2019高中数学《不等式与不等关系》PPT课件
合集下载
高二数学苏教版必修五第三章3.1不等式与不等关系课件(共37张PPT)

请同学们尝试用数学符号将下面的原理补充完整.
(1):如果两个实数的差是正数,那么这两个
实数的大小关系如何?反之成立吗?如何用数学
语言描述这个原理? a-b>0 a>b
(2):如果两个实数的差等于零,那么这两个实
数的大小关系如何?反之成立吗?如何用数学语
言描述这个原理? a-b = 0 a = b
600mm
(1)截得两种钢管的总长度 不能超4000mm;
500x 600y 4000
(2)截得600mm钢管的数量 不能超500mm的钢管数
y 3x
量的3倍;
x0
(3)截得两种钢管的数量
都不能为负.
y 0
考虑到实际问题的意义呢?
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
2021/5/1
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
12/40
不等关系与不等式之间 高二数学苏教版必修五第三章3.1不等式与不等关系课件(共37张PPT) 是什么关系?
2021/5/1
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
巨 人
3.1 不等关系与不等式
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
1.什么是不等关系?
2.什么是不等式?
3.不等关系与不等式之间 是什么关系?
2021/5/1
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
(1):如果两个实数的差是正数,那么这两个
实数的大小关系如何?反之成立吗?如何用数学
语言描述这个原理? a-b>0 a>b
(2):如果两个实数的差等于零,那么这两个实
数的大小关系如何?反之成立吗?如何用数学语
言描述这个原理? a-b = 0 a = b
600mm
(1)截得两种钢管的总长度 不能超4000mm;
500x 600y 4000
(2)截得600mm钢管的数量 不能超500mm的钢管数
y 3x
量的3倍;
x0
(3)截得两种钢管的数量
都不能为负.
y 0
考虑到实际问题的意义呢?
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
2021/5/1
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
12/40
不等关系与不等式之间 高二数学苏教版必修五第三章3.1不等式与不等关系课件(共37张PPT) 是什么关系?
2021/5/1
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
巨 人
3.1 不等关系与不等式
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
1.什么是不等关系?
2.什么是不等式?
3.不等关系与不等式之间 是什么关系?
2021/5/1
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
高 二数学 苏教版 必修五 第三章3 .1不等 式与不 等关系 课件( 共37张 PPT)
3-1《不等式与不等关系》课件(共29张PPT)

判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
人教版高中数学2不等式与不等关系(共23张PPT)教育课件

人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,都是一源自种生活境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过
高
的
奢
望
,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
光
深
处
的
无
边
落
寞
。
轻
拥
沧
桑
,
淡
看
流
年
,
掬
一
捧
岁
月
,
握
一
份
懂
得
,
红
尘
纷
口
罗
不
■
电
:
那
你
的
第
一
部
戏
有
没
有
不等关系与不等式的性质教学课件ppt

不等式在经济学中的应用
不等式在物理学中的应用
不等式在计算机科学中的应用
不等式的实际应用
不等式与方程的联系与区别
04
在数学表达式中,不等式和方程都包含未知数,这使得它们都可以用来描述数量之间的关系。
表达式中都包含未知数
在求解不等式和方程的过程中,我们都会使用到一些相同的数学方法,比如因式分解、配方等。
柯西不等式的证明
柯西不等式可以通过数学归纳法和向量的性质进行证明。
柯西不等式的应用
柯西不等式在数学和物理中有着广泛的应用,如最优化问题、信号处理等。
柯西不等式的形式
柯西不等式可以表达为`∑(a_i^2) * ∑(b_i^2) ≥ (∑a_i * b_i)^2`,其中a_i和b_i是实数。
柯西不等式
在购买产品时,不同品牌或型号的产品质量之间存在不等关系,如优良和一般。
产品质量不等
03
角度不等
在几何学中,不同的角之间存在角度不等关系,如锐角和钝角。
数学中的不等关系
01
大小不等
在数学中,不同的数之间存在大小不等关系,如大于和小于。
02
距离不等
在几何学中,不同的点之间的距离之间存在不等关系,如靠近和远离。
03
不等式的定义
02
01
不等式的性质
加法单调性
即同向不等式相加,不等号不改变方向。
传递性
如果a>b,b>c,则a>c。
乘法单调性
即不等式乘以(或除以)正数,不等号不改变方向。
反对称性
如果a>b,则b<a;如果a<b,则b>a。
反身性
即任何实数都大于0。
不等式的证明方法
第1讲 不等关系与不等式 课件(共63张PPT)

解析
解决此类题目常用的三种方法 (1)直接利用不等式的性质逐个验证,利用不等式的性质判断不等式是 否成立时要特别注意前提条件. (2)利用特殊值法排除错误答案. (3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可 以利用指数函数、对数函数、幂函数等函数的单调性进行判断.
1.如果 a>0>b 且 a2>b2,那么以下不等式中正确的个数是
解析 答案
角度 2 作商法 例 3 设 a,b 都是正数,且 a≠b,则 aabb 与 abba 的大小关系是________. 答案 aabb>abba 解析 aaabbbba=aa-b·bb-a=aba-b.若 a>b,则ab>1,a-b>0,∴aba-b>1,∴ aabb>abba;若 a<b,则 0<ab<1,a-b<0,∴aba-b>1,∴aabb>abba.
解析 答案
作商法的步骤 (1)作商;(2)变形;(3)判断商与 1 的大小;(4)结论.
4.若 a>0,且 a≠7,则( ) A.77aa<7aa7 B.77aa=7aa7 C.77aa>7aa7 D.77aa 与 7aa7 的大小不确定 解析 777aaaa7=77-aaa-7=7a7-a,则当 a>7 时,0<7a<1,7-a<0,则7a7-a>1, ∴77aa>7aa7;当 0<a<7 时,7a>1,7-a>0,则7a7-a>1,∴77aa>7aa7.综上, 77aa>7aa7.
6.若 0<a<b<1,则 ab,logba,log b 的大小关系是________. 答案 log b<ab<logba 解析 ∵0<a<1,∴1a>1.又 0<b<1, ∴log b<log 1=0.∵0<ab<a0=1,logba>logbb=1, ∴log b<ab<logba.
解决此类题目常用的三种方法 (1)直接利用不等式的性质逐个验证,利用不等式的性质判断不等式是 否成立时要特别注意前提条件. (2)利用特殊值法排除错误答案. (3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可 以利用指数函数、对数函数、幂函数等函数的单调性进行判断.
1.如果 a>0>b 且 a2>b2,那么以下不等式中正确的个数是
解析 答案
角度 2 作商法 例 3 设 a,b 都是正数,且 a≠b,则 aabb 与 abba 的大小关系是________. 答案 aabb>abba 解析 aaabbbba=aa-b·bb-a=aba-b.若 a>b,则ab>1,a-b>0,∴aba-b>1,∴ aabb>abba;若 a<b,则 0<ab<1,a-b<0,∴aba-b>1,∴aabb>abba.
解析 答案
作商法的步骤 (1)作商;(2)变形;(3)判断商与 1 的大小;(4)结论.
4.若 a>0,且 a≠7,则( ) A.77aa<7aa7 B.77aa=7aa7 C.77aa>7aa7 D.77aa 与 7aa7 的大小不确定 解析 777aaaa7=77-aaa-7=7a7-a,则当 a>7 时,0<7a<1,7-a<0,则7a7-a>1, ∴77aa>7aa7;当 0<a<7 时,7a>1,7-a>0,则7a7-a>1,∴77aa>7aa7.综上, 77aa>7aa7.
6.若 0<a<b<1,则 ab,logba,log b 的大小关系是________. 答案 log b<ab<logba 解析 ∵0<a<1,∴1a>1.又 0<b<1, ∴log b<log 1=0.∵0<ab<a0=1,logba>logbb=1, ∴log b<ab<logba.
高三数学不等关系和不等式PPT教学课件

例题讲析
例1:已知
ab0 ,c0 .求证:ac
c b
.
练习1 (1)已知
ab,ab0.求证 11: . ab
(2)已知 a b 0 ,c d 0 .求 a 证 c b.d
(3)已知 ab .求c 证 2 a : c2 b
练习2.书 P 73 4.1 ()(,2 )(,3 )(,4 ) 例 2.已a 知 b0,cd0.求证 ab : dc
性质5 如果a>b,且c>0,那么ac>bc;
如果a>b,且c<0,那么ac<bc. 可 乘 性 性质6 如果a>b>0,且c>d>0,那么ac>bd.
性质7:若 a b 0 ,则 a n b n ( n N 且 n 1 )
性质8:若 a b 0 ,则 n a n b ( n N 且 n 1 )
复习回顾
1.不等关系是普遍存在的
2.用不等式(组)来表示不等关系
3.不等式基本原理 a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b
4.作差比较法 步骤:作差,变形,定号
例1 比较(a+3)(a-5)与(a+2)(a-4)的大小.
即: a b b a 反身性
性质2 如果a>b,且b>c,那么a>c.
即:a b ,b c a c 传递性
利用性质1,性质2可写成“<”形式:
c b ,b a c a
性质3 如果a > b , 那么a + c > b + c . 可 加 性 性质4 如果a>b,且c>d,那么a+c>b+d.
3.1不等式与不等关系课(共32张PPT)

探究点1
不等式的性质
(对称性) (1)a > b b < a; (传递性) (2)a > b,b > c a > c;
(可加性) (3) a > b a + c > b + c;
由性质(3)可得:
a + b > c a + b +( - b )> c +( - b ) a > c - b .
解:因为15 < b < 36,所以 - 36 < -b < -15. 又因为12 < a < 60,所以12 - 36 < a - b < 60 - 15, 所以 - 24 < a - b < 45. 1 1 1 12 a 60 因为 < < ,所以 < < , 36 b 15 36 b 15 1 a 所以 < < 4. 3 b
2.某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5% ,蛋白质的含量p应不少于2.3%,
f≥2.5% 写成不等式组为 p≥2.3% .
【即时练习】 某高速公路对行驶的各种车辆的最大限速为120km/h.
行驶过程中,同一车道上的车间距d不得小于10 m,用不
等式表示为( B )
A.v≤120 (km/h)或 d≥10 (m)
2.设M=x2,N=x-1,则M与N的大小关系为 ( A ) A.M>N C.M<N B.M=N D.与x有关
【解析】 ∵M-N=x2-(x-1)=x2-x+1 1 3 =x -x+ + 4 4
2
12 3 =(x- ) + >0. 2 4 ∴M>N.
不等式与不等关系课(共32张PPT)

【错因分析】 作差比较大小,变形后的结果难以
确定时,一般要分类讨论,但需要有统一的分类标 准.这里分类不完全,在 x<-1 时,x2>0,不应有1+x2 x ≤0,最好把 x=0 分一类进行讨论,这样比较恰当.
【正解】 ∵1+1 x-(1-x)=1+x2 x, 而 x2≥0, (1)当 x=0 时,1+x2 x=0,∴1+1 x=1-x.
<
至少
≥
大于等于 ≥
不少于 ≥
小于等于 ≤
不多于 ≤
探究点2 作差法比较两个实数大小
关于实数a,b大小的比较,有以下事实:
如果a-b是正数,那么a>b;如果a-b等于零, 那么a=b;如果a-b是负数,那么a<b.反过来也对.
这可以表示为
a b 0 a b; a b 0 a b; a b 0 a b.
C.ad >bc
D.ad <bc
【解析】选 D.因为 c<d<0,所以-c>-d>0,即
得 1 > 1 >0,又 a>b>0,得 a > b >0,从而有 a < b .
-d -c
-d -c
dc
1.已知a>b,c>d,且cd≠0,则C( )
A.ad>bc
B.ac>bc
C.a+c>b+d
D.a-c>b-d
a>b>0⇒___a_n_>__b_n
(n∈N,n≥2)
a>b>0⇒__n_a___n__b
(n∈N,n≥2)
⇒
a,b同 为正数
例 已知 a ,b ,m 都是正数,且 a b ,求证: b m b .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“不等号”是英国数学家哈里奥特 (T.Harriot)于1631年开始使用的,但当时并 没有被数学界所接受,直到100多年后,才逐 渐成为标准的应用符号。
二、用不等式(组)来表示不等关系
问题1 今天的天气预报说:明天早晨最低温 度为9℃,明天白天的最高温度为16℃ ,那 么明天白天的温度t℃满足什么关系?
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,试比较 b 与 c 的大小? c-b c a
例3.如果30<x<42,16<y<24,求x+y,x-2y,x 的范围? y
例4:已知a>b>0,c>d>0,求证:a d
b c
例5 :已知x 0,求证 1+x 1 x 2
3x y
x
N
*
y N *
必修5 第74页
a+b ≥0 h4
新课讲授
2.文字语言与数学符号间的转换.
文字语言 数学符号 文字语言 数学符号
大于
>
至多
≤
小于
<
至少
≥
大于等于 ≥
不少于
≥
小于等于 ≤
不多于
≤
三、不等式基本原理
a - b > 0 <=> a > b
a - b = 0 <=> a = b
例6:(比较大小)
(1)x
-1,比较
1 1+x
与1
x的大小.
(2)当x 1时,求证:x 1 x x x 1
五、小结:
1.不等关系是普遍存在的
2.用不等式(组)来表示不等关系
3.不等式基本原理 a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b
B. a2 b2 D. a | c | b | c |
课堂练习
2. 若、 满足 ,则 的
2
2
取值范围是
(B )
A.
B. 0
C.
2
2
D. 0
答案: 9≤t≤16
二、用不等式(组)来表示不等关系
问题2 某种杂志原以每本2.5元的价格销售, 可以售出8万本。据市场调查,若单价每提 高0.1元销售量就可能相应减少2000本。若 把提价后杂志的定价设为x元,怎样用不等 式表示销售的总收入仍不低于20万元呢?
(8 x 2.5 0.2) x 20 0.1
二、用不等式(组)来表示不等关系
问题3 某钢铁厂要把长度为4000mm的钢管截 成500mm和600mm的两种规格。按照生产的要 求,600mm的钢管的数量不能超过500mm钢管 的3倍。怎样写出满足上述所有不等关系的不 等式呢?
分析:设截得500mm的钢管x根,截得600mm
的钢管y根 500x 600 y 4000
4.作差比较法 步骤:作差,变形,定号
作业 :
必修5第75页 习题3.1 A组4、5; B组1、3
b
c
a
c
性质3 : (加法的单调性) a b a c b c
推论 :
a c
b d
a
c
b
d
性质4 : (乘法的单调性) a b, c 0 ac bc (同向不等式的可乘性)
推论1 :
a c
b d
0 0
ac
bd
a - b < 0 <=> a < b
比较两实数大小的方法 —作差比较法:
比较两个实数a与b的大小,归结为判断它们的差a-b 的符号;比较两个代数式的大小,实际上是比较它们 的值的大小,而这又归结为判断它们的差的符号.
性质1: (对称性) a b b a
性质2 : (传递性)
a b
2问:当aFra bibliotekb时,求
1 a
与
1 b
的大小关系?
结论 : a b 0 1 1 ab
ab0 1 1 ab
例1:已知a>b>0,c<0,求证
c a
c b
例2.(1)如果a b 0, 那么 1 1 ab
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
推论2 : a b 0 an bn (n N*, n 2)
a b 0 n a n b (n N *, n 2)
(可乘方性、可开方性)
课堂练习
1. 若a、b、c R,a b,则下列不等式成
立的是
(C )
A. 1 1 ab
C. a b c2 1 c2 1
3.1不等关系与不等式
现实世界和日常生活中,既有相等关系,又存在着大量 的不等关系.如两点之间线段最短,三角形两边之和大 于第三边,等等.这种不等关系都可用不等式来表示.
想一想, 举出几个现实生活 中与不等关系有关的例子?
二、用不等式(组)来表示不等关系
不等式
用不等号(<、>、≤、≥、≠)表示不等关 系的式子叫不等式。
二、用不等式(组)来表示不等关系
问题1 今天的天气预报说:明天早晨最低温 度为9℃,明天白天的最高温度为16℃ ,那 么明天白天的温度t℃满足什么关系?
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,试比较 b 与 c 的大小? c-b c a
例3.如果30<x<42,16<y<24,求x+y,x-2y,x 的范围? y
例4:已知a>b>0,c>d>0,求证:a d
b c
例5 :已知x 0,求证 1+x 1 x 2
3x y
x
N
*
y N *
必修5 第74页
a+b ≥0 h4
新课讲授
2.文字语言与数学符号间的转换.
文字语言 数学符号 文字语言 数学符号
大于
>
至多
≤
小于
<
至少
≥
大于等于 ≥
不少于
≥
小于等于 ≤
不多于
≤
三、不等式基本原理
a - b > 0 <=> a > b
a - b = 0 <=> a = b
例6:(比较大小)
(1)x
-1,比较
1 1+x
与1
x的大小.
(2)当x 1时,求证:x 1 x x x 1
五、小结:
1.不等关系是普遍存在的
2.用不等式(组)来表示不等关系
3.不等式基本原理 a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b
B. a2 b2 D. a | c | b | c |
课堂练习
2. 若、 满足 ,则 的
2
2
取值范围是
(B )
A.
B. 0
C.
2
2
D. 0
答案: 9≤t≤16
二、用不等式(组)来表示不等关系
问题2 某种杂志原以每本2.5元的价格销售, 可以售出8万本。据市场调查,若单价每提 高0.1元销售量就可能相应减少2000本。若 把提价后杂志的定价设为x元,怎样用不等 式表示销售的总收入仍不低于20万元呢?
(8 x 2.5 0.2) x 20 0.1
二、用不等式(组)来表示不等关系
问题3 某钢铁厂要把长度为4000mm的钢管截 成500mm和600mm的两种规格。按照生产的要 求,600mm的钢管的数量不能超过500mm钢管 的3倍。怎样写出满足上述所有不等关系的不 等式呢?
分析:设截得500mm的钢管x根,截得600mm
的钢管y根 500x 600 y 4000
4.作差比较法 步骤:作差,变形,定号
作业 :
必修5第75页 习题3.1 A组4、5; B组1、3
b
c
a
c
性质3 : (加法的单调性) a b a c b c
推论 :
a c
b d
a
c
b
d
性质4 : (乘法的单调性) a b, c 0 ac bc (同向不等式的可乘性)
推论1 :
a c
b d
0 0
ac
bd
a - b < 0 <=> a < b
比较两实数大小的方法 —作差比较法:
比较两个实数a与b的大小,归结为判断它们的差a-b 的符号;比较两个代数式的大小,实际上是比较它们 的值的大小,而这又归结为判断它们的差的符号.
性质1: (对称性) a b b a
性质2 : (传递性)
a b
2问:当aFra bibliotekb时,求
1 a
与
1 b
的大小关系?
结论 : a b 0 1 1 ab
ab0 1 1 ab
例1:已知a>b>0,c<0,求证
c a
c b
例2.(1)如果a b 0, 那么 1 1 ab
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
推论2 : a b 0 an bn (n N*, n 2)
a b 0 n a n b (n N *, n 2)
(可乘方性、可开方性)
课堂练习
1. 若a、b、c R,a b,则下列不等式成
立的是
(C )
A. 1 1 ab
C. a b c2 1 c2 1
3.1不等关系与不等式
现实世界和日常生活中,既有相等关系,又存在着大量 的不等关系.如两点之间线段最短,三角形两边之和大 于第三边,等等.这种不等关系都可用不等式来表示.
想一想, 举出几个现实生活 中与不等关系有关的例子?
二、用不等式(组)来表示不等关系
不等式
用不等号(<、>、≤、≥、≠)表示不等关 系的式子叫不等式。