单闭环不可逆直流调速系统仿真实验设计

合集下载

单闭环不可逆直流调速系统仿真实验设计

单闭环不可逆直流调速系统仿真实验设计

课程设计单闭环不可逆直流调速系统仿真实验设计指导教师:学院:专业:班级:姓名:学号:目录任务书 (3)概述 (4)原理 (5)建模与参数设置 (12)仿真结果及分析 (16)参考文献 (17)附图 (18)任务书单闭环不可逆直流调速系统仿真实验设计1.画出系统的仿真模型2.主电路的建模和模型的参数设置(1)三相对称交流电压源的建模和参数设置(2)晶闸管整流的建模和参数设置(3)平波电抗器的建模和参数设置(4)直流电动机的建模和参数设置(5)同步脉冲触发器的建模和参数设置3.控制电路的建模和参数设置4.系统的仿真参数设置5.系统的仿真,仿真结果的输出及结果分析6.打印说明书(B5),并交软盘(一组)一张。

注意事项:1.系统建模时,将其分成主电路和控制电路两部分分别进行2.在进行参数设置时,晶闸管整流桥、平波电抗器、直流电动机等的参数设计原则如下:如果针对某个具体参数设置,则对话框的有关参数应取装置的实际值;如果不针对某歌剧厅的装置的一般情况,可先去这些装置的参数默认值进行仿真。

若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。

3.给定信号的变化范围、调节器的参数的反馈检测环节的反馈系数等可调参数的设置,其一般方法是通过仿真试验,不断进行参数优化.4.仿真时间根据实际需要而定,以能够仿真出完整的波形为前提.5.仿真算法的选择:通过仿真实践,从仿真能否进行、仿真的速度、仿真的精度等方面进行选择。

为了提高直流调速系统的动静态性能指标,通常采用闭环系统。

对调速指标要求不高的场合,采用单闭环系统,按反馈的方式不同分为转速反馈、电流反馈、电压反馈、本次设计中采用的为单闭环不可逆直流调速系统。

转速单闭环系统原理如图1所示,图中将反映转速变化的电压信号作为反馈信号,经速度变换后接到电流调节器的输入端,与给定的电压相比较经放大后,得到移相控制电压Uct,用作控制整流桥的触发电路,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变三象全控整流电路的输出电压,这就构成了速度反馈闭环系统。

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告姓名: 专业班级: 学号: 同组人:实验一 不可逆单闭环直流调速系统静特性的研究一、实验目的1、了解转速单闭环直流调速系统的组成。

2、加深理解转速负反馈在系统中的作用。

3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。

4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。

二、实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。

转速单闭环直流调速系统是常用的一种形式。

图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。

图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。

在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。

图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。

RP 给定图1-1 不可逆转速单闭环直流调速系统三、实验注意事项1. 直流电动机M03参数为:P N=185W,U N=220V,I N=1.1A,n=1500r/min。

2. 直流电动机工作前,必须先加上直流激励。

3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW起动电机。

4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A。

5. 单闭环连接时,一定要注意给定和反馈电压极性。

四、实验内容1、晶闸管--电动机系统开环机械特性及控制特性的测定(1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR,可将给定电压U g(开环时给定电压称为U g,闭环后给定电压称为U n*)直接接到触发单元GT的输入端(U ct),电动机和测功机分别加额定励磁。

单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告

单闭环直流调速系统的设计与仿真实验报告摘要:本文基于基本原理和方法,设计和仿真了一个单闭环直流调速系统。

首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,包括PID控制器的参数调整方法。

接下来使用Matlab/Simulink软件进行系统仿真实验,对系统的性能进行评估。

最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。

关键词:直流电机调速、单闭环控制系统、PID控制器、仿真实验一、引言直流电机广泛应用于机械传动系统中,通过调节电机的电压和电流实现电机的调速。

在实际应用中,需要确保电机能够稳定运行,并满足给定的转速要求。

因此,设计一个高性能的直流调速系统至关重要。

本文基于单闭环控制系统的原理和方法,设计和仿真了一个直流调速系统。

首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,并采用PID控制器进行调节。

接着使用Matlab/Simulink软件进行系统仿真实验,并对系统的性能进行评估。

最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。

二、直流电机调速的基本原理直流电机调速是通过调节电机的电压和电流实现的。

电压变化可以改变电机的转速,而电流变化可以改变电机的转矩。

因此,通过改变电机的电压和电流可以实现电机的调速。

三、控制系统设计和参数调整根据系统的要求,设计一个单闭环控制系统,包括传感器、控制器和执行器。

传感器用于测量电机的转速,并将信息传递给控制器。

控制器根据测量的转速和给定的转速进行比较,并调节电机的电压和电流。

执行器根据控制器的输出信号来控制电机的电压和电流。

在本实验中,采用PID控制器进行调节。

PID控制器的输出信号由比例项、积分项和微分项组成,可以根据需要对各项参数进行调整。

调整PID控制器的参数可以使用试错法、频率响应法等方法。

四、系统仿真实验使用Matlab/Simulink软件进行系统仿真实验,建立直流调速系统的模型,并对系统进行性能评估。

实验三-单闭环不可逆直流调速系统实验7页

实验三-单闭环不可逆直流调速系统实验7页

实验三-单闭环不可逆直流调速系统实验7页目的1. 了解采用脉冲宽度调制控制单相半波可控整流电路的直流电机调速系统的性能、工作原理和结构特点。

2. 掌握直流电机无速度传感器和有速度传感器调速系统的控制原理和操作方法。

3. 了解欠速、超速等异常情况下对直流电机调速系统进行保护的方法。

实验设备本实验采用全数字化交流电机直流调速装置,配备了采用脉冲宽度调制控制单相半波可控整流电路的直流电机、直流电机调速器、速度传感器、控制器、操作面板等。

初始设置1. 将直流电机通电。

2. 调速装置上电,按下系统测试键,检查系统是否正常工作。

3. 调速装置上按下参数设定键,进入参数设定界面,设置本实验所需参数。

设置如下:转矩基数:2.0N·m调速范围:0~1500r/min转速比例:P=10制动时间:1s制动电压:60%控制器型号:无速度传感器控制实验步骤(1) 在实验 System 1 中选择无速度传感器控制,按“进入”键,进入控制界面。

(2) 在控制面板上调节电位器获得所需的转矩基数,在调节完后按“回车”键。

(3) 通过“+”键或“-”键调节实际转速与设定转速之间的差值,使控制器输出的调速信号使转速趋近于设定转速。

(4) 通过“SP”键进入设定转速设置的界面,设置所需的设定转速,设置完后按“回车”键。

(5) 按下启动键,由于原来的设定转速是0r/min,转速开始加速,和设定转速的差值开始减小,控制器的输出信号越来越大,快进电机的电流越来越大,快进电机的扭矩也逐渐增大。

(6) 当实际转速接近设定转速的时候,控制器输出的调速信号被减小,电机的电流和扭矩也被减小,实际转速和设定转速之间的差值也减小,直到实际转速即为设定转速。

(7) 在设定转速下按下停止键,电机开始制动,制动时间为系统设定的1s,制动电压为60%。

(8) 如未设定转速,快进(TA)维持不变,保持电机转子位置不变。

此时转子电势低而维持高转矩状态。

(9) 在设定转速下按下停车键,电机完全停止。

实验二 不可逆单闭环直流调速系统静特性的研究

实验二  不可逆单闭环直流调速系统静特性的研究

实验二不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。

2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。

3.学习反馈控制系统的调试技术。

二.预习要求1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。

2.弄清不可逆单闭环直流调速系统的工作原理。

三.实验线路及原理见图6-7。

四.实验设备及仪表1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33(A)组件或MCL—53组件。

4.MEL-11挂箱5.MEL—03三相可调电阻(或自配滑线变阻器)。

6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。

7.直流电动机M03。

8.双踪示波器。

五.注意事项1.直流电动机工作前,必须先加上直流激磁。

2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。

5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。

6.系统开环连接时,不允许突加给定信号U g起动电机。

7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。

8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。

9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

六.实验内容1.移相触发电路的调试(主电路未通电)(a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V的双脉冲。

实验三 单闭环不可逆直流调速系统实验

实验三 单闭环不可逆直流调速系统实验

信息工程学院 11级应用电子技术(4)班吴晓强 3111002716实验三单闭环不可逆直流调速系统实验一、实验目的(1) 了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。

(2) 掌握晶闸管直流调速系统的一般调试过程。

(3) 认识闭环反馈控制系统的基本特性。

,用作ct整流”的输出电压,这就构成了速度负反馈闭环系统。

电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。

这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。

在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U,控制整流桥的“触发电路”,Ct改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。

电机的最高转速也由电流调节器的输出限幅所决定。

同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。

当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。

图3-1 转速单闭环系统原理图图3-2 电流单闭环系统原理图四、实验内容(1) DJK04上的基本单元的调试。

不变时直流电动机开环特性的测定。

(2) Uct(3) U不变时直流电动机开环特性的测定。

d(4) 转速单闭环直流调速系统。

(5) 电流单闭环直流调速系统。

五、实验方法(1) DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

实验三-单闭环不可逆直流调速系统实验

实验三-单闭环不可逆直流调速系统实验

实验三-单闭环不可逆直流调速系统实验一、实验目的本实验旨在通过实验研究单闭环不可逆直流调速系统的基本原理、调速特性和调速方法,掌握闭环调速的基本思想和方法,熟悉DC电机的调速控制原理和方法。

二、实验原理在单闭环不可逆直流调速系统中,电机的速度调节采用PID控制方式,通过控制电机的电源电压来实现调速。

具体的原理如下:1.电机的动作原理:当电枢通电后,电枢周围会产生一个磁场,同时在电枢内产生一个磁场,这两个磁场互相作用产生力矩,从而将电枢带动转动。

2.电机的调速控制:通过改变电机的电源电压来实现对电机的调速控制,电源电压越高,电机的转速越快,电源电压越低,电机的转速越慢。

而电源电压的改变通常是通过PWM调制实现的。

3.PID算法:PID控制算法采用比例、积分、微分三种控制信号结合的方式实现对电机转速的控制。

比例控制用于实时调整电机转速,积分控制用于修正电机转速下降过程中的偏差,微分控制用于提高系统的动态响应速度。

三、实验步骤1.将实验电路图搭建好,并连接好电源、电机、PWM信号发生器等模块。

2.对电机进行标定:通过对电机的空载转速和负载转速进行测量,确定电机传动系数和最大负载系数。

3.进行调速实验:通过修改PWM信号发生器的占空比来改变输入电压,从而实现对电机速度的控制。

同时通过示波器和万用表实时对电流、转速、电压等参数进行测量与记录。

4.使用PID算法对电机进行调速控制,对比比例控制、积分控制、微分控制和PID控制四种方法的效果和优缺点。

四、实验结果与分析实验中我们对电机的标定得到了电机的传动系数约为0.0134,最大负载系数为0.39。

在进行调速实验时,我们可以明显地感受到PWM信号发生器占空比的改变会对电机的转速产生影响。

同时通过测量和记录不同占空比下的电流、转速、电压等参数,我们可以得到调速系统的调速特性曲线。

通过加入PID算法,我们可以明显地感受到PID控制的稳定性和动态性,相比其他三种控制方法,PID控制能够更快速地达到稳定状态,同时产生的超调也更小。

实验一-单闭环直流调速系统仿真

实验一-单闭环直流调速系统仿真

图2-49 传递函数模块对话框
阶跃时刻, 可改到0 。
阶跃值,可 改到10 。
图2-50 阶跃输入模块对话框
填写所需要 的放大系数
图2-51 增益模块对话框
图2-52
Integrator模块对话框
积分饱和值, 可改为10。
积分饱和值,可 改为-10。
(4)模块连接
以鼠标左键点击起点模块输出端,拖动鼠标至终 点模块输入端处,则在两模块间产生“→”线。
图2-56 无超调的仿真结果
K p 0.8
1 15
系统转速的响应 的超调较大、但 快速性较好。
图2-57 超调量较大的仿真结果
SIMULINK软件的仿真方法为系统设计提 供了仿真平台,可以选择合适的PI参数, 满足系统的跟随性能指标。
在《自动控制理论》课程中讨论了多种PI 调节器的设计方法,MATLAB也为它们的 实现提供了模块。
仿真模型的运行
(1)仿真过程的启动:单击启动仿真工具条的按钮 或选择Simulation→Start菜单项,则可启动仿真过 程,再双击示波器模块就可以显示仿真结果。
(2)仿真参数的设置:为了清晰地观测仿真结果, 需要对示波器显示格式作一个修改,对示波器的 默认值逐一改动。改动的方法有多种,其中一种 方法是选中SIMULINK模型窗口的 Simulation→Configuration Parameters菜单项,打 开仿真控制参数对话框,对仿真控制参数进行设 置。
关于直流电动机调速系统的PI设计,将在 第3章中作详细的论述。
对应额定转速时的给定电压
U
* n
10V

图2-45 比例积分控制的直流调速系统的仿真框图
仿真模型的建立
进入MATLAB,单击 MATLAB命令窗口工 具栏中的SIMULINK 图标,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计单闭环不可逆直流调速系统仿真实验设计指导教师:学院:专业:班级:姓名:学号:目录任务书 (3)概述 (4)原理 (5)建模与参数设置 (12)仿真结果及分析 (16)参考文献 (17)附图 (18)任务书单闭环不可逆直流调速系统仿真实验设计1.画出系统的仿真模型2.主电路的建模和模型的参数设置(1)三相对称交流电压源的建模和参数设置(2)晶闸管整流的建模和参数设置(3)平波电抗器的建模和参数设置(4)直流电动机的建模和参数设置(5)同步脉冲触发器的建模和参数设置3.控制电路的建模和参数设置4.系统的仿真参数设置5.系统的仿真,仿真结果的输出及结果分析6.打印说明书(B5),并交软盘(一组)一张。

注意事项:1.系统建模时,将其分成主电路和控制电路两部分分别进行2.在进行参数设置时,晶闸管整流桥、平波电抗器、直流电动机等的参数设计原则如下:如果针对某个具体参数设置,则对话框的有关参数应取装置的实际值;如果不针对某歌剧厅的装置的一般情况,可先去这些装置的参数默认值进行仿真。

若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。

3.给定信号的变化范围、调节器的参数的反馈检测环节的反馈系数等可调参数的设置,其一般方法是通过仿真试验,不断进行参数优化。

4.仿真时间根据实际需要而定,以能够仿真出完整的波形为前提。

5.仿真算法的选择:通过仿真实践,从仿真能否进行、仿真的速度、仿真的精度等方面进行选择。

为了提高直流调速系统的动静态性能指标,通常采用闭环系统。

对调速指标要求不高的场合,采用单闭环系统,按反馈的方式不同分为转速反馈、电流反馈、电压反馈、本次设计中采用的为单闭环不可逆直流调速系统。

转速单闭环系统原理如图1所示,图中将反映转速变化的电压信号作为反馈信号,经速度变换后接到电流调节器的输入端,与给定的电压相比较经放大后,得到移相控制电压Uct,用作控制整流桥的触发电路,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变三象全控整流电路的输出电压,这就构成了速度反馈闭环系统。

电动机的转速随着给定电压变化,电动机的最高转速由电流调节器的输出限幅所决定,电流调节器为比例积分调节器,这是挡给定电压恒定时,闭环系统队速度变化起到了抑制作用,当电动机负载或电源电压波动时,电动机的转速能稳定在一定的范围内变化。

图1 转速单闭环系统原理图该系统由给定信号、速度调节器、同步脉冲触发器、晶闸管整流桥、平波电抗器,直流电动机速度反馈等部分组成。

在仿真实验设计中采用了面向电气原理结构图方法构建的单闭环转速负反馈直流调速系统的仿真模型。

1.转速反馈闭环调速系统是一种基本的反馈控制系统,它具有下述三个基本特征,也就是反馈控制的基本规律。

1)只用比例放大器的反馈控制系统,其被调量仍是有静差的。

2)反馈控制系统的作用是:抵抗扰动,服从给定。

3)系统的精度依赖于给定和反馈检测的精度。

转速负反馈闭环直流调速系统稳态结构框图反馈控制闭环调速系统的动态结构框图2.三相全控桥式整流电路1)系统原理如图2(图2为晶闸管直流调速实验系统原理图,实验系统的主电路为三相全控桥式整流电路)图2 晶闸管直流调速实验系统原理图2)工作原理可控整流是把交流电变成大小可调的直流电,把晶闸管和整流二极管都堪称理想元件,即导通时的正向电压江和关断时的漏电流均忽略不计,并且导通榆关断都是瞬时完成的。

共阴极组的自然换向点在wt1、wt3、wt5时刻,分别触发晶闸管VT1,VT3,VT5共阴极组的自然换向点在wt2,wt4,wt6时刻分别VT2,VT4,VT6触发晶闸管。

两族的自然换向点对应相差60°,电路对应在本组内换流,即vt1-vt3-vt5-vt1…,vt2—vt4–vt6–vt2…,每个管子轮流导通120°,对共阴极而言,其输出电压波形是三项相电压波形的正半周的包络线;对共阳极组而言其输出电压波形是三项相电压波形的负半周的包络线。

三相桥式全控整流的输出电压为两组输出电压之和,是相电压波形正负包络线下的面积,当a≤60°时,Ud的波形均为正值。

所以本设计中a≤60°。

三相桥式全控整流电路在任何时刻必须保证有两个晶闸管同时导通才能构成电流回路.晶闸管换流只在本组内进行,每隔120度环流一次。

三相桥式全控整流电路的负载电压ud波形是六个不同的线电压的组合,当a=0度时,为三相线电压的正向包络线,每周期脉动六次,基波频率为30HZ,其脉动系数S U=0.05,基本是一个平稳的直流。

带大电感负载时,其平均值为Ud=2.34U2ΦCOSa=1.35U2l COSa (0°≤a≤90°)三相全控桥式整流电路控制角a的起算点为相邻相电压的交点。

由于线电压超前相电压30°。

所以波形上a距波形原点的距离为a+30°。

⒉平波电抗器再V-M系统中,脉动的电流会增加电机的发热,同时也增加脉动转矩,对机械产生不利。

为了避免或减轻这种影响,需采用抑制电流脉动的措施,主要是:⑴增加整流电路相数,或采用多重化技术。

⑵设置平波电抗器本次试验中采用设置平波电抗器的方式。

平波电抗器的电感一般按低速轻载时保证电流连续的条件来选择。

通常首先给定最小电流Idmin,再利用他计算所的总电感,减去电枢电感,即的平波电抗应有的电感值。

对于三相桥式整流电路,L=0.693U2/Idmin Idmin一般为电动额定电流的5%到10% (此公式出自《电力拖动自动控制系统》)经计算可的平波电抗器的电感值为5e-3(5×0.001)⒊直流电动机在电动运行时,转速稍低,Ea﹤U,电流方向由电网顺电压U方向流向电机。

⑴.他励直流电动机的等效电路图⑵.额定励磁下直流电动机动态结构图在零初始条件下,去等式两侧的拉氏变换,得电压与电流间的传递函数,电流与电动势的传递函数⑶.整个电动机的动态结构图当Idl=0时,结构图化简为当Idl≠0时,结构图化简为⒋同步脉冲触发器为了保证整流装置能启动,或在电流断续后再导通,必须对两组中应导通的一对晶闸管同时加触发脉冲,本次是设计中采用加宽脉冲的方式,使每个脉冲的宽度大于60°,取脉冲的宽度为90°。

脉冲的移项范围在大电感负载时为0°~90°由公式Ud=1.35U2lCOSa得,a=45°(此公式出自《电力拖动自动控制系统》)⒌控制与检测环节的传递函数直流闭环调速系统中的其他环节还有比例放大器和测速反馈环节,他们的相应都可以认为是瞬时的,为此他们的传递函数就是他们的放大系数,即放大器测速反馈⒍电流截止负反馈环节为了解决反馈闭环调速系统的起动和堵转时电流过大的问题,系统中必须有自动限制电枢电流的环节。

根据反馈控制原理,要维持哪一个物理量基本不变,就应该引入那个物理量的负反馈。

那么,引入电流负反馈,应该能够保持电流基本不变,使它不超过允许值。

考虑到,限流作用只需在起动和堵转时起作用,正常运行时应让电流自由地随着负载增减。

如果采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。

这种方法叫做电流截止负反馈,简称截流反馈。

电流截止负反馈环节如下图:带电流截止负反馈的闭环直流调速稳态结构图由上图可写出该系统两段静特性的方程式如下:当I d≤I dcr时,电流负反馈被截止,静特性和只有转速负反馈调速系统的静特性式相同,即:当I d I dcr时,引入了电流负反馈,静特性变成带电流截止负反馈闭环调速系统的静特性如下:由曲线可以看出电流负反馈的作用相当于在主电路中串入一个大电阻K p K s R s ,因而稳态速降极大,特性急剧下垂。

比较电压U com 与给定电压U n* 的作用一致,好象把理想空载转速提高到即把理想空载转速提高到D。

电流截止负反馈环节参数设计:1、I db l应小于电机允许的最大电流,一般取I db l =(1.5~2)I N2、从调速系统的稳态性能上看,希望稳态运行范围足够大,截止电流应大于电机的额定电流,一般取I dcr ≥(1.1~1.2)I N6 控制电路工作原理:工作时测速发电机与电动机安装在同一电机导轨上,并且它们同轴运行。

测速发电机分为直流测速发电机和交流测速发电机。

我们此处用的测速发电机为直流发电机,测速发电机定子上装有磁极,转子上有电枢绕组,与普通的电机一样,它的换向也由装在转子上的换向片与装在定子上的电刷来完成。

首先我们给励磁绕组加一电压U f ,励磁电流为I f。

E, U, I分别为测速发电机的电动势,电压及电流,R fz 为负载电阻。

如果磁场不变,则有 U=E —I ×Ra=Ce Φn —Rfz U Ra ,即为n RfzRa Ce U +Φ=1 ,从中我们可以看出,只要R fz Ra 不变则输出电压与转速成正比。

所以我们将负载电阻取一总电阻不变的滑动变阻器,通过滑动变阻器取其部分电压作为反馈电压Un 。

又因测速发电机与电机同轴,也即测速发电机与电机同速,测速发电机的输出电压与电机的转速成正比。

而Un 又与测速发电机的输出电压U 成正比,即Un 与电机的转速成正比,从而实现了速度反馈成对应的反馈电压,与给定电压相叠加,从而影响主回路的输入电压进而影响电机两端的电压,改变电机的转速,最终实现对转速的反馈控制。

建模与参数设置在本课程设计中,选取了转速单闭环系统并对其进行仿真实验设计。

1)系统的建模包括主电路的建模和控制电路的建模两部分。

⑴主电路的建模和参数设置闭环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机、同步脉冲触发器等部分组成,主电路见附图Ⅰ。

①三相对称交流电压源的建模和参数设置:首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A相”、“B相”、“C相”,然后从连接器模块组中选取“Ground”元件和“Bus Bar”元件。

为了得到三相对称交流电压源,其参数设置方法及参数设置如下。

双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置为0°,频率为50Hz,其他为默认值,如图Ⅲ所示。

B、C相交流电源参数设置方法与A相基本相同,除了将初相位设置成互差120°外,其他参数与A相相同。

由此可得到三相交流电压源。

②晶闸管整流桥的建模和参数设置。

首先从电力电子模块中选取“Univeral Bridge”模块,并将模块标签改为“晶闸管整流桥”,然后双击模块图标,打开SCR整流桥参数设置对话框,参数设置如图3所示。

当采用三相整流桥时,桥臂数取3,A、B、C三相交流电源接到整流桥的输入端,电力电子元件选择晶闸管。

相关文档
最新文档