积分变换与场论_理学思维导图
积分变换与微分方程PPT课件

Out[4]={{y→InterpolatingFunction[{{0.,1.}},<>]}} 利用图形观察
In[5]:= Plot[Evaluate[y[x]/.NDSolve[{y'[x]==y[x],
第七讲 积分变换与微分方程
• 积分变换
➢ 拉普拉斯变换
拉普拉斯变换函数
函数名称
意义
LaplaceTransform[expr,t,s]
对expr的拉普拉斯变换
InverseLaplaceTransform[expr,s,t]
对expr的拉普拉斯逆变换
LaplaceTransform[expr,{t1,t2,…},{s1,s2,…}] 对expr的多维拉普拉斯变换
In[9]:=DSolve[{y՛՛[x]+y՛[x]-2y[x]==0,y[0]==4, y՛[0]==1},y[x],x]
Out[9]={{y[x] → e-2 x (1+3e3x)}}
• 求方程x2y՛՛-2xy՛+2y=3x满足条件y[1]=m, y՛[1]=n的特解
Mathematica命令为
1 F eitd
2
1 F eitd
2
F eitd
1 F e2itd
2
b
2 1n
F
eibt dt
例如 默认情况下的傅立叶变换为
In[4]:=FourierTransform[t^2 Exp[-t^2],t,s]
s2
e4
2 s2
Out[4]= 4 2
以下是纯数学的傅立叶变换
晶体学基础知识点及思维导图

HOMEWORKS知识点晶体结构Crystal structure 点阵结构Lattice晶胞Unit cells晶系Crystal systems布拉菲格子The Bravais lattices点群point group空间群space group关系Relationships/思维导图Mind mapping具体中文解释粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。
同样我们需要区别“lattice ”的意义 它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。
晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。
根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。
(晶体的宏观性质不变)。
点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见的晶体的对称性,所以它才被引为宏观对称性。
)微观对称元素:点阵、滑移面、旋转轴(无数阶次)而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。
晶体的宏观对称性就是晶体微观对称性的宏观表现。
晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。
而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。
复变函数与积分变换PPT_图文_图文

x y=-3
§1.4 复数域的几何模型---复球面
N
0
对复平面内任一 点z, 用直线将z 与N相连, 与球面 相交于P点, 则球 面上除N点外的 所有点和复平面 上的所有点有一 一对应的关系, 而N点本身可代 表无穷远点, 记 作.
这样的球面称作 x1
复球面.
x
x1
x3
除了复数的平
面表示方法外,
加减法与平行四边形 法则的几何意义:
乘、除法的几何意义
:
,
,
,
定理1 两个复数乘积的模等于它们的模的乘积, 两个复 数乘积的幅角等于它们幅角的和.
几何上 z1z2 相 当于将 z2 的 模扩大 |z1| 倍 并旋转一个角
度Arg z1 .
0
1
等式 Arg(z1z2)=Arg z1+Arg z2, 的意思是等式的两 边都是无限集合, 两边的集合相等, 即每给定等式左边 的一个数, 就有等式右边的一个数与之对应, 反之亦然 .
复变函数与积分变换PPT_图文_图文.ppt
引言
在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次
方程
时引进了复数。他发现这个方程没有根,并
把这个方程的两个根形式地表为
。在当时,
包括他自己在内,谁也弄不清这样表示有什麽好处。事实上,
复数被Cardano引入后,在很长一段时间内不被人们所理睬,并 被认为是没有意义的,不能接受的“虚数”。直到十七与十八世纪,
解:
设 z = x + i y , 方程变为
y
O
x
-i
几何上, 该方程表示到点2i和-2的距离相等的点的轨 迹, 所以方程表示的曲线就是连接点2i和-2的线段的垂直
复变函数和积分变换第6章共形映射.ppt

出版社 理工分社
定义6.5两曲线在无穷远点处的夹角,就是指它们在反演变换下的像曲线在
页 退出
复变函数与积分变换
出版社 理工分社
定理6.5(保域性)设w=f(z)在区域D内解析,且不恒为常数,则D的像 G=f(D)也是一个区域. 定义6.2具有伸缩率不变性与保角性的共形映射称为第一类共形映射;如果 映射w=f(z)具有伸缩率不变性,但只保持夹角的大小不变而方向相反,则称 映射为第二类共形映射. 例6.2函数f(z)=z2+2z在z平面处处解析,f′(z)=2z+2,显然当z≠-1时, f′(z)≠0,因此,映射f(z)=z2+2z在z平面上除z=-1外处处是共形的.
图6.2
页 退出
复变函数与积分变换
出版社 理工分社
其次,我们讨论导数的模|f′(z0)|的几何意义.由于|Δz|和|Δw|分别是向
量Δz和Δw的长度,故
这说明像点间的无穷小距离与原
像点间的无穷小距离之比的极限是|f′(z0)|,这可以看成是曲线C经w=f(z)
映射后在z0点的伸缩系数或伸缩率.它仅与z0有关,而与曲线C的形状和方向
页 退出
复变函数与积分变换
出版社 理工分社
定理6.6(黎曼存在与唯一性定理)如果扩充复平面上的单连通区域D,其边 界点不止一点,则存在一个在D内的单叶解析函数w=f(z),它将D共形映射成 单位圆|w|<1,且当合条件f(a)=0,f′(a)>0,(a∈D)时,f(z)是唯一的. 定理6.7(边界对应定理)设w=f(z)在单连通区域D内解析,在D上连续,且 把区域D的边界C保持相同绕行方向、一一对应地映射为单连通区域G的边界 Γ,则w=f(z)将D共形映射为G.
即在区域
复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=。
积分变换.ppt

L [ekt ] 1 (P145) sk
1
f (t ) L 1[F (s)]
t
24
有
f
(t
)
1 t
L
1
1[
s1
1] s1
1 (et et ) 1 (et et )
t
t
积分性质 1
设Ff(s()t )=L[ tf(Lt)],1则[F有(s)]
t
2t
解 L [ sht ] =L [1 et 1 et ] 22
1 ( 1 1 ) F(s) 2 s1 s1
由像函数的积分性质, 有 L [ekt ] 1
f (t)
sk
L [ t ] s F (s)ds
27
sht 1 1 1
L
[
t
]
2 s
( s1
但在工程实际应用中, 许多以时间t 作为自 变量的函数往往在 t 0时是无意义的或者 是不需要考虑的. 这样的函数都不能取傅 氏变换. 因此, 傅氏变换的应用范围受到相 当大的限制.
对这些函数f(t)能否经过适当地改造, 使其 进行傅氏变换时克服上述两个缺点呢? 答案是可以的, 就是拉普拉斯变换.
L [ t f (t)dt] 1F (s)
0
s
此外, 我们还有象函数的积分性质
L [ f (t)]
f (t ) est dt
F (s)ds
t
0t
s
26
或
f(t) = tL 1[ F (s)ds] s
例 求 f (t ) sht et et 的拉氏变换
复变函数与积分变换课堂PPT课件

第45页/共104页
定义 即
如果函数 , 则称
在区域D内的导数等于 f (z), 为 f (z)在区域B内的原函数。
定理二表明
是 f (z)的一个原函数。
• 容易证明,f (z)的任何两个原函数相差一个常数。
,因此有
或
第48页/共104页
有了原函数、不定积分和积分计算公式,复变函数
E'
E
C
B'
B
C1
即 或
第30页/共104页
上式说明如果将 C 及 沿C逆时针, 沿
看成一条复合闭路G, 其正向为: 顺时针, 则
上式说明在区域内的一个解析函数沿闭曲线的积分, 不 因闭曲线在区域内作连续变形而改变它的值, 只要在变 形过程中不经过函数
D
f (z)不解析的点。这 一重要事实,称为 闭路变形原理。
今后讨论积分,如无特别说明,总假定被积函数是连续 的,曲线C是按段光滑的。
第10页/共104页
例1 计算
, 其中C为原点到点3+4i的直线段。
[解]直线的方程可写作
或 在C上,
。于是
又因
第11页/共104页
容易验证,右边两个线积分都与路线C无关,所以 的值,不论C是怎样的连接原点到3+4i的曲线,
第27页/共104页
在上一节中,讨论了柯西-古萨定理是在单连通域
里,现将柯西-古萨基本定理推广到多连通域的情况。
设函数 f (z)在多连通域D内解析,C为D内的任意一条
简单闭曲线,当C的内部不完全含于D时,沿C的积分 就不一定为零。
《复变函数与积分变换》PPT课件

z = z1 + t(z2 z1 ),
(0 ≤ t ≤ 1)
(2)过两点 z1 和z2的直线L的参数方程为
z = z1 + t(z2 z1 ),
(∞ < t < +∞)
(3)z1、z2,z3 三点共线得充要条件为
z3 z1 = t, z2 z1
(t为 非 实 ) 一 零 数
浙江大学
例: 考察下列方程(或不等式)在平面上所描绘的几何图形。 (1) z 2i = z + 2 该方程表示到点2i和-2距离相等的点的轨迹,所以方程 表示的曲线就是连接点2i 和-2的线段的垂直平分线, 它的方程为y = -x。
复变函数与积分变换
贾厚玉 mjhy@
浙江大学
第一章 复数与复变函数 第二章 解析函数 第三章 复变函数的积分 第四章 级数 第五章 留数 第六章 保角映射 Laplace变换 第七章 Laplace变换
浙江大学
第一章 复数与复变函数
复数及其代数运算 复数的表示 复数的乘幂与方根 复平面点集与区域 复变函数 复变函数的极限与连续
浙江大学
例:已知正三角形的两个顶点为 求三角形的另一个顶点。
z1 = 1, z2 = 2 + i
y
z3 z1 = (z2 z1 )e 3 1 3 = (1+ i)( + i) 2 2 1 3 1 + 3 i = + 2 2
3 3 1+ 3 z3 = i + 2 2
i
π
z3
z2
x
O
z1
3 + 3 1 3 ′ z3 = i + 2 2
Re z 2 ≤ 1
z 2 = (x + iy)2 = (x2 y2 ) + 2ixy