为s,汽车行驶的平均速度为v,驶完这段路程所需的时间为t,则s=vt,其中常量( )A. 为vB. 为sC. 为tD. 没有【答案】B【考点】常量、变量4.如图能反映小亮同学参加1000米跑体能测试中,脉搏和耗氧量变化的曲线是()A. a和cB. a和dC. b和cD. b和d【答案】B【考点】常量、变量5.小明的微信红包原有80元钱,他在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是()A. 时间B. 小明C. 80元D. 红包里的钱【答案】A【考点】常量、变量6.声音在空气中传播的速度与气温的关系如下表:根据表格下列分析错误的是()A. 在这个变化过程中,气温和声速都是变量B. 声速随气温的升高而增大C. 声速v与气温T的关系式为v=T+330D. 气温每升高10℃,声速增加6m/s【考点】常量、变量7.圆周长公式C=2πr ,下列说法正确是().A. C、π、r是变量,2是常量B. C是变量,π、r是常量C. r是变量, C、π是常量D. C、r是变量, π、2是常量【答案】 D【考点】常量、变量x2+1,当自变量x=2时,因变量y的值是( )8.变量y与x之间的关系式是y= 12A. -2B. -1C. 1D. 3【答案】 D【考点】常量、变量πR3,当球的大小发生变化时,关于π、R的说9.球的体积V(m3)与球的半径R(m)之间的关系式为V=43法中,最准确的是( )A. R是常量B. π是变量C. R是自变量D. R是因变量【答案】C【考点】常量、变量10.在利用太阳能热水器加热水的过程中,热水器的水温随所晒时间的长短而变化,这个问题中因变量是( )A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器【答案】B【考点】常量、变量11.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A. 沙漠B. 体温C. 时间D. 骆驼【答案】B【考点】常量、变量12.下列说法正确的是( )A. 常量是指永远不变的量B. 具体的数一定是常量πr³,变量是π,rC. 字母一定表示变量D. 球的体积公式V= 43【答案】B【考点】常量、变量13.甲、乙两地相距50千米,若一辆汽车以50千米/时的速度从甲地到乙地,则汽车距乙地的路程s(千米)与行驶的时间t(时)之间的关系式s=50-50t(0≤t≤1)中,常量的个数为()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】常量、变量V²A. s vB. s v2C. sD. v【答案】A【考点】常量、变量ah,a=2cm中,下列说法正确的是()15.在三角形面积公式S= 12A. S,a是变量,h是常量B. S,h是变量,是常量C. S,h是变量,a是常量D. S,h,a是变量,是常量【答案】C【考点】常量、变量16.在圆面积公式S=πR2中,变量是()A. SB. S与πC. S与R2D. S与R【答案】 D【考点】常量、变量πr3中,下列说法正确的是( )17.在球的体积公式V= 43A. V、π、r是变量,4是常量3B. V、r是变量,4是常量3π是常量C. V、r是变量,43D. 以上都不对【答案】C【考点】常量、变量18.甲、乙两地相距50千米,若一辆汽车以50千米/时的速度从甲地到乙地,则汽车距乙地的路程s(千米)与行驶的时间t(时)之间的关系式s=50-50t中,常量的个数为( )A. 1B. 2C. 3D. 4【答案】B【考点】常量、变量19.弹簧挂重物会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)有下面的关系.下列说法不正确的是()A. x与y都是变量,x是自变量,y是因变量B. 所挂物体为6kg,弹簧长度为11cmC. 物体每增加1kg,弹簧长度就增加0.5cmD. 挂30kg物体时一定比原长增加15cm【答案】 D【考点】常量、变量20.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()【答案】D【考点】常量、变量21.要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为()A. 常量为20,变量为x,yB. 常量为20、y,变量为xC. 常量为20、x,变量为yD. 常量为x、y,变量为20【答案】A【考点】常量、变量22.要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为( )。
鲁教版五四制 六年级下册 第九章 变量之间的关系 复习习题 (含答案解析)

鲁教版五四制六年级下册第九章变量之间的关系复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,两人行驶的路程y(km)与甲出发的时间x(h)之间的函数图象如图所示.根据图象得到如下结论,其中错误的是()A.甲的速度是60km/h B.乙比甲早1小时到达C.乙出发3小时追上甲D.乙在AB的中点处追上甲2.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误..的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时.3.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C . 体育场离早餐店1.千米D . 张强从早餐店回家的平均速度是3千米/小时4.如图, AB 是半圆O 的直径,且4A B c m =,动点P 从点O 出发,沿O A A B B O →→的路径以每秒1cm 的速度运动一周,设运动时间为t , 2s OP =,则下列图象能大致刻画s 与t 的关系的是( )A .B .C .D .5.如图,直线l 是菱形ABCD 和矩形EFGH 的对称轴,点C 在EF 边上,若菱形ABCD 沿直线l 从左向右匀速运动直至点C 落在GH 边上停止运动.能反映菱形进入矩形内部的周长y 与运动的时间x 之间关系的图象大致是( )A .B .C .D.6.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH7.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+18.如图,OA,BA分别表示甲、乙两学生运动的路程S随时间t的变化图象,根据图象判断快者的速度比慢者的速度每秒快()A.1米B.1.5米C.2米D.2.5米9.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.10.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=2.39,BC=3.57.动点M 从点A出发,沿A→B→C→D→A匀速运动,到点A停止.设点M运动的路程为x,点M 到四边形EFGH的某一个顶点的距离为y,如果表示y关于x的函数关系的图象如图2所示,那么四边形EFGH的这个顶点是( )A.点E B.点F C.点G D.点H11.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(m2)与工作时间t(h)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.100m2B.80m2C.50m2D.40m212.函数y=中自变量x的取值范围是( )A.x≤2B.x≥2C.x<2D.x>2二、填空题13.根据图中的程序,当输入x=2时,输出的结果y=_______.14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度xkm的几组对应值如表:若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.15x的取值范围是_____.16.如图是小明从学校到家里行进的路程s(米)与时间t(分)的图象,观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有________(填序号).17.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有_____________(填所有正确的序号).18.函数的自变量的取值范围是__________19.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费________元.20.为了锻炼身体,强健体魄,小明和小强约定每天在两家之间往返长跑20分钟. 两家正好在同一直线道路边上,某天小明和小强从各自的家门口同时出发,沿两家之间的直线道路按各自的速度匀速往返跑步,已知小明的速度大于小强的速度. 在跑步的过程中,小明和小强两人之间的距离y(米)与他们出发的时间x(分钟)之间的关系如图所示,在他们3次相遇中,离小明家最近那次相遇时距小明家____米.三、解答题21.小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?22.如图所示,图象反映的是:小明从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示小明离家的距离.根据图象回答下列问题:(1)体育场离小明家多远,小明从家到体育场用了多少时间?(2)体育场离文具店多远?(3)小明在文具店逗留了多少时间?(4)小明从文具店回家的平均速度是多少?23.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是( )A.4B.3C.2D.124.一个水池有水60立方米,现要将水池的水排出,如果排水管每小时排出的水量为3立方米.(1)写出水池中余水量Q(立方米)与排水时间t(时)之间的函数关系式;(2)写出自变量t的取值范围.25.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示,根据图中的信息,回答问题:(1)根据图2补全表格:(2)如表反映的两个变量中,自变量是,因变量是;(3)根据图象,摩天轮的直径为m,它旋转一周需要的时间为min.26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)28.一辆汽车油箱内有油48L,从某地出发,每行1km耗油0.6L,如果设剩油量为y(L),行驶路程x(km),根据以上信息回答下列问题:(1)自变量和因变量分别是什么?(2)写出y与x之间的关系式;(3)这辆汽车行驶35km时,剩油多少升?(4)汽车剩油12L时,行驶了多少千米?参考答案1.D【解析】A.根据图象得:360÷6=60km/h,故正确;B. 根据图象得,乙比甲早到1小时;C.乙的速度为:360÷4=90km/h,设乙a 小时追上甲,90a=60(a+1)解之得a=2,故不正确;D. ∵90×2=180km, ∴乙在AB 的中点处追上甲,故正确;2.B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A 正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B 不正确;C. 由图知, 骑车的同学从出发到追上步行的同学用了20分钟,故C 正确;D. 由图知,步行的速度是6千米/小时,故D 正确;故选B3.C【解析】试题分析:A 、由函数图象可知,体育场离张强家2.5千米,故A 选项正确;B 、由图象可得出张强在体育场锻炼30-15=15(分钟),故B 选项正确;C 、体育场离张强家2.5千米,体育场离早餐店2.5-1.5=1(千米),故C 选项错误;D 、∵张强从早餐店回家所用时间为95-65=30(分钟),距离为1.5km ,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D 选项正确.故选C .考点:函数的图象.4.C【解析】当点P 在OA 和OB 上运动时, 2s OP 图像是开口向上的一段抛物线;当点P在弧AB 上运动时,OP 的长度不变,s 也不变,图像是一段线段.故选C.【解析】周长y与运动的时间x之间成正比关系,故选B点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.6.D【解析】若CG的长为y,则y=2-x,故A选项不符合;若AG的长为y,随着x的增大,y是先减小后增大的,故B选项不符合;随着BG的逐渐增大,AH是先减小再增大,故C选项不符合;线段CH随着BG的逐渐增大是先增大后逐渐减小的,故D符合;故选D7.B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.8.B【解析】64÷8−(64−12)÷8=8−52÷8=8−6.5=1.5(米)答:快者的速度比慢者的速度每秒快1.5米.故选B9.C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。
六年级数学变量之间的关系
3181Biblioteka 02506:0010:00 11:00 8:00
16:00
20:00
(3)小强什么时候回到青岛?用了多 长时间?返回时平均车速是多少?
S(千米)
他用横轴表示当时的时 刻 t(时),用纵轴表示 他与青岛的距离S(千米)
318
180
250
6:00
(A)
(B)
(C)
(D)
2.
38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 0
温度/°C
A
3
6
9 12 15 18 21 24
时间/时
3.一列火车从青岛站出发,加速行驶了一段 时间后开始匀速行驶,过了一段时间,火车 到达下一个车站,乘客上、下车后,火车又 加速,一段时间后再次开始匀速行驶,下面 哪幅图可以近似地刻画出火车在这段时间内 的速度变化情况.( )
回青岛。
(1)小强到达济南是什么时候? 他们用了多少时间?
S(千米)
他用横轴表示当时的时 刻 t(时),用纵轴表示 他与青岛的距离S(千米)
318
180
250
6:00
10:00 11:00 8:00
16:00
20:00
t(时间)
S(千米)
(2)去济南的途中,可能由于前方路 堵,汽车减速慢行。你知道汽车何 时开始减速吗? 他用横轴表示当时的时
(4)乙在这次赛跑中的速度是多少?
s(米) 100 50 0 乙 甲 12 12.5 t(秒)
1 、济青高速公路是山东省第一条高速公 路。全长约318千米,今年 “五一” 黄金周 的一天,小强参加了“济南一日游”活动。 他们的行程大概是早上由青岛出发,通过济 青高速公路直达济南,游玩结束之后原路返
六年级下册第九章变量之间的关系 测试题
七年级上册数学单元诊断试题(四)六年级下册第九章变量之间的关系一.选择题(每题4分,7小题共28分)1.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm2.2013年8月16日,广东省遭受台风“尤特”袭击,大部分地区发生强降雨,某河受暴雨袭击,一天的水位记录如表,观察表中数据,水位上升最快的时段是()时间/时0 4 8 12 16 20 24水位/米 2 2.5 3 4 5 6 8A.8~12时 B.12~16时 C.16~20时 D.20~24时3.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1004.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤ B.①②④ C.①③⑤ D.①④⑤5.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S,周长为P,一边长为a,那么S、P、a中是变量的是( )A.S和PB.S和aC.P和aD.S,P,a6.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发0.5小时;(4)相遇后,甲的速度大于乙的速度;(5)甲、乙两人同时到达目的地;(6)乙行驶全程用了1.5小时.其中,符合图象描述的说法有( )A.2个B.3个C.4个D.5个7.嘉嘉和爸爸到附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是( )A.金额B.数量C.单价D.金额和数量二.填空题(每题4分,10小题共40分)8.某超市,苹果的标价为3元/千克,设购买这种苹果xkg,付费y元,在这个过程中常量是,变量是,请写出y与x的关系式.9.汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为.10.某复印店用电脑编辑并打印一张文稿收费2元,再每复印一张收费0.3元,则总收费y(元)与文稿数量x(张)之间的关系式是.11.邮购一种图书,每册定价20元,另加书定价5%的邮费,购书x册需付款y元,则y与x的函数关系式为.12.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).13.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.14.如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是℃.15.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是千米/小时.16.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x) 1 2 3 4……座位数(y) 50 53 56 59……下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有________(填写序号).17. 如图所示,▲ABC的底边BC上的高是6cm,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变13题图14题图15题图化过程中,变量是________,常量是________.三.解答题(共32分)18.(4分)如图是某购物中心食品柜在四月份的营业额情况统计图,根据图象回答下列问题.(1)在这个月中,日最低营业额是在4月日,只有万元.(2)在这个月中,日最高营业额是在4月日,达到万元.(3)这个月中,从日到日,营业额呈逐日上升趋势.(4)这个月营业额比较平衡的大约有天,每日均在万元左右.19.(8分)陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?20.(5分)同学们都非常熟悉“龟兔赛跑”的故事,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:线段OD表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系.赛跑的全程是米.(2)乌龟每分钟爬米.(3)乌龟用了分钟追上了正在睡觉的兔子.(4)兔子醒来,以12米/分的速度跑向终点,结果还是比乌龟晚到了2分钟,请你算算兔子中间停下睡觉用了分钟.21.(6分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是________,因变量是________;(2分)(2)甲、乙两人中,________先完成生产任务;(1分)(3)当甲、乙所生产的口罩个数相等时,求t的值.(3分)22. (9分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后到达中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线匀速前往滨海公园.如图是他们离家路程(km)与小明离家时间(h)的关系图,请根据图回答下列问题:(1)图中自变量是________,因变量是________;(2)小明家到滨海公园的路程为________km,在中心书城逗留的时间为________h;(3)小明出发________小时后爸爸驾车出发;(4)小明从中心书城到滨海公园的平均速度为________km/h,小明爸爸驾车的平均速度为________km/h;(5)爸爸驾车经过________小时追上小明,他离家路程s与小明离家时间t之间的关系式为________.。
难点解析鲁教版(五四制)六年级数学下册第九章变量之间的关系综合练习练习题(无超纲)
六年级数学下册第九章变量之间的关系综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明带了2元钱去买笔,每支笔的价格是0.5元,那么小明买完笔后剩下的钱数y(元)与买到的笔的数量x(支)之间的函数图象大致是().A.B.C.D.2、某次实验中,测得两个变量m和v之间的4组对应值如表,则m与之间的关系接近于下列各式中的()A .v=2mB .v=m²-1C .v=3m+1D .v=3m-13、一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间t(h)之间的关系式为50s t ,其中变量是( )A .速度与路程B .速度与时间C .路程与时间D .速度4、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示:下列说法错误的是( )A .自变量是温度,因变量是传播速度B .温度越高,传播速度越快C .当温度为10℃时,声音5s 可以传播1655mD .温度每升高10℃,传播速度增加6m /s5、用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A .保持不变B .越来越慢C .越来越快D .快慢交替变化6、一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )A .B .C .D .7、某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为( )A .115元B .105元C .95元D .85元8、在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .速度v 是变量B .时间t 是变量C .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量9、从A 地向B 地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元,若通话时间t 分钟(3)t ≥,则付话费y 元与t 分钟函数关系式是( ).A . 2.43(3)y t t =+≥B .()2.433y t t =+≥C .0.6(3)y t t =-≥D .0.6(3)y t t =+≥10、圆的面积计算公式为2S R π=(R 为圆的半径),变量是( ).A .πB .,R SC .,R πD .,,R S π第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、指出下列事件过程中的常量与变量.(1)某水果店橘子的单价为5元/千克,买a 千克橘子的总价为m 元,其中常量是_____,变量是_____;(2)周长C 与圆的半径r 之间的关系式是C =2πr ,其中常量是_____,变量是_____;注意:π是一个确定的数,是常量2、汽车开始行驶时,油箱中有油30升,如果每小时耗油5升,那么油箱中的剩余油量y (升)和工作时间x (时)之间的函数关系式是____,自变量的取值范围____.3、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行使时间t (小时)的关系是_____,其中的常量是_____,变量是_____.4、购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =_____,其中,_____是常量,_____是变量5、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.6、某山区的气象资料表明:从地面到高空11km 之间,气温随高度的升高而下降,每升高1km ,气温下降6℃.若测定某天当地地面气温是24℃,设该地区离地面hkm(0≤h≤11)处的气温为t℃,试写出t 与h 之间的关系式为_________________.7、将长为23cm 、宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm ,设x张白纸粘合后的总长度为ycm ,y 与x 的函数关系式为___________.8、下面的表格列出了一个实验室的部分统计数据,表示将皮球从高处落下时,弹跳高度x 与下降高度y 的关系,能表示这种关系的式子是__________.三、解答题(3小题,每小题10分,共计30分)1、用关系式表示下列函数关系(1)某种苹果的单价是1.6元/千克,当购买x 千克苹果时,花费y 元,y (元)与x (千克)之间的关系.(2)汽车的速度为20/km h ,汽车所走的路程()s km 和时间t(h)之间的关系.2、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?3、某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月利润(利润=收入费用﹣支出费用)y (元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x 与每月利润y 分别是 变量和 变量;(2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?-参考答案-一、单选题1、D【解析】【分析】根据题意列出函数解析式,进而根据实际意义求得函数图像,注意自变量的取值范围.【详解】依题意,20.5y x =-(x 为正整数)x 可以取得1,2,3,对应的y 的值为1.5,1,0.5,故选D【点睛】本题考查了根据实际问题列出函数关系式,变量与函数图像,结合实际是解题的关键.2、B【解析】【分析】利用已知数据代入选项中,得出符合题意的关系式.【详解】解:当m=1,代入v=m2-1,则v=0,当m=2,则v=3,当m=3,v=8,故m与v之间的关系最接近于关系式:v=m2-1.故选:B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.3、C【解析】【分析】在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.【详解】解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;故选C.【点睛】此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.4、C【解析】【分析】根据自变量和因变量的概念判断A,根据表格中声音的传播速度与温度的变化情况判断B,根据路程=速度×时间计算C,根据速度的变化情况判断D.【详解】解:A选项,自变量是温度,因变量是传播速度,故该选项正确,不符合题意;B选项,温度越高,传播速度越快,故该选项正确,不符合题意;C选项,当温度为10℃时,声音的传播速度为337m/s,所以5秒可以传播337×5=1685m,故该选项错误,符合题意;D选项,温度每升高10℃,传播速度增加6m/s,故该选项正确,不符合题意;故选C.【点睛】此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.5、C【解析】【分析】此容器不是一个圆柱体,从下到上直径越来越小,因为相同体积的水在直径较大的地方比在直径较小的地方的高度低,因此,若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快.【详解】由图可知:此容器不是一个圆柱体,从下到上直径越来越小∵相同体积的水在直径较小的地方比在直径较大的地方的高度更高∴若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快故答案选:C【点睛】本题考查了体积、直径、高之间的关系,寻找出三者之间的变化关系是解题关键.6、B【解析】【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【详解】解:公共汽车经历:加速,匀速,减速到站,加速,匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象:只有选项B符合题意;故选:B.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7、D【解析】【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.8、C【解析】【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t都是变量,路程s是常量故选:C.【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.9、C【解析】【分析】根据从A地向B地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元列出关系式即可.【详解】解:设通话时间t分钟(t≥3),由题意得:y=2.4+(t-3)=t-0.6(t≥3),故选C.【点睛】本题主要考查了根据实际问题列出关系式,解题的关键在于能够准确找到相应的关系.10、B【解析】【分析】变量就是在一个变化过程中发生变化的量,数值不发生变化的量是常量,根据定义判断即可.【详解】解:圆的面积计算公式为2S R π=(R 为圆的半径),变量是:R ,S .故选:B .【点睛】本题考查了常量与变量的定义,属于基础定义题型,正确理解概念是关键.二、填空题1、 5 a ,m ; 2,π C ,r【解析】略2、 y=30-5x 0≤x≤6【解析】【分析】油箱内剩余油量=原有的油量-x 小时消耗的油量,可列出函数关系式;根据每小时耗油量可求出可行驶的时间,即可得出自变量的取值范围.【详解】∵油箱中有油30升,每小时耗油5升,工作时间为x ,∴油箱内剩余油量y=30-5x ,30÷5=6,∴可行驶6小时,∴自变量的取值范围为0≤x≤6,故答案为:y=30-5x ,0≤x≤6【点睛】本题主要考查了由实际问题抽象出一次函数,本题关键是明确油箱内余油量,原有的油量,t 小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.3、 Q =40-5t 40,5 Q ,t【解析】略4、 y =1.2n (n 为自然数) 1.2 n 、y【解析】【详解】由题意可得:(1)y 与x 间的函数关系是: 1.2y n =;(2)其中常量是:1.2;(3)变量是:n 、y. 故答案为(1) 1.2y n =;(2)1.2;(3)n 、y.5、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关⨯⨯⨯...6=14+2,10=24+2,14=34+2,∴第五个“上”字需用54222⨯+=枚棋子,第n个“上”字需用42n+枚棋子.故答案为:(1)22;(2)42n+【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.6、t=24-6h(0≤h≤11)【解析】【详解】【分析】根据气温=地面气温-下降的气温,列出函数解析式:t=24-6h(0≤h≤11).【详解】依题意得,每升高1km,气温下降6℃.所以,升高hkm,气温下降6m℃.所以,t与h之间的关系式为t=24-6h(0≤h≤11).故答案为t=24-6h(0≤h≤11)【点睛】本题考核知识点:根据实际问题列一次函数关系式. 解题关键点:分析出实际问题中,相关的数量关系.7、y=21x+2【解析】【分析】等量关系为:纸条总长度=23×纸条的张数-(纸条张数-1)×2,把相关数值代入即可求解.【详解】每张纸条的长度是23cm,x张应是23xcm,由图中可以看出4张纸条之间有3个粘合部分,那么x张纸条之间有(x-1)个粘合,应从总长度中减去.∴y 与x 的函数关系式为:y=23x-(x-1)×2=21x+2.故答案为:y=21x+2.【点睛】此题考查函数关系式,找到纸条总长度和纸条张数的等量关系是解题的关键.8、2y x =【解析】【分析】这是一个用图表表示的函数,可以看出y 是x 的2倍,即可得关系式.【详解】由统计数据可知:y 是x 的2倍,所以2y x =.故答案为2y x =.【点睛】此题主要考查了函数的表示方法,利用表格数据得出x 、y 关系是解题关键.三、解答题1、(1) 1.6(0)y x x =≥;(2)20(0)s t t =≥.【解析】【分析】(1)根据总花费=单价×质量可得答案.(2)根据路程=速度×时间可得答案.【详解】解:由题意得:(1)总花费=单价×质量:y=1.6x(x≥0);(2)路程=速度×时间:s=20t(t≥0).【点睛】找到所求量的等量关系是解决问题的关键,本题比较简单.2、(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【解析】【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.3、(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【解析】【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.。
精品试题鲁教版(五四制)六年级数学下册第九章变量之间的关系重点解析练习题(含详解)
六年级数学下册第九章变量之间的关系重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.2、小明带了2元钱去买笔,每支笔的价格是0.5元,那么小明买完笔后剩下的钱数y(元)与买到的笔的数量x(支)之间的函数图象大致是().A.B.C.D.3、下表是研究弹簧长度与所挂物体质量关系的实验表格:则弹簧不挂..物体时的长度为().A.4cm B.6cm C.8cm D.10cm4、瓶子或者罐头盒等圆柱形的物体常常如图所示那样堆放着,随着层数的增加,物体总数也会发生变化,数据如表,则下列说法错误的是()A.在这个变化过程中层数是自变量,物体总数是因变量B.当堆放层数为7层时,物体总数为28个C.物体的总数随着层数的增加而均匀增加D.物体的总数y与层数n之间的关系式为(1)2n ny+ =5、在圆的周长公式C=2πr 中,下列说法正确的是( )A .C ,π,r 是变量,2是常量B .C ,π是变量,2,r 是常量 C .C ,r 是变量,2,π是常量D .以上都不对6、下列关于圆的面积S 与半径R 之间的关系式S 2=πR 中,有关常量和变量的说法正确的是( )A .S ,2R 是变量,π是常量B .S ,π,R 是变量,2是常量C .S ,R 是变量,π是常量D .S ,R 是变量,π和2是常量7、在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .速度v 是变量B .时间t 是变量C .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量8、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是( )A .金额B .数量C .单价D .金额和单价9、已知一辆汽车行驶的速度为50/km h ,它行驶的路程s (单位:千米)与行驶的时间t (单位:小时)之间的关系是50s t =,其中常量是( )A .sB .50C .tD .s 和t10、弹簧挂上物体后会伸长(在允许挂物重量范围内),测得一弹簧的长度y (cm)与所挂的物体的重量x (kg)间有下表的关系:下列说法不正确的是( )A .弹簧不挂重物时的长度为10cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .物体质量每增加1kg ,弹簧长度y 增加0.5cmD .所挂物体质量为7kg 时,弹簧长度为14cm第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.2、如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.3、下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n 个“上”字需用_________枚棋子.4、一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________.5、一名老师带领x 名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y 元,则y 与x 的关系式为______.6、矩形的周长为50,宽是x ,长是y ,则y =____.7、在公式50s t =中自变量是________,因变量是________.8、摄氏温度C 与华氏温度F 之间的对应关系为5(32)9C F =-,则其中变量是________,常量是________.三、解答题(3小题,每小题10分,共计30分)1、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,按每吨1元收费;每月超过12吨时,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.(1)求每吨水的市场调节价是多少元;(2)设每月用水量为x (x >12)吨,应交水费为y 元,写出y 与x 之间的关系式;(3)小张家3月份用水28吨,他家应交水费多少元?2、某小型加工厂2020年的年产值是15万元,计划以后每年增加2万元.(1)写出年产值y (万元)与经过的年数x 之间的关系式:(2)填写表格中y 的对应值:(3)求5年后的年产值.3、如图,ABC 中,D 是BC 边的中点,E 是BC 边上的一个动点,连接AE .设ADE 的面积为y ,BE的长为x,小明对变量x和y之间的关系进行了探究,得到了以下的数据:请根据以上信息,回答下列问题:(1)自变量和因变量分别是什么?(2)a和b的值分别是多少?(3)ADE的面积是怎样变化的?-参考答案-一、单选题1、C【解析】【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.2、D【解析】【分析】根据题意列出函数解析式,进而根据实际意义求得函数图像,注意自变量的取值范围.【详解】依题意,20.5y x =-(x 为正整数)x 可以取得1,2,3,对应的y 的值为1.5,1,0.5,故选D【点睛】本题考查了根据实际问题列出函数关系式,变量与函数图像,结合实际是解题的关键.3、C【解析】【分析】根据表格数据,设弹簧长度y 与所挂物体重量x 的关系式为y kx b =+,进而求得关系式,令0x =即可求得弹簧不挂物体时的长度.【详解】设弹簧长度y 与所挂物体重量x 的关系式为y kx b =+,将1,2x =,10,12y =分别代入得,10212k b k b +=⎧⎨+=⎩解得28k b =⎧⎨=⎩ 即28y x =+,将3,4,5x =,14,16,18y =分别代入28y x =+,符合关系式,∴当0x =时,则8y =,故选C .【点睛】本题考查了变量与表格,函数关系式,找到关系式是解题的关键.4、C【解析】【分析】先根据表中数字的变化规律写出y 和n 之间的关系式,再根据每个选项的说法作出判断.【详解】解:∵物体总个数随着层数的变化而变化,∴A 选项说法正确,不符合题意,根据表中数字的变化规律可知y =()12n n +, 当n =7时,y =28,∴B 选项说法正确,不符合题意,根据表中数字的变化规律可知总数增加的越来越快,∴C 选项说法错误,符合题意,根据表中数字的变化规律可知y =()12n n +,∴D 选项说法正确,不符合题意,【点睛】本题主要考查用列表表示函数的应用,关键是要能根据表中的数据写出y与n之间的关系式.5、C【解析】【分析】常量就是在变化过程中不变的量,变量是指在变化过程中变化的量.【详解】解:C,r是变量,2、π是常量.故选:C.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.6、C【解析】【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【详解】解:关于圆的面积S与半径R之间的关系式S =πR2中,S、R是变量,π是常量.故选:C.【点睛】本题主要考查了常量和变量,关键是掌握变量和常量的定义.7、C【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t都是变量,路程s是常量故选:C.【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.8、C【解析】【分析】根据常量与变量的定义即可判断.【详解】解:A、金额是随着数量的变化而变化,是变量,不符合题意;B、数量会根据李师傅加油多少而改变,是变量,不符合题意;C、单价是不变的量,是常量,符合题意;D、金额是变量,单价是常量,不符合题意;故选:C.【点睛】本题考查了常量与变量,解题的关键是正确理解常量与变量即:常量是固定不变的量,变量是变化的量,本题属于基础题型.9、B【解析】【分析】根据常量的定义即可得答案.【详解】∵汽车行驶的速度为50/km h ,是不变的量,∴关系式50s t =中,常量是50,故选:B .【点睛】此题主要考查了常量与变量,正确理解常量与变量的定义是解题关键.10、D【解析】【分析】根据0x =时,y 的值可判断选项A ,根据函数的定义可判断选项B ,根据x 与y 之间对应关系的变化可判断选项C 、D .【详解】0x =时,10y =∴弹簧不挂重物时的长度为10cm ,则选项A 正确y 是随x 的变化而变化的∴x 与y 都是变量,且x 是自变量,y 是因变量,则选项B 正确当物体质量每增加1kg ,弹簧长度y 增加的长度为1110.50.5()21cm -=-,则选项C 正确 设当所挂物体质量为7kg 时,弹簧长度为acm 则100.570a -=-解得13.5()a cm =,则选项D 不正确故选:D .【点睛】本题考查了函数的概念,掌握理解函数的相关概念是解题关键.二、填空题1、20t v= 【解析】【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间t 即可得出答案.【详解】 解:∵20602060km ⨯= ∴小华爸爸下班时路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =. 【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.2、()5016S x x =<<【解析】【分析】 根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x , ∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<.故答案为:()5016S x x =<<.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.3、 22 4n+2【解析】【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可.【详解】第一个“上”字需用6枚棋子;第二个“上”字需用10枚棋子;第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关 6=14+2,10=24+2,14=34+2,⨯⨯⨯...∴第五个“上”字需用54222⨯+=枚棋子,第n 个“上”字需用42n +枚棋子.故答案为:(1)22;(2)42n +【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.4、 3 32y x =【解析】【分析】 先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量.5、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.6、y=-x+25【解析】【分析】根据矩形的对边相等,周长表示为2x+2y,由已知条件建立等量关系,再变形即可.【详解】解:∵矩形的周长为50,∴2x+2y=50,整理得:y=-x+25.【点睛】本题关键是根据长、宽与周长的关系,列出等式.7、t s【解析】【分析】根据自变量和因变量的定义即可得.【详解】在公式50s t=中自变量是t,因变量是s故答案为:t,s.【点睛】本题考查了自变量和因变量的定义,熟记定义是解题关键.8、 C,F 5,32 9-【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】5(32)9C F =-,则其中的变量是C,F,常量是5,329-, 故答案为C,F; 5,329-;【点睛】此题考查常量与变量,解题关键在于掌握其定义三、解答题1、(1)每吨水的市场调节价为2.5元;(2)y =2.5x −18;(3)他家应交水费52元.【解析】【分析】(1)设每吨水的市场调节价为a 元,根据“每月超过12吨时,超过部分每吨按市场调节价收费”列出方程求解即可;(2)根据“每月超过12吨时,超过部分每吨按市场调节价收费”即可得出y 与x 之间的函数关系式;(3)根据用水量判断其在哪个范围内,代入相应的函数解析式求值即可.【详解】解:(1)设每吨水的市场调节价为a 元,根据题意得:12×1+(24−12)a =42,解得:a =2.5,答:每吨水的市场调节价为2.5元;(2)当x >12时, y =12×1+(x −12)×2.5=2.5x −18,∴y与x之间的关系式是y=2.5x−18;(3)∵28>12,∴把x=28代入y=2.5x−18得:y=2.5×28−18=52,答:他家应交水费52元.【点睛】本题考查了用解析式表示变量之间的关系和一元一次方程的应用,正确理解收费标准是解题的关键.2、(1)y=2x+15;(2)见详解;(3)25万元.【解析】【分析】(1)根据题意,直接写出即可;(2)分别求出当x=0、1、2、3、4、5时的y的值,然后填入表格;(3)把x=5代入关系式,计算求出y的值即可.【详解】解:(1)根据题意,某小型加工厂2020年的年产值是15万元,计划以后每年增加2万元,∴关系式为:y=2x+15;故答案为:y=2x+15;(2)如图:(3)当x=5时,y=2×5+15=25,∴5年后的年产值是25万元.【点睛】本题主要考查变量之间的关系,比较简单,正确理解题意是关键.3、(1)自变量是BE的长,因变量是△ADE的面积;(2)2,1;(3)当0≤x≤3时,y随x的增大而减小;当3≤x≤6时,y随x的增大而增大.【解析】【分析】(1)根据题意即可求得;(2)根据表格数据即可得出BD=3,BC=6,△ABC的高是2,然后根据三角形面积公式即可求得a、b;(3)根据三角形面积公式得到解析式即可.【详解】解:(1)自变量是BE的长x,因变量是△ADE的面积y;(2)∵x=0时,y=3;x=3时,y=0,∴BD=3,BC=6,△ABC的高是2,∴x=1时,DE=2,×2×2=2,∴a=12当x=4时,DE=1,×1×2=1;∴b=12(3)当0≤x≤3时,y=3−x,3≤x≤6时,y=x−3;当0≤x≤3时,y随x的增大而减小;当3≤x≤6时,y随x的增大而增大.【点睛】本题考查了动点问题的函数图象,三角形面积,解决本题的关键是数形结合,求出函数解析式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章《变量之间的关系》
一、选择题1.已知△ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,△ABC 的面积( )
A.从20cm 2变化到64cm 2
B.从64c m 2变化到20cm 2
C.从128cm 2变化到40cm 2
D.从40cm 2变化到128cm 2
2. 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离 与时间 的关系的大致图象是 ( )
A. B. C. D.
3.一个苹果从180m 的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如图,下面的说法正确的是( )
A.每相隔1s 苹果下落的路程是相同的
B.经过3s,苹果下落了一半的高度
C.每秒钟下落的路程越来越大
D.最后2s,苹果下落了一半的高度
4.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b )
d 50 80 100 150 b
25
40
50
75
(A )2b d =(B )2b d =(C )2
b =
(D )25b d =+ 5. 如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是 .
A. B. C. D.
二、填空题
6. 小明到超市买练习本,超市正在打折促销:购买本以上,从第本
开始按标价打折优惠,买练习本所花费的钱数(元)与练习本的个数(本)之间的关系如图所示,那么在这个超市买本以上的练习本优惠折扣是
折.
7. 一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时
卸货,随即匀速返回,已知货车返回时的速度是它从甲地
驶往乙地的速度的倍,货车离甲地的距离(千米)
关于时间(小时)的函数图象如图所示,则
(小时).
8. 钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开
展常态化巡逻.某天,为按计划准点到达指定海域,
某巡逻艇凌晨 1:00 出发,匀速行驶一段时间后,因
中途出现故障耽搁了一段时间,故障排除后,该艇加
快速度仍匀速前进,结果恰好准点到达.如图是该艇
行驶的路程(海里)与所用时间(小时)的函数图象,则该巡逻艇加速后行驶的速度是海里/小时.
9. 随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:
另外,一卡通普通卡刷卡实行折优惠,学生卡刷卡实行折优惠.
小明用学生卡乘车,上车时站名上对应的数字是,下车时站名上对应的数字是,那么,小明乘车的费用是元.
三、解答题
10. 在一昼夜中正常人的体温是随时间而变化的,如图是某人一昼夜体温变化的图象.根据图象回答下列问题:
(1) 上图反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2) 这个人的最高体温和最低体温分别是多少度?在什么时刻达到最高或最低?
(3) 若用表示时间(),表示体温(),将相应数据填入下表:
11. 在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?
(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?
一、选择题
1--5 BBCCC
二、填空题
6、7
7、5
8、100
9、1
三解答题
10.(1)上表反映了人体体温和时间变化之间的关系.时间是自变量。
人体体温是因变量
(2)最高体温37.5℃最低体温35.3℃。
最高是在18时,最低是在0时(3)
35.5 36 37 36.5 37 37.5 37 36.5
解:
(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;
(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32厘米。