螺纹轴的加工与分析

合集下载

螺纹轴加工与工艺

螺纹轴加工与工艺

螺纹轴加工与工艺第一章螺纹轴简述工艺分析与设计1.1 螺纹的简述在轴类零件的加工表面,车出螺旋线形状的相等截面和连续凸起部分叫螺纹,按照工件的形状可分为圆柱螺纹和圆锥螺纹;按其错在工件的位置可分为外螺纹、内螺纹,按照截面压型的形状可分为三角形螺纹、矩形螺纹、梯形螺纹、及其他特殊型螺纹,三角形螺纹主要用于两物体的连接、紧固。

按照螺旋线的分类可分为左旋螺纹和右旋螺纹,加工方向的不同所得到的螺旋线方向不同,按螺旋线的数量可分为单线螺纹、双线螺纹及多线螺纹。

按其使用的场合这些种类功能都不同。

1.2数控加工工艺分析和设计数控加工工艺分析的规程是:充分考虑采取各种措施保证产品质量,以最低的成本保证要求的生产率。

在制定工艺规程时,应尽力做到技术上先进,经济上合理并具有良好的生产条件。

制定工艺规程的工作主要包括准备工作、工艺过程的拟定和工序设计三个阶段,其内容步骤如下:(1)分析零件图和产品装配图;(2)选择毛胚;(3)选择定位基准;(4)拟定工艺路线;(5)确定加工余量和工序尺寸;(6)确定切削用量和时间;(7)确定各工序的设备、刀具夹具量具及辅助工具;(8)确定工序的技术要求及检验方法;(9)确定所有准备的合理性;在准备阶段工作的基础上,拟定以工序为单位的加工工艺过程再对每个工序确定详细内容,将所有步骤反复检查修改。

最后对制定的工艺规程进行综合分析与评价,看能否满足所设计的要求。

本设计零件有端面、倒角、圆弧、锥度、槽、螺纹。

该类零件适合数控车床加工,选择华中系列的数控机床。

加工工艺路线的拟定是制造工艺过程的总体布局,其主要任务是选择各个表面的加工方法,确定各个表面的加工顺序以及整个工艺过程中工序的数目,各个工序内容拟定过程中应首先确定各次加工定位基准和装夹方法。

然后再将所需的辅助、任务处理等工序插入相应的顺序中,得到工件的加工工艺路线。

1.2.1工艺基准在零件加工、测量和装配过程中所使用的基准,称为工艺基准。

数控车工教案《螺纹轴的加工》(修正)

数控车工教案《螺纹轴的加工》(修正)

教案说明本教案内容是《数控车工》(高级)FANUC系统B类宏程序学习后进行的一次综合训练,通过螺纹轴的加工,使学生掌握B类宏程序的应用,能根据图纸要求编制合理的加工工艺,同时进一步提高学生加工螺纹的技能水平及在加工中如何控制工件的尺寸精度及表面质量。

整个教学过程分为两大部分,第一部分为专业理论知识,通过教师展示实习任务,逐步引导学生分析图形,思考加工工艺,填写工艺卡片,编制程序,教师对比点评及模拟加工等多种教学方法,活跃了课堂气氛,激发了学生学习的积极性,为后面的实作训练打下良好的理论基础。

第二部分为专业实作训练,在整个训练中,教师将理论知识转化为现场操作演示,并由学生模仿加工,培养了学生的观察能力和动手能力,再通过学生分组操作练习,教师巡回检查指导,提高了学生的操作水平;最后引导学生对加工工件进行自评、互评,提高了学生分析问题和解决问题的能力,激发了学生学习的兴趣,使学生体验到理实一体化课程的乐趣。

本节教学内容力求充分体现教学内容的基础性、教学方法的灵活性、教师的“做中教”和学生的“做中学”,有机地结合在一起,不仅达到了任务目标,也突破了教学重难点。

在课堂最后,通过教师的综合点评,学生的总结反思、课后作业,进一步巩固了所学知识,并为下次的学习打下良好的基础!《数控车工》一体化教案教案首页教学过程的设计的重视。

三、讲授新课:实习任务展示:《螺纹轴》(项目引领法、提问法、讲授法等)1、实习任务分析:(10)(1)在这个图形中,包括了椭圆,台阶轴、锥度、螺纹退刀槽及螺纹的加工等实习内容,难点在于椭圆编程及螺纹的加工,涉及计算的有椭圆公式的变换、锥度的计算以及螺纹相关尺寸的确定。

PPT本习内容。

提问:1看的不难?2任了级的内容?最点评总结,并正学时表扬。

级进行加工,教师提问:的外圆,第二次掉头夹持工件椭圆的标准方程为:x2/a2+y2/b2=1(其中a和b分别是椭圆的长半根据上图由椭圆原点向编程原点进行转换: x=2*x z=z-20锥度计算:锥度公式:锥度=(d 大—d 小)/L d 大=40螺纹尺寸:车螺纹的导入距离L1≈2*P=3车螺纹的导出距离L2≈2车螺纹前的外圆直径d 杆≈d-0.1P=29.85 螺纹的小径d1≈d-1.2P=28.2mm通过计算,得出了我们需要的数据,接下来就将这些数据正确地用在我们的编程中吧。

钳工基础第七章螺纹加工详解课件

钳工基础第七章螺纹加工详解课件

煤油、75%煤油+25%植物油

机械油、硫化油、75%煤油+25%矿物油

50%煤油+50%机械油、85%煤油+15%亚麻油、煤油、松节 油
第35页,共52页。
2.攻螺纹方法
(1)在螺纹底孔的孔口处要倒角,通孔螺纹
的两端均要倒角,这样可以保证丝锥比较
容易地切入,并防止孔口出现挤压出的凸
边。
(2)攻螺纹前,工件的装夹位置要正确,应
M16×1-5g6g M-普通螺纹 16-公 称直径(大径Ф16)×1-螺距是 1mm(粗牙不标螺距) 右旋(旋向未 标表示右旋螺纹) 5g-中径公差带 代号 6g-顶径公差带代号中等旋 和长度
连接紧固
第9页,共52页。
螺纹种类 代号 牙形角
标记举例
用途
管螺纹
G
55°60°
(非本项目主要内容详情请查阅国家 标准)
将圆杆端部做成15°~20°的倒角,且倒 角小端直径应小于螺纹小径。 (2)由于套螺纹的切削力较大,且工件为圆 杆,套削时应用V形夹板或在钳口上加垫铜 钳口,保证装夹端正、牢固。
(1).攻螺纹前底孔直径的计算
对于普通螺纹来说,底孔直径可根据下列经验公式
计算得出:
脆性材料
D底=D1.05P (铸铁)
塑性材料 D底=DP (钢及有色金属)
式中,D底——底孔直径; D——螺纹大径;
P——螺距。
第31页,共52页。
例:分别在中碳钢和铸铁上攻M162的螺纹, 求各自的底孔直径。 解:因为中碳钢是韧性材料 所以底孔直径为:
5、GB3464-83规定:手用和机用普通螺 纹丝锥有粗牙、细牙之分,有粗柄、细柄之 分,有单支和成组之分,有等径和不等径之

识读螺纹轴零件图

识读螺纹轴零件图

螺纹
细牙
M


管螺纹
G
就是最常用得联接螺纹 用于细小得精密或薄壁零件
用于水管、油管、气管等薄壁 管子上,用于管路得联接。

梯形螺纹
Tr


纹 锯齿形
螺纹
B
用于各种机床得丝杠,做 传动用。
只能传递单方向得动力。
三、 外螺纹画法
大径线画粗实线
倒角圆不画
小径线画细实线且画到
倒角内
螺纹终止线画粗
小径≈0.85d
识读螺纹轴零件图
制在零件外表面上得螺纹叫外螺纹。
2、 螺纹得加工方法
螺纹得加工方法很多,常见加工螺纹得方法如图所示。
制 在 零 件 孔 腔 内 表 面 上 得 螺 纹 叫 内 螺 纹。
图 螺纹得加工方法
3、 螺纹末端结构
倒角(圆锥面)
平顶 圆顶(球面)
螺尾
螺纹收尾 退刀纹
退刀槽
外退刀槽
退出车刀
右旋
左旋
中径和顶径 公差带代号
长:L 中等:N 短:S
☆单线螺纹 导程(P螺距) 改为 螺距 。 ☆粗牙螺纹不标注螺距。 ☆右旋螺纹不用标注旋向,左旋时则标注LH。 ☆公差带代号应按顺序标注中径、顶径公差带代号。
☆旋合长度为中等时,“N”可省略。
⒉ 标注示例
例1: M20×2LH-5g6g-S
普通螺纹 大径d=20 螺距P2 (细牙)
内螺纹
d d2 d1
图 螺纹得直径
外螺纹
3、 螺纹得线数 n
沿一条螺旋线形成得螺 纹叫做单线螺纹;沿两条或 两条以上在轴向等距分布得 螺旋线所形成得螺纹叫做多 线螺纹。
单线螺纹
双线螺纹

干货,螺纹加工常见问题及解决方法,车工必备

干货,螺纹加工常见问题及解决方法,车工必备

扎刀1、主要原因(1)车刀的前角太大,机床X轴丝杆间隙较大;(2)车刀安装得过高或过低;(3)工件装夹不牢;(4)车刀磨损过大;(5)切削用量太大。

2、解决方法(1)减小车刀前角,维修机床调整X 轴的丝杆间隙,利用数控车床的丝杆间隙自动补偿功能补偿机床X 轴丝杆间隙。

(2)车刀安装得过高或过低:过高,则吃刀到一定深度时,车刀的后刀面顶住工件,增大摩擦力,甚至把工件顶弯,造成扎刀现象;过低,则切屑不易排出,车刀径向力的方向是工件中心,加上横进丝杠与螺母间隙过大,致使吃刀深度不断自动趋向加深,从而把工件抬起,出现扎刀。

此时,应及时调整车刀高度,使其刀尖与工件的轴线等高(可利用尾座顶尖对刀)。

在粗车和半精车时,刀尖位置比工件的中心高出1%D左右(D表示被加工工件直径)。

(3)工件装夹不牢:工件本身的刚性不能承受车削时的切削力,因而产生过大的挠度,改变了车刀与工件的中心高度(工件被抬高了),形成切削深度突增,出现扎刀,此时应把工件装夹牢固,可使用尾座顶尖等,以增加工件刚性。

(4)车刀磨损过大:引起切削力增大,顶弯工件,出现扎刀。

此时应对车刀加以修磨。

(5)切削用量(主要是背吃刀量和切削速度)太大:根据工件5 导程大小和工件刚性选择合理的切削用量。

乱扣1、故障现象当丝杠转一转时,工件未转过整数转而造成的。

2、主要原因(1)机床主轴编码器同步传动皮带磨损,检测不到主轴的同步真实转速;(2)编制输入主机的程序不正确;X轴或Y轴丝杆磨损。

3、解决方法(1)主轴编码器同步皮带磨损由于数控车床车削螺纹时,主轴与车刀的运动关系是由机床主机信息处理中心发出的指令来控制的,车削螺纹时,主轴转速恒定不变,X 或Y 轴可以根据工件导程大小和主轴转速来调整移动速度,所以中心必须检测到主轴同步真实转速,以发出正确指令控制X 或Y 轴正确移动。

如果系统检测不到主轴的真实转速,在实际车削时会发出不同的指令给X或Y,那么这时主轴转一转,刀具移动的距离就不是一个导程,第二刀车削时螺纹就会乱扣。

螺纹轴的加工与分析.

螺纹轴的加工与分析.
图2.1 螺纹加工路线
如图2.1,编程中,每次螺纹加工走刀至少有4次基本运动(直螺纹)。
运动①:将刀具从起始位置X向快速(G00方式)移动至螺纹计划切削深度处。
运动②:加工螺纹——轴向螺纹加工(进给率等于螺距)。
运动③:刀具X向快速(G00方式)退刀至螺纹加工区域外的X向位置。
运动④:快速(G00方式)返回至起始位置。

随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子计算机、信息处理、自动检测、自动控制等高薪技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集体化、智能化起着举足轻重的作用。同时,市场对产品的质量和生产效率提出了越来越高的要求。根据数控车削加工的工艺方法,安排工序的先后顺序,确定刀具的选择和切削用量的选择等设计。一般生产加工中,螺纹的加工方式多采用攻丝这种传统工艺,随着数控技术的发展、软件的创新、控制精度的提高、三轴联动或多轴联动数控系统的产生及其在生产领域的广泛应用,相应的先进加工工艺——螺纹铣削逐渐得以实现,其加工精度、光洁度以及柔性是攻丝无法比拟的,另外其经济性在某种情况下也更优于传统工艺。良好的结构工艺性,可以使零件加工容易,节省工时和材料。而较差的零件零件工艺性,会使加工困难,浪费工时和材料,有时甚至无法加工。因此,零件各加工部位的结构工艺性应符合数控加工的特点。
图1.3
H=0.866Pd2=d–0.6495Pd1=d–1.0825Pα=60°
D、d-内、外螺纹大径D2、d2-内、外螺纹中径D1、d1-内、外螺纹小径P-螺距
2三角螺纹的加工
2.1 螺纹加工概念及加工工艺

第六章 螺纹加工

第六章 螺纹加工

三、梯形螺纹车刀的装夹
螺纹车刀的刀尖应与工件轴线等高,两切削刃夹角的平分 线应垂直于工件轴线,装夹时用梯形螺纹对刀样板校正,以免 产生螺纹半角误差。
四、梯形螺纹车削注意事项
1. 加工梯形螺纹时应采用左右借刀法加工,避免刀具三刃 口同时切削,产生扎刀。 2. 螺纹的牙型角要正确,螺纹牙型两侧面的表面粗糙值要 小。 3. 螺纹加工过程中,应注意不得改变转速,否则会乱牙。
第六章 螺纹加工
在各种机电产品中,螺纹的应用十分广泛,如螺钉、螺 母、螺杆、丝杠等。 用途:它主要用于连接各种机件,也可用来传递运动和载 荷。 主要分类: 按螺纹的牙型——三角形、梯形、锯齿形、圆形等; 按螺纹的外廓形状——圆柱螺纹、圆锥螺纹。
螺纹轴套零件图
第一节 等距螺纹的加工 第二节 多线螺纹的加工 第三节 梯形螺纹的加工
二、运用子程序加工梯形螺纹
上例中的螺纹加工也可用左右切削法,可调用子程序重复 进刀切削。
(下一页续表)
续表
梯形螺纹的加工方法
一、梯形螺纹的一般技术要求
梯形螺纹的轴向剖面形状是等腰梯形。用作传动,精度要 求高,表面粗糙值小,车削梯形螺纹比车削三角螺纹困难。梯 形螺纹的一般技术要求如下: 1. 螺纹的中径必须与基准轴颈同轴,其大径尺寸应小于基 本尺寸。
毛坯为φ45mm×75mm的45钢,用G71、G92指令进行编程, 加工该零件。
实例零件图
一、工艺分析
1. 夹住毛坯φ45mm外圆,伸出大于40mm长→粗车 φ34mm外圆至φ34.5mm→粗车φ24mm外圆至φ24.5mm,精 车外轮廓至尺寸。 2. 换4mm车槽刀加工退刀槽。 3. 换外三角螺纹刀粗、精加工M24×3(1.5)-6g外 螺纹至尺寸。
k :螺纹的牙深。半径值,单位为μm。

双线螺纹零件加工

双线螺纹零件加工

表3.14 刀具卡
产品名称
双线螺纹零 零件 件加工 名称
零件图 号
3-10
序号 刀具号 刀具名 数量 加工 刀尖半径 刀尖方位 备注

表面
90º硬
粗车
1 T1 质合金 1 阶梯 0.4mm
3
偏刀

93º硬
精车
2 T2 质合金 1 阶梯 0.2mm
3
偏刀

3
T3
硬质合 金切刀
1
切 槽、 切断
刀宽4mm
车至Ф34外圆公差中值
车Ф42外圆 快速退刀至换刀点 关闭切削液 主轴停 换刀T0202 主轴正转,转速为800r/min,进给量 0.12mm/r 打开冷却液 快速进刀至循环起点 精车循环 快速退刀至换刀点 切削液停 主轴停 换切刀 主轴正转,转速为350r/min,进给量 0.25mm/r 切削液开 快速进刀至第一刀切槽起点 切槽第一刀留0.5mm余量 暂停1s 快速退刀至第一刀切槽起点 快速退刀至第二刀切槽起点 切槽第二刀 暂停1s 车槽底
60º硬质
车外
4
T4 合金螺纹
车刀
1
螺纹
0.2
编制
审核


共1页
2.加工工艺方案
(1)加工工艺路线
如图3-10所示,根据零件的工艺特点和毛坯尺寸
Ф45×100mm,确定零件加工方案 。
① 采用三爪自定心卡盘装卡,零件伸出卡盘85mm,加工
零件外轮廓至尺寸要求后切断,留0.5 mm余量。设置编程原点
在工件右端面的轴线上。
快速定位至循环起点
N530 G92 X29.2 Z-24.0 螺纹车削循环第一刀,切深
F4.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。

在现代制造系统中,数控技术是关键技术,它集微电子计算机、信息处理、自动检测、自动控制等高薪技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集体化、智能化起着举足轻重的作用。

同时,市场对产品的质量和生产效率提出了越来越高的要求。

根据数控车削加工的工艺方法,安排工序的先后顺序,确定刀具的选择和切削用量的选择等设计。

一般生产加工中,螺纹的加工方式多采用攻丝这种传统工艺,随着数控技术的发展、软件的创新、控制精度的提高、三轴联动或多轴联动数控系统的产生及其在生产领域的广泛应用,相应的先进加工工艺——螺纹铣削逐渐得以实现,其加工精度、光洁度以及柔性是攻丝无法比拟的,另外其经济性在某种情况下也更优于传统工艺。

良好的结构工艺性,可以使零件加工容易,节省工时和材料。

而较差的零件零件工艺性,会使加工困难,浪费工时和材料,有时甚至无法加工。

因此,零件各加工部位的结构工艺性应符合数控加工的特点。

1 螺纹的简述1.1螺纹的介绍螺纹的形成。

一个与轴线共面的平面图形(三角形、梯形等)沿圆柱面作螺旋运动所生成的螺旋体,工程上称之为螺纹。

如图1.1。

外螺纹内螺纹图1.1在圆柱或圆锥母体表面上制出的螺旋线形的、具有特定截面的连续凸起部分。

螺纹按其母体形状分为圆柱螺纹黑圆锥螺纹;按其在母体所处的位置分为外螺纹、内螺纹(如图1.2,按其截面形状(牙型)分为三角螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹及其他特殊形螺纹,三角形螺纹主要用于连接,矩形、梯形和锯齿形罗螺纹主要用于传动;按螺旋线方向分为左旋螺纹和右旋螺纹,一般用右旋螺纹;按螺旋线的数量分为单线螺纹和双线螺纹及多线螺纹;连接用的多为单线螺纹,传动用的采用双线或多线;按牙的大小分为粗牙螺纹和细牙螺纹等,按适用场合和功能不同,可分为紧固螺纹、管螺纹、传动螺纹、专用螺纹等。

图1.2外螺纹内螺纹1.2 螺纹分类1、螺纹种类螺纹按用途可分为联接螺纹和传动螺纹两类。

常用标准螺纹的种类及用途可参看表1。

2、螺纹标记的标注当螺纹精度要求较高时,除标注螺纹代号外,还应标注螺纹公差带代号和螺纹旋合长度。

螺纹标记的标注格式为:螺纹代号+螺纹公差带代号(中径、顶径)+旋合长度。

例如;M36X3M代表普通三角形螺纹36代表公称直径3代表螺距1.3 圆柱螺纹的主要几何参数①外径(大径),与外螺纹牙顶或内螺纹牙底相重合的假想圆柱体直径。

螺纹的公称直径即大径。

②内径(小径),与外螺纹牙底或内螺纹牙顶相重合的假想圆柱体直径。

③中径,母线通过牙型上凸起和沟槽两者宽度相等的假想圆柱体直径。

④螺距,相邻牙在半径线上对应两点间的轴向距离。

⑤导程,同一螺旋线上相邻牙在中径线上对应两点间的轴向距离。

⑥牙型角,螺纹牙型上相邻两牙侧间的夹角。

⑦螺纹升角,中径圆柱上螺旋线的切线与垂直于螺纹轴线的平面之间的夹角。

⑧工作高度,两相配合螺纹牙型上相互重合部分在垂直于螺纹轴线方向上的距离等。

螺纹的公称直径除管螺纹以管子内径为公称直径外,其余都以外径为公称直径。

螺纹已标准化,有米制(公制)和英制两种。

国际标准采用米制,中国也采用米制。

图1.3H=0.866P d=d–0.6495P d1=d–1.0825P α=60°2D、d-内、外螺纹大径D、d2-内、外螺纹中径D1、d1-内、外螺纹小径2P-螺距2 三角螺纹的加工2.1 螺纹加工概念及加工工艺螺纹加工是在圆柱上加工出特殊形状螺旋槽的过程,螺纹的常见的用途是连接紧固、传递运动等。

螺纹常见的加工方法有:滚丝或螺纹成型、攻丝、铣削螺纹、车削螺纹等。

CNC车床可加工出高质量的螺纹,本章主要用CNC车床车削螺纹的工艺编程方法。

车削螺纹加工是在车床上,控制进给运动与主轴旋转同步,加工特殊形状螺旋槽的过程。

螺纹形状主要由切削刀具的形状和安装位置决定。

螺纹导程由刀具进给量决定。

CNC编程加工最多的是普通螺纹,螺纹牙形为三角形,牙型角为60°,普通螺纹分粗牙普通螺纹和细牙普通螺纹。

粗牙普通螺纹的螺距是标准螺距,其代号用字母“M”及公称直径表示,如M16、M12等。

细牙普通螺纹代号用字母“M”及公称直径×螺距表示,如M24×1.5、M27×2等。

普通螺纹加工刀具刀尖角通常为60°,螺纹车刀片的形状跟螺纹牙型一样,螺纹刀切削不仅用于切削,而且使螺纹成型。

螺纹车刀的种类、材质较多,选择时要根据被加工材料的种类合理选,材料的牌号要根据不同的加工阶段来确定。

对于45#圆钢材质,宜选用YT15硬质合金车刀,该刀具材料既适合于粗加工也适合于精加工,通用性较强,对数控车床加工螺纹而言是比较适合的。

另外,还需要考虑螺纹的形状误差与磨制的螺纹车刀的角度、对称度。

车削45钢螺纹,刃倾角为10°,主后角为6°,副后角为4°,刀尖角为59°16’,左右刃为直线,而刀尖圆弧半径则由公式R=0.144P确定(其中P为螺距),刀尖圆角半径很小在磨制时要特别细心装夹外螺纹车刀时,刀尖应与主轴线等高 (可根据尾座顶尖高度检查)。

车刀刀尖角的对称中心线必须与工件轴线垂直,装刀时可用样板来对刀。

一个螺纹的车削需要多次切削加工而成,每次切削逐渐增加螺纹深度,否则,刀具寿命也比预期的短得多。

为实现多次切削的目的,机床主轴必需恒定转速旋转,且必须与进给运动保持同步,保证每次刀具切削开始位置相同,保证每次切削深度都在螺纹圆柱的同一位置上,最后一次走刀加工出适当的螺纹尺寸、形状、表面质量和公差,并得到合格的螺纹。

图2.1 螺纹加工路线如图2.1,编程中,每次螺纹加工走刀至少有4次基本运动(直螺纹)。

运动①:将刀具从起始位置X向快速(G00方式)移动至螺纹计划切削深度处。

运动②:加工螺纹——轴向螺纹加工(进给率等于螺距)。

运动③:刀具X向快速(G00方式)退刀至螺纹加工区域外的X向位置。

运动④:快速(G00方式)返回至起始位置。

(1)螺纹切削起始位置螺纹切削起始位置,既是螺纹加工的起点,又是最终返回点,必须定义在工件外,但又必须靠近它。

X轴方向每侧比较合适的最小间隙大约为2.5mm,粗牙螺纹的间隙更大一些。

Z轴方向的间隙需要一些特殊考虑。

在螺纹刀接触材料之前,其速度必须达到100%编程进给率。

由于螺纹加工的进给量等于螺纹导程,所以需要一定的时间达到编程进给率。

如同汽车在达到正常行驶速度以前需要时间来加速一样,螺纹刀在接触材料前也必须达到指定的进给率,确定前端安全间隙量时必须考虑加速的影响,故必须设置合理的导入距离。

导入距离一般为螺纹导程长度的3~4倍。

同理,螺纹切削结束前,存在减速问题,故必须合理设置的导出距离。

在某些情况下,由于没有足够空间而必须减小Z轴间隙,惟一的补救办法就是降低主轴转速(r/min)——不要降低进给率。

(2)从螺纹退刀为了避免损坏螺纹,刀具沿Z轴运动到螺纹末端时,必须立即离开工件,退刀运动有两种形式——沿一根轴方向直线离开(通常沿X轴),或沿两根轴方向斜线离开(沿XZ 轴同时运动),如图2.2所示。

(a)直线退出 (b)斜线退出图2.2螺纹退刀通常如果刀具在比较开阔的地方结束加工,例如退刀槽或凹槽,那么可以使用直线退出,车螺纹Z向终点位置一般选在退刀槽的中点,使用快速运动G00指令编写直线退出动作,如果刀具结束加工的地方并不开阔,那么最好选择斜线退出,斜线退出运动可以加工出更高质量的螺纹,也能延长螺纹刀片的使用寿命。

斜线退出时,螺纹加工G代码和进给率必须有效。

退出的长度通常为导程,推荐使用的角度为45°,退出程序如下:(3)螺纹加工直径和深度由于螺纹不能一次切削加工出所需深度,所以总深度必须分成一系列可操控的深度,每次的深度取值,不仅要考虑螺纹直径,还要考虑加工条件:刀具类型、材料以及安装的总体刚度。

螺纹加工中随着切削深度的增加,刀片上的切削载荷越来越大。

对螺纹、刀具或两者的损坏可以通过保持刀片上的恒定切削载荷来避免。

要保持恒定切削载荷,一种方法是逐渐减少螺纹加工深度。

每次切削深度的计算并不需要复杂的公式,但需要一些常识和经验。

螺纹加工循环在控制系统中建立了自动计算切削深度的算法,手动计算的逻辑是一样的。

有关螺纹加工的一些数值可由下面列出经验计算方法得到:外螺纹小径=外圆直径-2×牙高;螺纹牙高=0.5413P车三角形外螺纹时,由于受车刀挤压会使螺纹大径尺寸胀大,所以车螺纹前大径一般应车得比基本尺寸小约0.1P。

车削三角形内螺纹时,内孔直径会缩小,所以车削内螺纹前的孔径要比内螺纹小径略大些,可采用下列近似公式计算:车外螺纹前外圆直径=公称直径D-0.1P;车削塑性金属的内螺纹底孔直径≈公称直径d—P车削脆性金属的内螺纹底孔直径≈公称直径d一1.05P(4)主轴转速以及进给率螺纹加工时将以特定的进给量切削,进给量与螺纹导程相同,CNC在螺纹加工模式下控制主轴转速与螺纹加工进给同步运行。

螺纹加工是典型高进给率加工,比如加工导程为3 mm的螺纹,进给量则是3mm/r。

螺纹加工的主轴转速直接使用恒定转速(r/min)编程,而绝不是恒线速度(CSS),这就意味着准备功能G97必须与地址字S一起使用来指定每分钟旋转次数,例如“G97 S500 M03”,表示主轴转速为500r/min。

那么如果加工导程为3mm的螺纹,其进给速度计算如下:F=700r/min×3mm/r=2100mm/min为保证正确加工螺纹,在螺纹切削过程中,主轴速度倍率功能失效,进给速度倍率无效。

2.2刀具的选择、刃磨与安装螺纹车刀的选择主要考虑刀具、形状和几何角度等三个方面。

当高速车削时,应选用硬质合金车刀。

当低速车削时,应采用高速钢车刀。

车刀的几何角度有三个①刀尖角;刀尖角应等于螺纹的牙型角,一般为60°②前角;当高速车削时,前角一般为0°。

③后角;当螺距小时,俩切削刃相等。

当在螺距大时,左侧为(3°~5°)+ψ,右侧为(3°~5°)—ψ。

刀尖角的刃磨比较困难,为保证磨出准确的刀尖角,在刃磨时用螺纹角度样板测量刀尖角。

测量时,把刀尖角与样板贴合,对准光源,仔细观察两边贴合的间隙,并以此为依据进行修磨。

另外车刀磨损过大时会引起切削力增大,顶弯工件,出现啃刀现象。

此时应对车刀加以修磨。

车削螺纹时,为了保证牙形正确,对安装螺纹车刀提出了严格的要求。

安装时刀尖高度必须对准工件旋转中心(可根据尾座顶针高度检查),车刀安装得过高,则吃刀到一定深度时,车刀的后刀面顶住工件,增大摩擦力,甚至把工件顶弯,造成啃刀;过低,则切屑不易排出,车刀径向力的方向是工件中心,加上横进丝杠与螺母间隙过大,致使吃刀深度不断自动径向加深,从而把工件抬起,导致啃刀;车刀刀尖角的中心线必须与工件严格垂直,装刀时可用样板来对刀(见图3)。

相关文档
最新文档