配电网三相不平衡常见原因分析

配电网三相不平衡常见原因分析
配电网三相不平衡常见原因分析

龙源期刊网 https://www.360docs.net/doc/2b11528093.html,

配电网三相不平衡常见原因分析

作者:杨磊刘天纵张兆娴张翠

来源:《科技风》2017年第02期

摘要:随着用电需求不断增加,对配电网的要求也越来越高。不仅要保证供电可靠性,还要保证电能质量。然而,在实际运行中,由于多种原因,可能造成配电台区发生严重三相不平衡,威胁配电网安全经济运行。因此,对造成三相不平衡原因进行归纳分析十分重要。本文阐述了三相不平衡的概念和实际应用中对三相不平衡台区的判定,总结了三相不平衡的四个主要危害,并对遇到的超过100个三相不平衡台区进行重点分析,归纳了产生三相不平衡的四个主要原因,为三相不平衡台区原因查找及治理提供参考。

关键词:配电网;配电变压器;三相不平衡

当前,配电网结构复杂,电力用户的用电类型也多种多样,由于负荷类型不同、用电时间不同等多种原因,可能导致配电变压器台区出现严重的三相不平衡。随着用户对电能质量的要求不断提高,配电网三相不平衡问题日益突出。在配电台区中,理想状态是使负荷平均地分配到A、B、C三相上并运行于三相平衡状态,但实际中很难做到。实际负荷多以单相负荷、单-三相负荷混合形式存在,某些地区单相负荷占比大,所以会产生三相不平衡,严重的三相不平衡状态会对供电质量造成影响,本文主要对实际中遇到的超过100个三相不平衡台区的产生原因进行归纳分析,总结了四个主要原因。

一、三相不平衡概念

三相不平衡是电能质量的指标之一,分为三相电压不衡和三相电流不平衡。对于三相电压不平衡,国标GB15543-2008《电能质量三相电压不平衡》对电压不平衡的定义为,三相电压在幅值上不同或相位差不是120度,或兼而有之[ 1 ]。且规定电力系统公共连接点电压不平衡度限值为负序电压不平衡度允许值不超过2%,短时不超过4%。

在实际中,还常用到三相电流不平衡的概念,三相电流不平衡与三相电压不平衡类似,引入三相电流不平衡度来表示不平衡程度大小,国网公司PMS2.0监测系统中将其定义为:

三相不平衡度=(最大相电流-最小相电流)/最大相电流*100%,

根据上述定义,如果某台区三相不平衡度大于25%且负载率大于60%,持续时间在2小时以上,就认为该台区三相不平衡。图1为某个三相不平衡台区24小时电流波形。

图1 三相不平衡台区某天电流波形

供电工程课后答案

第一章 1-1 火力发电站水电站及核电站的电力生产和能量转换过程有何异同。 答:火力发电站是由燃煤或碳氢化合物获得热能的热力发电站。水电站是将水流能量转变为电能的电站。核电站是由何核反应获得热能的热力发电站。 1-2电力系统由哪几部分组成各部分有何作用,电力系统的运行有哪些特点与要求? 答:发电站,他是生产电能的工厂。电力网其作用是将电能从发电厂输送并分配至电力用户。电力用户其是电能的使用者。特点 1电力系统发电与用电之间的动态平衡2电力系统的暂态过程十分迅速3电力系统的地区性特色明显4电力系统的影响重要。要求安全可靠优质经济。 1-4电力系统中性点接地方式主要有哪几种? 中性点不接地中性点经消弧线圈接地中性点经阻抗接地和中性点直接接地等 1-5什么是低压配电TN系统、TT系统和IT系统各有什么特点?各适用于什么场合? 答:tn系统在电源端处有一点直接接地而装置的外露可导电部分是利用保护导体连接到那个接地电商的,tn系统不适用于,路灯施工场地农业用电等无等电位联结的户外场所。 tt系统电源只有一点直接接地,而电气装置的外露可导电部分,则是被接到独立于电源系统接地的接地极上。对于无等电位连接作用的户外装置,路灯装置应采用tt系统来供电。 it系统电源的所有带电部分都与地隔离或有一点通过阻抗接地,电气装置的外露可导电部分,被单独地或集中的接地,适用于对供电不间断要求高的电器装置,如医院手术室,矿井下等 1-6如何区别TN-S、TN-C 、TN-C-S系统?为什么民用建筑内应采用tn-s系统 答:tn-s在整个系统中全部采用单独的保护导体。tn-c在整个系统中中性导体的功能与保护导体的功能合并在一根导体中。tn-c-s在系统的一部分中中性导体的功能与保护导体的功能合并在一根导体中。正常情况下PEN 导体不通过工作电流,他只在发生接地故障时通过故障电流,其点位接近地电位。因此对连接PEN导体的信息技术设备不会产生电磁干扰,也不会对地打火比较安全。所以用在民用建筑内。 1-7 电力负荷分级的依据是什么?各级电力负荷对供电有何要求 答:分级的标准政治影响,经济损失人身伤亡。要求一级负荷应由双重电源供电当一电源发生故障时另一电源不应同时受到损坏。二级负荷的供电系统宜由两回线路供电。三级负荷对供电方式无特殊要求。 1-8常用的应急电源有几种?各适用于什么性质的重要负荷。 答:1独立于正常点的发电机组适用于允许中断供电时间为十五秒以上的重量负荷2供电网络中独立于正常电源的专用馈电线路。适用于允许中断供电时间大于双电源自动切换装置的动作时间的重要负荷。3蓄电池.ups或eps装置,适用于允许中断供电时间为毫秒级的重要负荷 1-9什么是分布式电源?与一般中小型燃煤电厂有何区别? 答:分布式电源是相对于传统的集中式供电电源而言的通常只为满足用户需求的发电功率,在数千瓦至数十兆瓦小型模块化且分散布置在用户附近的能源利用率高与环境兼容安全可靠的发电设施。区别分布式电源的一次能源包括风能太阳能和生物质能,等可再生资源。二次能源可为分布在用户端的热电冷联产,实现以直接满足用户多种需求的能源梯级利用提高能源的综合利用效率。 第二章 2-1.用电设备按工作制分哪几类?各有何工作特点? A.连续工作制:设备在无规定期限的长时间内是恒载的工作制,在恒定负载连续运行时达到热稳定状态。 B.短时工作制:干的时间短,停的时间长。消防设备。 C.周期工作制:干干停停,停停干干。电焊机和起重设备。 2-2.什么是负荷持续率?为什么周期工作制设备功率与负荷持续率有关? 负荷持续率为工作周期中的负荷(包括启动与制动在内)持续时间与整个周期的时间之比以百分数表示。因为周期工作制和短期工作制设备,其电流通过导体时的发热,与恒定电流的发热不同。应把这些设备的额定功率换算为等效的连续工作制的设备功率(有功功率),才能与其它负荷相加。 2-3.计算负荷的意义是什么? 计算负荷是供电系统设计计算的基本依据。如果计算符合过大,将使设备和导线选择偏大,造成投资和有效金属的浪费。如果计算负荷过小,又将使设备和导线选择偏小,造成运行时过热,增加电能损耗和电压损失,甚至使设备和导线烧毁,造成事故。

配电变压器三相负荷不平衡运行的管理

管理制度参考范本 配电变压器三相负荷不平衡运行的管 理 S a H 撰写人: 部门:___■_! 间:__|1| 摘要:本文主要针对配电变压器三相负荷不平衡 的现状,分析产生的原因,针对原因制定了改善措 施。 关键词:配电变压器三相负荷不平衡运行管理 * 1 / 6 \

碾子山供电局XX区现有配电变压器193台,总容量25305kVA 近几年来,由于配电变压器三相负荷不平衡,运行中出现问题较多,主要表现在:部分变压器运行不经济、变压器故障率高,个别接点频繁过热烧损,个别台 区电压变化大,烧损用户设备。20xx 年,碾子山供电局对XX区所有配电变压器的负荷进行了测量,结果表明,三相电流不平衡度不合格的占35%、不平衡度超过25%的变压器占15%, 最高的达到75%。 1变压器负荷不平衡对系统的影响 1.1增加线损 配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。 以低压线路增加的损耗,按照三种情况来分析(三相不平衡度为r) : ①一相负荷重、一相负荷轻,第3相为平均负荷: 单位长度线路上的功率损耗为: P1=3I2R+8r2I2R 当三相平衡时,P=3I2R, 两者相比, 规程规定:不平衡度r 应不大于20%,经计算当r=0.2 时, k=1.11,即由于三相不平衡所引起的线损增加11%,当r=100%时, k=3.67 ,测算出线损增加2.67 倍。 ②一相负荷重、两相负荷轻: 则k=1+2r2 当r=200 %,经测算线损增加8倍。 ③一相负荷轻、两相负荷重: 则k=1+20r2 当r=0.2时,k=1.8,计算得三相不平衡所引起的线损增加

什么叫变压器的不平衡电流

什么叫变压器的不平衡电流?有什么要求? 变压器的不平衡电流系统指三相变压器绕组之间的电流差而言。三相三线式变压器中,各相负荷的不平衡度不许超过20%,在三相四线式变压器中,不平衡电流引起的中性线电流不许超过低压绕组额定电流的25%。如不符合上述规定,应进行调整负荷。 变压器长时间在极限温度下运行有哪些危害? 答:一般变压气的主要绝缘是A级绝缘,规定最高使用温度为105℃,变压器在运行中绕组的温度要比上层油温高10~15℃.如果运行中的变压器上层油温总在80~90℃左右,也就是绕组经常在95~105℃左右,就会因温度过高绝缘老化严重,加快绝缘油的劣化,影响使用寿命。 断路器电动合闸时应注意:1)操作把手必须扭到终点位置,监视电流表,当红灯亮后将把手返回,操作把手返回过早可能造成合不上闸。2)油断路器合上以后,注意直流电流表应返回,防止接触器KII保持,烧毁合闸线圈。3)油断路器合上以后,注意检查机械拉合闸位置指示、传动杆、支持绝缘子等应正常,内部无异常。 如何正确进行电器设备停电后的验电工作 1)设备停电后进行验电时,应使用相应电压等级而合格的接触式验电器,在装设接地线或合接地刀闸处对各相分别验电。验电前,应先在有电设备上进行试验,确证验电器良好。2)无法在有电设备上进行试验时可用高压发生器等确证验电器良好。3)如果在木杆、木梯或木架上验电,不接地线不能指示者,可在验电器绝缘杆尾部接上接地线,但经运行值班负责人或工作负责人许可。 变压器油位过低,对运行有何危害啊 变压器油位过低会使轻瓦斯保护动作,严重缺油时,变压器内部铁芯线圈暴露在空气中,容易绝缘受潮(并且影响带负荷散热)发生引线放电与绝缘击穿事故。 电流互感器运行中为什么二次侧不准开路 二次开路会长生以下后果:1出现的高电压会危及人身安全及设备安全;2铁心高度饱和将在铁心中产生较大的剩磁,使误差增大;3长时间作用可能造成铁心过热

变压器负荷不平衡对系统的影响(园区)

变压器负荷不平衡对系统的影响 1.1增加线损 配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。 1.2降低变压器的利用率,威胁安全运行 配电变压器的额定容量是按每相绕组设计的,当配电变压器在三相负荷不平衡状态下运行时,变压器负荷高的那相时常出现故障,如缺相、接点过热、个别密封胶垫劣化等。同时,配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于变压器(Y,yn0)接线的配电变压器来说,变压器高压侧无中性线,高压侧不可能有零序电流,低压侧零序电流产生的零序磁通不能抵消。所以,零序磁通只能由配电变压器的油箱壁及钢铁构件中通过,磁滞和涡流在钢铁构件内发热,造成配电变压器散热条件降低,温升增高,严重时损坏变压器绝缘,烧损配电变压器。 1.3对用电设备的影响 当配电变压器三相负荷不平衡运行时,中性点将产生位移,偏移严重时单相电压可能升高到线电压。如果线路接地保护不好,中性线电流产生的电压严重危及人身安全。同时电流不平衡会造成单相设备不能正常用电,或过电压烧损用户设备。 1.4变压器三相负荷不平衡对系统电压的影响 变压器在三相负荷不平衡运行时,由于变压器绕组压降不同,出口电压不均衡,用户端电压更是三相偏差较大,电压质量得不到保障。

2影响变压器三相负荷不平衡的原因 2.1管理上存在薄弱环节 由于对配电变压器三相负荷不平衡的运行管理重视不够,一直没有一个考核管理办法,对配电变压器三相负荷的管理带有盲目性、工作随意性,以至于使运行、维护人员放松了对配电变压器三相负荷的管理,致使很多配电变压器长期在三相负荷极不平衡状态下运行。 2.2单相用电设备影响 由于线路大多为动力、照明混载。而单相用电设备使用的同时率较低,用户横向用电差异较大,经常会造成配电变压器三相负荷的不平衡,并给管理增加了难度。 2.3电网格局不合理的影响 低压电网结构薄弱,运行时间较长,改造投入不彻底,单相低压线路是台区的主网架问题,一直得不到有效根治。 其次居民用电大多为单相供电,负荷发展时无序延伸,造成台区三相电流不平衡无法调整。对于这样的低压网络必须投入较大的资金,彻底解决低压网布局,增加低压四线的覆盖面积,对线损、电压质量、供电可靠性、供电安全等都有很大改善效果。 2.4临时用电及季节性用电影响 临时用电和季节性用电都有一定的时间性,用电增容不收费后,大量的单相设备应用较多,而又分布极为分散,用电时间不好掌握,同时由于在管理上未考虑其三相负荷的分配问题,又未能及时监测、调整配电变压器的三相负荷,它的使用和停电,对配电变压器三相负荷的平衡都有较大的影响,特别是单相用电设备容量较大时,影响更

三相负荷不平衡对线损的影响

论文名称:三相负荷不平衡对线损的影响 作者:蔡树锦 摘要:采用三相四线制供电方式,由于用户较为分散,线路较长,如果三相负荷不平衡,将直接增加电能在线路的损耗,下面试加分析。 关键字:三相四线制供电方式线路损耗 采用三相四线制供电方式,由于用户较为分散,线路较长,如果三相负荷不平衡,将直接增加电能在线路的损耗,下面试加分析。 三相四线制结线方式如图1所示。 图1三相四线制接线方式 这时单位长度线路上的功率损耗为: ΔP1=I2a R+I2b p+I2c R+I2o×2R=(1) 式中R--单位长度线路的电阻值,中性线的截面积通常只有相线的一半,故中性线的单位长度线路的电阻值取2R。 当三相负荷完全平衡时,三相电流I a=I b=I c=I cp,中性线的电流I o=0,这时单位长度线路上的功率损耗为: ΔP=3I2cp R(2) 如果各相电流不平衡,则中性线中有电流通过,损耗将显著增加。为讨论方便,引入负荷不平衡度β概念:β=(I max-I cp)/I cp×100%(3) 式中I max--负荷最大一相的电流值 I cp--三相负荷完全平衡时的相电流值

下面分三种情况讨论三相负荷不平衡时线损值的增量。 1一相负荷重,两相负荷轻 假设A相负荷重,B、C相负荷轻,则I a=(1+β)×I cp,I b=I c=(1-β/2)I cp,在三相相位对称的情况下,中性线的电流I o=32βI cp。代入式(1),这时单位长度线路上的功率损耗为: ΔP1=(1+β)2I2cp R+2(1-β/2)2I2cp R+94β2I2cp×2R=3I2cp R+6β2I2cp R(4) 它与三相负荷平衡时单位长度线路上的功率损耗的比值,称为功率损耗增量系数。其值为K则: K1=ΔP1ΔP=3I2cp R+6β2I2cp R/3I2cp R=1+2β2(5) 2一相负荷重,一相负荷轻,第三相的负荷为平均负荷 假设A相负荷重,B相负荷轻,C相负荷为平均值,显然I a=(1+β)I cp,I b=(1-β)I cp,I c=I cp,则在三相相位对称的情况下,中性线的电流。得出单位长度线路上的功率损耗为: ΔP2=(1+β)2I2cp R+(1-β)2I2cp R+I2cp R+3β2I2cp×2R=3I2cp R+8β2I2cp R(6) K2=ΔP2ΔP=3I2cp R+8β2I2cp R3I2cp R=1+8/3β2(7) 3一相负荷轻,两相负荷重 假设I a=(1-2β)I cp,I b=I c=(1+β)I cp,则在三相相位对称的情况下,中性线的电流I o=3βI cp。这时单位长度线路上的功率损耗为: ΔP3=(1-2β)2I2cpR+2(1+β)2I2cp R+9β2I2cp×2R=3I2cp R+24β2I2cp R(8) K3=ΔP3ΔP=3I2cp R+24β2I2cp R3I2cp R=1+8β2(9) 比较式(5)、(7)、(9),显然,当负荷不平衡度β相等时,K3>K2>K1>1,对于三相四线制结线方式,由此可得出如下结论: (1)三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。 (2)当三相负荷不平衡时,不论何种负荷分配情况,电流不平衡度越大,线损增量也越大。 按照规程规定,不平衡度β不得大于20%。若使β=0.2,则K1=1.08,K2=1.11,K3=1.32,也就是说,相对于三相平衡的情况而言,由于三相负荷不平衡(且在规程允许范围内)所引起的线损分别增加8%、11%、32%。

三相不平衡的影响

三相负荷不平衡的危害 3.1 对配电变压器的影响 (1)三相负荷不平衡将增加变压器的损耗: 变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。 当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。 因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下: Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕 由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压 器的损耗最小。 则变压器损耗: 当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R; 当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R); 即最大不平衡时的变损是平衡时的3倍。 (2)三相负荷不平衡可能造成烧毁变压器的严重后果: 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。 (3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高: 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。 3.2 对高压线路的影响 (1)增加高压线路损耗: 低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R 低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为: ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R); 即高压线路上电能损耗增加12.5%。 (2)增加高压线路跳闸次数、降低开关设备使用寿命: 我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。 3.3 对配电屏和低压线路的影响 (1)三相负荷不平衡将增加线路损耗:

变压器空载时三相电压不平衡原因分析

变压器空载时三相电压不平衡原因分析 近年来欧阳海水电站因供电负荷不断增长,原来的两台变压器容量已不能满足需求,常过载运行。为了增加供电量,故将2号变压器容量由4MVA更换为,型号为GS9-6300/10,结线为y,d11。2号变压器安装前按规程规定进行了各项测试工作,测试结果正常。安装就位后又进行了必要的测试及耐压试验,都合格。于是进行冲击合闸试验,冲击合闸试验也未出现异常现象。但当检查变压器副边三相对地电压时,却发现中压不平衡,分别为Uao = ,Ubo = ,Uco = ,线电压基本平衡。该变压器安装前是由一台4MVA的变压器供电,现已将该4MVA的变压器移至1号变压器位置,其母线电压是平衡的。新变压器空载时只带Ⅱ段母线及母线上一组电压互感器,由电压互感器TV测得相电压不平衡。为了查明原因,验证TV及表计完好,将2号变退出,由1号变(4MVA变压器)带I、II段母线测电压,I、II段母线三相电压都是平衡的,由此可以排除TV及表计问题。 将2号变停电退出进行,测试未发现问题,再投入空载运行,现象同前。为了查明原因和对用户负责,未送电,将上述情况告知厂家。厂家对该变压器进行了全面的测试,也未发现问题,得出结论该变压器无质量问题,合格。于是将该变压器又投入空载,检查副边电压,现象仍如前。究竟是什么原因产生这种现象的呢对用户是否会有影响呢厂家也不能肯定。而用户急着用电,不能久拖。最后与厂家、用户协商,投入该变压器运行。先投入一条长约4km的空载线路,测母线三相对地电压,分别为Uao = ,Ubo = ,Uco = 。发现三相电压的偏差在变小,继而再投入其它线路,并且投入用户变压器,测用户变压器低压侧(400V侧)电压,看三相电压相差多少,能否使用,于是到用户变压器低压侧测电压,测得三相电压分别为Uao = 235V,Ubo = 234V,Uco = 234V,相电压、线电压都平衡。用户投入各类负荷运行正常。回来后,再测Ⅱ段母线电压,测得电压分别为Uao = ,Ubo = ,Uco = ,三相电压完全平衡。由此进行了总结,得出结论:该变压器空载(只带母线)时三相对地电压不平衡,带上负荷后,电压完全平衡,用户可以放心使用。 经与厂家技术人员进行了分析,到底是什么原因引起这种现象呢根据厂家人员介绍,厂家在设计制造这台变压器时,与以前的变压器结构上进行了改进,△侧接电源,副边侧接负载,中性点不接地未引出,电压调整抽头由侧从首端引出,在结构上与以前使用的1号、2号变压器有所不同。由于变压器原边与副边绕组、原副边绕组对地、相与相绕组之间都存在电容,又由于结构上的原因,导致三相绕组总的对地电容不相等。在空载只带母线电压互感器情况下,对地电容值主要取决于变压器对地电容,母线电压互感器相当于一个电感,组成的电路原理见图1。现以变压器负荷侧(副边侧)作为电源,变压器中性点为O,变压器对地电容及电压互感器组成的负载阻抗为Z,三相负载的中性点为O’,电路原理见图2,作电压向量图。由于Za、Zb、Zc不相等,故电源中性点O与负载中性点O’不重合,中性点电位发生偏移。电压向量图见图3,点O与O’的偏移情况视三相负载阻抗Za、Zb、Zc不平衡情况而变化。O’点随着投入线路及负荷情况而变。当投入负荷后,变压器对地容抗远小于负载总阻抗,对电压偏移不产生影响。而设负荷为三相平衡负荷,故点O与点O’重合,三相电压平衡。这就出现了用户用电后,2号变压器(Ⅱ段母线)三相对地电压反而平衡的缘故。因此,可以肯定,Ⅱ段母线的用户可以放心使用,对电气设备不会有什么影响。

三相不平衡负载对低压线损率的影响探析参考文本

三相不平衡负载对低压线损率的影响探析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

三相不平衡负载对低压线损率的影响探 析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 农村低压电网改造后低压电网结构发生了很大的变 化,电网结构薄弱环节基本上已经解决,低压电网的供电 能力大大增强,电压质量明显提高,大部分配电台区的低 压线损率降到了11%以下,但仍有个别配电台区因三相不 平衡负载等原因而造成线损率居高不下,给供电管理企业 特别是基层供电所电工组造成较大的困难和损失,下面针 对这些情况进行分析和探讨。 一、原因分析 在前几年的农网改造时,对配电台区采取了诸如增添 配电变压器数量,新增和改造配电屏,配电变压器放置在 负荷中心,缩短供电半径,加大导线直径,建设和改造低

压线路,新架下户线等一系列降损技术措施,也收到了很好的效果。但是个别台区线损率仍然很高,针对其原因,我们做了认真的实地调查和分析,发现一些台区供电采取单相二线制、二相三线制,即使采用三相四线制供电,由于每相电流相差很大,使三相负荷电流不平衡。从理论和实践上分析,也会引起线路损耗增大。 二、理论分析 低压电网配电变压器面广量多,如果在运行中三相负荷不平衡,会在线路、配电变压器上增加损耗。因此,在运行中要经常测量配电变压器出口侧和部分主干线路的三相负荷电流,做好三相负荷电流的平衡工作,是降低电能损耗的主要途经。 假设某条低压线路的三相不平衡电流为IU、IV、IW,中性线电流为IN,若中性线电阻为相线电阻的2倍,相线电阻为R,则这条线路的有功损耗为

TN、TT、IT供电系统的特点及区别

TN、TT、IT供电系统的特点及安装要求 380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。 IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。 TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即过去的三相四线制供电系统中的保护接地。 TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即过去的三相四线制供电系统中的保护接零。 TN系统的电源中性点直接接地,并有中性线引出。按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。 (1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。 (2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。此外,由于N线与PE线分开,N线断开也不会影响PE线的保护作用。 ③TN-C-S系统(三相四线与三相五线混合系统),该系统从变压器到用户配电箱式四线制,中性线和保护地线是合一的;从配电箱到用户中性线和保护地线是分开的,所以它兼有TN-C系统和TN-S系统的特点,常用于配电系统末端环境较差或有对电磁抗干扰要求较严的场所。 我国的低压配电系统基本上有三种:即TT系统、TN系统、IT系统。 上述各种保护系统均采用国际标准所用符号,第一字母T:表示中性点直接接地;I表示中性点不直接接地(不接地或经高电阻接地等);第二个字母T:表示外露可导电部分对地直接电气连接与电力系统任何接地无关;N表示外露可导电部分与电力系统的接地点直接电气连接。TT系统就是将电气设备的金属外壳作接地保护的系统;TN系统就是将电气设备的金属外壳作接零保护的系统。 TT系统: TT电力系统有一个直接接地点,电气设施的外露可导电部分接至电气上与电力系统无关的接地极。

三相不平衡危害

不平衡电流的危害 时间:2013-01-28 11:27来源:未知作者:admin 点击: 231 次 . 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响: 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡, IA=100A,IB=100A,IC=100A,则总铜损=100*100R+100*100R+100*100R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损 =50*50R+100*100R+150*150R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损 =150*150R+150*150R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=300*300R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响: 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。 由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事

低压供电系统中三相四线制和三相五线制有何区别

低压供电系统中三相四线制和三相五线制有何区别 三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S:L1L2L3+PE(保护线)+N(中性线) TN-C:L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S:L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下: 1、第一个字母表示配电系统的对地关系: T:电源端有一点直接接地; I:电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T:外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N:外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点) 在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN-C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:在1、10区爆炸危险环境中不能采用TN-C系统。同时由于PEN线在同一建筑物内往往相互有电气连接,当PEN线断线或相线直接与大地短路时,都将呈现相当高的对地故障电压,这时可能扩大事故范围。 2、在TN-S系统中,保护线与中性线分开,具有TN-C系统的优点,但价格较贵。由于正常情况下PE线不通过负荷电流,与PE线相连的电气设备金属外壳不带电位,所以适用于数据处理和精密电子仪器设备的供电,也可用于有爆炸危险的环境中。在民用建筑中,家用电器大都有单独接地极的插头,采用TN-S供电,既方便又安全。但TN-S系统仍不能解决相线对大地适中引起电压升高和对地故障电压的蔓延问题。 3、在TN-C-S系统中,PEN线自A点起分为保护线和中性线,分开以后,N线应对地绝缘。为了防止分开后的PE线与N线混淆,应按国标GB7947-87的规定,给PE线和PEN线涂以黄绿相间的色标,给N线涂以浅蓝色色标。PEN自分开后,PE线与N线不能再合并,否则将丧失分开后形成的TN-S系统的特点。 TN-C-S是广泛采用的配电系统,在工矿企业中,对电位敏感的电气设备往往设置在线路未端,而线路前端大多数为固定设备,因此,到了线咱未端改为TN-S系统十分不利。在民用建筑中,电源线咱采用TN-C系统,进入建筑物内改为TN-S系统。这种系统,线路结构简单又能保证一定的安全水平。在电源侧的PEN线上难免有一定的电压降,但对工矿企业的固定设备及作为民用建筑的电源线都没有影响,PEN分开后即有专用的保护线,可以确保TN-S所具有的特点。

变压器三相负荷不平衡原因分析及防范措施

变压器三相负荷不平衡原因分析及防范措施 发表时间:2018-06-11T15:06:54.410Z 来源:《河南电力》2018年2期作者:张璇 [导读] 变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。 (国网山西省电力公司太原供电公司山西太原 030012) 摘要:变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。因此变压器台区三相负荷不平衡问题应当引起重视。 关键词:变压器三相负荷不平衡;原因;防范措施 一、变压器三相负荷不平衡引起的麻烦 某地区多个台变多次出现一相总熔断器熔丝烧断的情况,利用用电采集系统采集配变的三相负荷数据,均为三相负荷不平衡引起,随着夏季用电负荷的不断增加,这种不平衡的情况也突显出来,随之带来抢报修以及服务热线诉求工单的数量猛增,给企业的优质服务带来影响。 在线损合格台区整改提高工作中也发现,因三相负荷的不平衡也会造成台区线损率的增加。在三相负荷不平衡度较大的情况下,在配电变压器中性点不接地或接地电阻达不到技术要求时,中性点将发生位移造成中性线带有一定的电压,从而加大线路电压的电压降,降低功率的输出,线路供电电压偏低,尤其是线路末端的电压远远超出电压降的允许范围,直接导致用户的用电设备不能正常工作,电气效能降低,同时极大的增加了低压线损率。通过用电采集系统提供的相关数据证明,一般情况下三相负荷不平衡可引起低压线损率升高2%~10%,三相负荷不平衡度若超过15%,则线损率显著增加,不平衡度越高对低压线损率的影响越大,如不平衡度超过30%,通过计算影响低压线损可以达到3%~6%。而事实上由于城乡用户受经济条件的制约和家用电器普及率的逐年提高,三相负荷不平衡度情况越来越严重,目前通过用电采集系统提供的数据计算,每天三个用电高峰期三相负荷不平衡度超过10%的占总综合变台区的60%,不平衡度超20%的台区数占总台区的40%,不平衡度超过30%的台区数占台区的26%。不平衡度越大的台区供电线路末端用户普遍反映电压偏低,而低压线损率也普遍反映较大。在低压三相负荷不平衡度的影响下,使配电变压器处于不对称运行状态,造成配电变压器的负载损耗和空载损耗增大,而影响到10kV线损率。 二、三相不平衡对变压器的影响 (1)三相不平衡将增加变压器的损耗 变压器的损耗包含空载损耗和负荷损耗,正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随着变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 (2)三相不平衡降低了配电变压器的出力 配电变压器容量的设计和制造是以三相负载平衡条件确定的,如果三相负载不平衡,配电变压器的最大出力只能按三相负载中最大一相不超过额定容量为限,负荷轻的相就有富裕容量,从而使配电变压器出力降低。例如100kVA配电变压器,二次额定电流为144A,若Ia为144A,Ib、Ic分别为72A,配电变压器的出力只有67%。 (3)三相不平衡可能造成烧毁变压器的严重后果 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器的寿命。(温度每增加8度,使用年限将减少一半,甚至烧毁绕组。 (4)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序通磁,这些零序通磁就会在变压器的油箱壁或其它金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重使将导致变压器运行事故。 三、影响变压器三相负荷不平衡的原因 三相负荷不平衡发生的原因主要是管理上存在薄弱环节,由于在对配电变压器三相负荷的分配上存在盲目性、工作随意性,以及运行维护人员对配电变压器三相负荷管理的责任心不到位,农村用电动力、照明的混用,尤其是居民用电单相负荷发展时无序延伸,用户用电情况不好掌握等客观因素,而在管理中又由于缺乏有效的监测、调整和考核机制,导致目前农村综合变压器三相负荷处于不平衡状态下运行。 四、防止变压器负荷不平衡运行采取的措施 (1)加强配电变压器负荷不平衡运行管理。运维班安排专人负责利用用电采集系统定期进行三相不平衡电流测试,并结合台区责任人的现场测量情况,按季度考核变压器三相负荷不平衡度的情况,把它列入考核项目,以提高农电管理人员搞好三相负荷平衡的自觉性和积极性。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,并完善相关记录台帐,为调整配电变压器负荷提供准确可靠的数据。 管理人员应熟悉台区的每个用户用电情况、设备安装地点、用电能量变化情况,特别是注意大功率用电设备数量和容量等,看其分布在那相上。然后根据情况及时调整负荷。 (2)改造配电网,加强对三相负荷分布控制。在改造台区供电方案前,要了解所改造台区的负荷变化规律和负荷分配情况,对所改造的台区进行现场勘察,掌握负荷分布情况,同时绘制台区负荷分配接线图,并严格按三相负荷平衡的原则进行布线,尽量使三相四线深入到各重要负荷中心。配电变压器设置于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民尽量不采用单相供电,中性线导线截面与其它相线截面一致,以减少损耗,消除断线的事故隐患。同时制定台区负荷分配接线图,做到任何一

三相电压不平衡的区分判断方法和解决办法

三相电压不平衡的区分判断方法和解决办法 引起三相电压不平衡的原因有多种,如:单相接地、断线谐振等,运行管理人员只有将其正确区分开来,才能快速处理。 一、断线故障如果一相断线但未接地,或断路器、隔离开关一相未接通,电压互感器保险丝熔断均造成三相参数不对称。上一电压等级线路一相断线时,下一电压等级的电压表现为三个相电压都降低,其中一相较低,另两相较高但二者电压值接近。本级线路断线时,断线相电压为零,未断线相电压仍为相电压。 二、接地故障当线路一相断线并单相接地时,虽引起三相电压 不平衡,但接地后电压值不改变。单相接地分为金属性接地和非金属性接地两种。金属性接地,故障相电压为零或接近零,非故障相电压升高1.732倍,且持久不变;非金属性接地,接地相电压不为零而是降低为某一数值,其他两相升高不到1.732倍。 谐振原因随着工业的飞速发展,非线性电力负荷大量增加,某 些负荷不仅产生谐波,还引起供电电压波动与闪变,甚至引起三相电压不平衡。

谐振引起三相电压不平衡有两种: 一种是基频谐振,特征类似于单相接地,即一相电压降低,另两相电压升高,查找故障原因时不易找到故障点,此时可检查特殊用户,若不是接地原因,可能就是谐振引起的。 另一种是分频谐振或高频谐振,特征是三相电压同时升高。 另外,还要注意,空投母线切除部分线路或单相接地故障消失时,如出现接地信号,且一相、两相或三相电压超过线电压,电压表指针打到头,并同时缓慢移动,或三相电压轮流升高超过线电压,遇到这种情况,一般均属谐振引起。 三相不平衡的危害和影响:

对变压器的危害。在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。 对用电设备的影响。三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。 对线损的影响。三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。三相不平衡的危害及解决办法: 一、三相电压或电流不平衡等因素产生的主要危害: 1、旋转电机在不对称状态下运行,会使转子产生附加损耗及发热,从而引起电机整体或局部升温,此外反向磁场产生附加力矩会使

供电系统的分类

什么是TT、TN-C、TN-S、TN-C-S、IT系统? 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。 (1)TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 TT方式供电系统 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。

图2 带专用保护线的TT方式供电系统 图中点画线框内是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT系统优点多。TN系统根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。 (3)TN-C方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。 图3 TN-C方式供电系统

相关文档
最新文档