浙江省宁波市海曙区2019-2020学年八年级上学期数学期末考试试卷
2019-2020学年浙江省宁波市海曙区八年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省宁波市海曙区八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列是世界各国银行的图标,其中不是轴对称图形的是( )A .B .C .D .2.(3分)一个正比例函数的图象过点(2,3)-,它的表达式为( )A .32y x =-B .23y x =C .32y x =D .23y x =- 3.(3分)已知等腰三角形ABC ∆中,腰8AB =,底5BC =,则这个三角形的周长为( )A .21B .20C .19D .184.(3分)已知关于x 的不等式23x m ->-的解集如图,则m 的值为( )A .2B .1C .0D .1- 5.(3分)一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数为( )A .60︒B .45︒C .75︒D .90︒6.(3分)如图,ABC AEF ∆≅∆且点F 在BC 上,若AB AE =,B E ∠=∠,则下列结论错误的是( )A .AC AF =B .AFE BFE ∠=∠C .EF BC =D .EAB FAC ∠=∠7.(3分)能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是( )A .120︒,60︒B .75︒,105︒C .30︒,150︒D .90︒,90︒8.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为( )A .5B .6C .7D .109.(3分)如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求 (乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确10.(3分)如图,直线1y kx b =+过点(0,3)A ,且与直线2y mx =交于点(1,)P m ,则不等式组2mx kx b mx >+>-的解集是( )A.514x<<B.413x<<C.513x<<D.12x<<二、填空题(本题有8小题,每小题3分,共24分)11.(3分)6与x的2倍的和是负数,用不等式表示为.12.(3分)将点(1,2)P-向左平移2个单位,再向上平移1个单位所得的对应点的坐标为.13.(3分)已知CD是Rt ABC∆的斜边AB上的中线,若35A∠=︒,则BCD∠=.14.(3分)已知点(3,)A m-与点(2,)B n是直线23y x b=-+上的两点,则m n(填“>”、“<”或“=”).15.(3分)如图,直线//m n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若130∠=︒,则2∠=.16.(3分)已知点(4,3)A,//AB y轴,且3AB=,则B点的坐标为.17.(3分)一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了道题.18.(3分)如图,10个边长为1的正方形摆放在平面直角坐标系中,经过(1,0)A点的一条直线l将这10个正方形分成面积相等的两部分,则该直线的解析式为.三、解答题(本题有6小题,共46分)19.(6分)解不等式组532,31204x xx+⎧⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来.20.(6分)如图,方格纸中每个小正方形的边长都是单位1,ABC∆的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是(2,3)A-,(5,1)B-,(1,3)C,结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出ABC∆;(2)画出ABC ∆关于y 轴对称的△A B C ''',并写出△A B C '''各顶点坐标.21.(8分)已知,如图,点A 、D 、B 、E 在同一直线上,AC EF =,AD BE =,A E ∠=∠,(1)求证:ABC EDF ∆≅∆;(2)当120CHD ∠=︒,求HBD ∠的度数.22.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.设购进A 种树苗x 棵,购买两种树苗的总费用为w 元.(1)写出w (元)关于x (棵)的函数关系式;(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.23.(8分)如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴交于点(3,0)A -,与y 轴交于点B ,且与正比例函数43y x =的图象交点为(,4)C m . (1)求一次函数y kx b =+的解析式;(2)求BOC ∆的面积;(3)若点D 在第二象限,DAB ∆为等腰直角三角形,则点D 的坐标为 .24.(10分)问题背景:如图1,在正方形ABCD的内部,作DAE ABF BCG CDH∠=∠=∠=∠,根据三角形全等的条件,易得DAE ABF BCG CDH∆≅∆≅∆≅∆,从而得四边形EFGH是正方形.类比探究:如图2,在正ABC∠=∠=∠,AD,BE,CF两两相交于D,∆的内部,作123E,F三点(D,E,F三点不重合).(1)ABD∆,BCE∆,CAF∆是否全等?如果是,请选择其中一对进行证明;(2)DEF∆是否为正三角形?请说明理由;(3)如图3,进一步探究发现,ABD∆的三边存在一定的等量关系,设BD a=,=,AD b =,请探索a,b,c满足的等量关系.AB c参考答案一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列是世界各国银行的图标,其中不是轴对称图形的是()A.B.C.D.解:A、B、C都是轴对称图形,故选D.2.(3分)一个正比例函数的图象过点(2,3)-,它的表达式为()A.32y x=-B.23y x=C.32y x=D.23y x=-解:设函数的解析式是y kx=.根据题意得:23k=-.解得:32k=-.故函数的解析式是:32y x =-.故选:A.3.(3分)已知等腰三角形ABC∆中,腰8AB=,底5BC=,则这个三角形的周长为( )A.21B.20C.19D.18解:885++165=+21=.故这个三角形的周长为21.故选:A.4.(3分)已知关于x的不等式23x m->-的解集如图,则m的值为( )A.2B.1C.0D.1-解:23x m>-,解得32m x ->, 在数轴上的不等式的解集为:2x >-,∴322m -=-, 解得1m =-;故选:D .5.(3分)一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数为( )A .60︒B .45︒C .75︒D .90︒解:90CAE ∠=︒,45BAE ∠=︒,45CAB ∴∠=︒,75BDC CAB C ∴∠=∠+∠=︒,故选:C .6.(3分)如图,ABC AEF ∆≅∆且点F 在BC 上,若AB AE =,B E ∠=∠,则下列结论错误的是( )A .AC AF =B .AFE BFE ∠=∠C .EF BC =D .EAB FAC ∠=∠解:ABC AEF ∆≅∆,AC AF ∴=,EF BC =,故A ,C 正确;EAF BAC ∠=∠,FAC EAB ∴∠=∠,故D 正确;AFE C ∠=∠,故B 错误; 故选:B .7.(3分)能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120︒,60︒B.75︒,105︒C.30︒,150︒D.90︒,90︒解:当两个角都是90︒时,满足两个角互补,不满足这两个角一个是锐角,另一个是钝角.故选:D.8.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5B.6C.7D.10解:已知4条木棍的四边长为2、3、4、6;①选23-<<+,能构成三角形,此时+、4、6作为三角形,则三边长为5、4、6;54654两个螺丝间的最长距离为6;②选34-<<+,能构成三角形,此时+、6、2作为三角形,则三边长为2、7、6;62762两个螺丝间的最大距离为7;③选46+、2、3作为三角形,则三边长为10、2、3;2310+<,不能构成三角形,此种情况不成立;④选62+、3、4作为三角形,则三边长为8、3、4;而348+<,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:C.9.(3分)如图的ABC>>,且D为BC上一点.今打算在AB上找一点P,∆中,AB AC BC在AC上找一点Q,使得APQ∆全等,以下是甲、乙两人的作法:∆与PDQ(甲)连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求(乙)过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确解:如图1,PQ 垂直平分AD ,PA PD ∴=,QA QD =, 而PQ PQ =,()APQ DPQ SSS ∴∆≅∆,所以甲正确;如图2,//PD AQ ,//DQ AP ,∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =,而PQ QP =,()APQ DQP SSS ∴∆≅∆,所以乙正确.故选:A .10.(3分)如图,直线1y kx b =+过点(0,3)A ,且与直线2y mx =交于点(1,)P m ,则不等式组2mx kx b mx >+>-的解集是( )A .514x <<B .413x <<C .513x <<D .12x << 解:直线1y kx b =+过点(0,3)A ,3b ∴=,把(1,)P m 代入3y kx =+得3k m +=,解得3k m =-,解(3)32m x mx -+>-得53x <, 所以不等式组2mx kx b mx >+>-的解集是513x <<. 故选:C .二、填空题(本题有8小题,每小题3分,共24分)11.(3分)6与x 的2倍的和是负数,用不等式表示为 620x +< . 解:x 的2倍为2x ,6与x 的2倍的和写为62x +,和是负数,620x ∴+<,故答案为620x +<.12.(3分)将点(1,2)P -向左平移2个单位,再向上平移1个单位所得的对应点的坐标为 (3,3)- .解:点(1,2)P -向左平移2个单位,再向上平移1个单位所得的对应点的坐标为(12,21)--+,即对应点的坐标是(3,3)-.故答案填:(3,3)-.13.(3分)已知CD 是Rt ABC ∆的斜边AB 上的中线,若35A ∠=︒,则BCD ∠= 55︒ . 解:90ACB ∠=︒,35A ∠=︒,55B ∴∠=︒, CD 是Rt ABC ∆的斜边AB 上的中线,CD BD ∴=,55BCD B ∴∠=∠=︒,故答案为:55︒.14.(3分)已知点(3,)A m -与点(2,)B n 是直线23y x b =-+上的两点,则m > n (填“>”、“ <”或“=” ). 解:直线23y x b =-+中,203k =-<, y ∴随x 的增大而减小.32-<,m n ∴>.故答案为:>.15.(3分)如图,直线//m n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若130∠=︒,则2∠= 75︒ .解:直线//m n ,130BAC ∴∠=∠=︒,AB AC =,1(180)752ABC BAC ∴∠=︒-∠=︒, 275ABC ∴∠=∠=︒,故答案为:75︒.16.(3分)已知点(4,3)A ,//AB y 轴,且3AB =,则B 点的坐标为 (4,0)或(4,6) . 解:(4,3)A ,//AB y 轴,∴点B 的横坐标为4,3AB =,∴点B 的纵坐标为336+=或330-=,B ∴点的坐标为(4,0)或(4,6).故填(4,0)或(4,6).17.(3分)一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了 17 道题. 解:设小聪答对了x 道题,则答错了(201)x --道题,依题意,得:52(201)80x x --->,解得:6167x >, x 为正整数,x ∴的最小值为17.故答案为:17.18.(3分)如图,10个边长为1的正方形摆放在平面直角坐标系中,经过(1,0)A 点的一条直线l 将这10个正方形分成面积相等的两部分,则该直线的解析式为 9988y x =- .解:将由图中1补到2的位置, 10个正方形的面积之和是10,∴梯形ABCD 的面积只要等于5即可,∴设4BC x =-,则[(4)3]325x -+⨯÷=,解得,113x =, ∴点B 的坐标为11(3,3), 设过点A 和点B 的直线的解析式为y kx b =+,01133k b k b +=⎧⎪⎨+=⎪⎩, 解得,9898k b ⎧=⎪⎪⎨⎪=-⎪⎩,即过点A 和点B 的直线的解析式为9988y x =-, 故答案为:9988y x =-.三、解答题(本题有6小题,共46分)19.(6分)解不等式组532,31204x x x +⎧⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来. 解:53231204x x x +⎧⎪⎨--<⎪⎩①②, 解不等式①,得1x -,解不等式②,得3x <.所以不等式组的解集:13x -<,在数轴上表示为:20.(6分)如图,方格纸中每个小正方形的边长都是单位1,ABC ∆的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是(2,3)A -,(5,1)B -,(1,3)C ,结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出ABC ∆;(2)画出ABC ∆关于y 轴对称的△A B C ''',并写出△A B C '''各顶点坐标.解:(1)如图所示,ABC ∆即为所求;(2)如图所示,△A B C '''即为所求;(2,3)A '--,(5,1)B '--,(1,3)C '-.21.(8分)已知,如图,点A 、D 、B 、E 在同一直线上,AC EF =,AD BE =,A E ∠=∠,(1)求证:ABC EDF ∆≅∆;(2)当120CHD ∠=︒,求HBD ∠的度数.【解答】(1)证明:AD BE =,AB ED ∴=,在ABC ∆和EDF ∆中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩,()ABC EDF SAS ∴∆≅∆;(2)ABC EDF ∆≅∆,HDB HBD ∴∠=∠,120CHD HDB HBD ∠=∠+∠=︒,60HBD ∴∠=︒.22.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.设购进A 种树苗x 棵,购买两种树苗的总费用为w 元.(1)写出w (元)关于x (棵)的函数关系式;(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.解:(1)8060(17)201020w x x x =+-=+;(2)200k =>,w 随着x 的增大而增大,又17x x -<,解得8x >,8.517x ∴<<,且x 为整数∴当9x =时,w 有最小值20910201200⨯+=(元),答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵,所需费用为1200元.23.(8分)如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴交于点(3,0)A -,与y 轴交于点B ,且与正比例函数43y x =的图象交点为(,4)C m . (1)求一次函数y kx b =+的解析式;(2)求BOC ∆的面积;(3)若点D 在第二象限,DAB ∆为等腰直角三角形,则点D 的坐标为 (2,5)-或(5,3)-或5(2-,5)2.解:(1)点C 在正比例函数图象上,∴443m =,解得:3m =, 点(3,4)C 、(3,0)A -在一次函数图象上,∴代入一次函数解析式可得3034k b k b -+=⎧⎨+=⎩,解这个方程组得232k b ⎧=⎪⎨⎪=⎩, ∴一次函数的解析式为223y x =+; (2)在223y x =+中,令0x =,解得2y =, (0,2)B ∴ 233BOC S ∆∴=⨯⨯=;(3)过点1D 作1D E y ⊥轴于点E ,过点2D 作2D F x ⊥轴于点F ,如图, 点D 在第二象限,DAB ∆是以AB 为直角边的等腰直角三角形, 2AB BD ∴=,190D BE ABO ∠+∠=︒,90ABO BAO ∠+∠=︒,1BAO EBD ∴∠=∠,在1BED ∆和AOB ∆中,111D EB BOA EBD BAO D B BA ∠=∠⎧⎪∠=∠⎨⎪=⎩ 1()BED AOB AAS ∴∆≅∆,3BE AO ∴==,12D E BO ==,即可得出点D 的坐标为(2,5)-;同理可得出:2AFD AOB ∆≅∆,2FA BO ∴==,23D F AO ==,∴点D 的坐标为(5,3)-,1245D AB D BA ∠=∠=︒,390AD B ∴∠=︒,35(2D ∴-,5)2, 综上可知点D 的坐标为(2,5)-或(5,3)-或5(2-,5)2.故答案为:(2,5)-或(5,3)-或5(2-,5)2.24.(10分)问题背景:如图1,在正方形ABCD 的内部,作DAE ABF BCG CDH ∠=∠=∠=∠,根据三角形全等的条件,易得DAE ABF BCG CDH ∆≅∆≅∆≅∆,从而得四边形EFGH 是正方形.类比探究:如图2,在正ABC ∆的内部,作123∠=∠=∠,AD ,BE ,CF 两两相交于D ,E ,F 三点(D ,E ,F 三点不重合). (1)ABD ∆,BCE ∆,CAF ∆是否全等?如果是,请选择其中一对进行证明;(2)DEF ∆是否为正三角形?请说明理由;(3)如图3,进一步探究发现,ABD ∆的三边存在一定的等量关系,设BD a =,AD b =,AB c =,请探索a ,b ,c 满足的等量关系.【解答】(1)ABD BCE CAF ∆≅∆≅∆;理由如下: ABC ∆是正三角形,60CAB ABC BCA ∴∠=∠=∠=︒,AB BC AC ==, 又123∠=∠=∠,ABD BCE CAF ∴∠=∠=∠,在ABD ∆、BCE ∆和CAF ∆中,123ABD BCE CAF AB BC CA ∠=∠=∠⎧⎪==⎨⎪∠=∠=∠⎩,()ABD BCE CAF ASA ∴∆≅∆≅∆;(2)DEF ∆是正三角形;理由如下:ABD BCE CAF ∆≅∆≅∆, ADB BEC CFA ∴∠=∠=∠, FDE DEF EFD ∴∠=∠=∠, DEF ∴∆是正三角形;(3)222c a ab b =++.作AG BD ⊥于G ,如图所示: DEF ∆是正三角形, 60ADG ∴∠=︒,在Rt ADG ∆中,12DG b =,32AG b =, 在Rt ABG ∆中,22213()()22c a b b =++, 222c a ab b ∴=++.。
2019-2020学年浙江省宁波市海曙区兴宁中学八年级(上)期末数学试卷(附详解)

2019-2020学年浙江省宁波市海曙区兴宁中学八年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 要使二次根式√x −3有意义,则x 的取值范围是( )A. x >3B. x <3C. x ≥−3D. x ≥32. 下列是一元二次方程的是( )A. 2x +1=0B. y 2+x =1C. x 2+2x +3=0D. 1x =13. 下列函数的图象y 随x 的増大而减小的是( )A. y =2xB. y =3x +1C. y =4x −1D. y =−2x +14. 下列计算正确的是( )A. √(−3)2=−3B. −√0.36=−0.6C. √36=±6D. √−53=√535. 若关于x 的一元二次方程(k −2)x 2−2kx +k =6有实数根,则k 的取值范围为( )A. k ≥32B. k ≥32且k ≠2C. k ≥0D. k ≥0且k ≠26. 已知一次函数y 1=ax +b 和y 2=bx +a(a ≠b),函数y 1和y 2的图象可能是( )A.B.C.D.7. 为了美化环境,某市加大绿化投资,2015年用于绿化投资300万元,2017年用于绿化投资1040万元,求这两年绿化投资的年均增长率.设这两年绿化投资年平均增长率为x ,所列方程为( )A. 300x2=1040B. 300(1+x)=1040C. 300(1+x)2=1040D. 300(1+x)+300(1+x)2=10408.某校女排球队的年龄分布如表所示:年龄/岁131415人数x8−x12对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 众数、中位教B. 平均数、中位数C. 平均数、方差D. 中位数、方差9.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.10.在直角坐标系中,一直线m向上平移4个单位后所得直线经过点A(0,3),将直线n绕点A顺时针旋转75°后所得直线经过点B(−√3,0),则直线m的解析式是()A. y=−x+3B. y=−x−1C. y=−x+7D. y=√3x+311.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=a,2AC=b,再在斜边AB上截取BD=a,则该方程的一2个正根是()A. AC的长B. AD的长C. BC的长D. CD的长12.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,然后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示,则下列说法中:①a=4,b=10;②甲完成40个零件用了8个小时;③甲比乙早完成40个零件;④在整个安装过程中,甲、乙两人生产的零件总数相差5个时,时间分别为5小时,313小时和9小时.6正确的有()个.A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.比较大小:2√3______3√2.(填“>、<、或=”)14.若(x−3)2+√y−2=0,则x+y=______.15.某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分,90分、96分,综合成绩笔试占40%,试讲占50%,面试占10%,则该名教师的综合成绩为______分.16.有一个人患了流感,经过两轮传染后得知第二次被传染的有30人,如果每轮传染率都相同,那么每轮传染中平均一个人传染了______个人.17.如图,点A(1,0),B(0,1),以AB为底边作等腰△ABC,且CB:AB=√10:2,过点C作AB的平行线,分别交x轴、y轴于A1,B1,以A1B1为底边作等腰△A1B1C1,且C1B1:A1B1=√10:2;过点C1作A1B1的平行线,分别交x轴、y轴于点A2,B2,以A2B2为底边作等腰△A2B2C2,且C2B2:A2B2=√10:2,……,依此类推,则点C n的横坐标是______.18.如图,Rt△ABC中,点D是斜边AB的中点,点E是边AC上的一个动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD至点G,使DF=DG,连结AG,EF,若BC=1,AC=3,则线段EF长度的最小值是______.三、解答题(本大题共8小题,共64.0分)19.计算:(1)√18−2√2+√3;2(2)(√3+1)(√3−1)−√(1−√3)2.20.解方程:(1)(x−1)2=4;(2)x2−2x−5=0.21.某市射击队打算从君君、标标两名运动员中选拔一人参加省射击比赛,射击队对两人的射击技能进行了测评.在相同的条件下,两人各打靶5次,成绩统计如下:(1)填写下表:平均数(环)中位数(环)方差(环 2)君君880.4标标______ ______ ______(2)根据平均数和方差,若选派一名队员参赛,你认为应选队员______(填写姓名).(3)如果标标再射击1次,命中8环,那么他射击成绩的方差会______.(填“变大”“变小”或“不变”)22.已知关于x的一元二次方程x2−2(a−1)x+a2−a−2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22−x1x2=16,求a的值.23.如图,直线l1:y=2x−2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B(3,1),直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x−2的解集.24.某租赁公司拥有汽车50辆,据统计,当每辆车的日租金为200元时,可全部租出,每辆车的日租金每增加10元,未租出的车将会增加1辆.租出的车每辆每日需要维护费20元,未租出的车每辆每日只需要维护费10元.(1)当每辆车的日租金定为360元时,能租出多少辆车?(2)当每辆车的日租金定为多少元时,租赁公司的日收益(租金收入扣除维护费)可达到11200元?25.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?x+3与坐标轴交于A、B两点,点P是线段AB上的一个动点,26.如图(1),直线y=−34点C(0,−2).(1)当点P到y轴距离为12时,求出点P的坐标;5(2)如图(2),在第(1)小题的条件下,将射线CP绕点C顺时针旋转45°,与直线AB交于点D,请求出点D的坐标;(3)如图(3),将线段CP绕点C顺时针旋转90°至线段CE,连结OE,求线段OE的最小值;x+3与直线AB相交于点A,与x轴交于点F,与射线CP相(4)如图(4),直线y=−32交于点Q,连结OQ,点G(0,1),作点Q关于点G的对称点Q′,若△AGQ′是等腰三角形,求△COQ的面积.答案和解析1.【答案】D【解析】解:由题意,得x−3≥0,解得x≥3,故选:D.根据被开方数是非负数,可得答案.本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2.【答案】C【解析】解:A、该方程中未知数的最高次数是1,属于一元一次方程,故本选项不符合题意.B、该方程中含有2个未知数,属于二元二次方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、该方程属于分式方程,故本选项不符合题意.故选:C.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.【答案】D【解析】解:A、k=2>0,y随着x的增大而增大,不符合题意;B、k=3>0,y随着x的增大而增大,不符合题意;C、k=4>0,y随着x的增大而增大,不符合题意;D、k=−2<0,y随着x的增大而减小,符合题意;故选:D.根据正比例函数和一次函数的性质分别判断后即可确定正确的选项.考查了正比例函数及一次函数的性质,解题的关键是了解比例系数的符号与其增减性的关系,难度不大.4.【答案】B【解析】解:A .√(−3)2=3,本选项错误; B .−√0.36=−0.6,本选项正确; C .√36=6,本选项错误;D .√−53=−√53,本选项错误;故选:B .根据二次根式的性质化简即可.本题主要考查了二次根式的化简,熟记二次根式的性质是解答此题的关键.5.【答案】B【解析】解:∵关于x 的方程(k −2)x 2−2kx +k =6有两个实数根, ∴(−2k)−4(k −2)(k −6)≥0, 解得:k ≥32, ∵k −2≠0, ∴k ≠2,∴k 的取值范围为k ≥32且k ≠2, 故选:B .根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.6.【答案】A【解析】解:分情况讨论:当a >0、b >0时,直线y 1和直线y 2都经过一、二、三象限,只有选项A 符合;当a<0、b>0时,直线y1经过一、二、四象限,直线y2经过一、三、四象限,没有符合的选项;当a>0、b<0时,直线y1经过一、三、四象限,直线y2经过一、二、四象限,没有符合的选项;当a<0、b<0时,直线y1和直线y2都经过二、三、四象限,没有符合的选项.故选:A.分a>0、b>0,a<0、b>0,a>0、b<0,a<0、b<0四种情况讨论,判断出直线经过的象限,找出符合题意的选项,即可做出判断.本题主要考查的是一次函数图象与系数的关系,分类讨论思想,掌握一次函数的图象和性质是解题的关键.7.【答案】C【解析】解:设这两年绿化投资的年平均增长率为x,依题意得300(1+x)2=1040.故选:C.是增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这两年绿化投资的年平均增长率为x,根据“2015年用于绿化投资300万元,2017年用于绿化投资1040万元”,可得出方程.本题考查了由实际问题抽象出一元二次方程,平均增长率问题,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.【答案】A【解析】解:由表可知,年龄为13岁与年龄为14岁的频数和为x+8−x=8,则总人数为:8+12=20,故该组数据的众数为15岁;=15(岁),按大小排列后,第10个和第11个数据为:15,15,则中位数为:15+152即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:A.由频数分布表可知前两组的频数和为8,即可得知总人数,结合频数分布表知出现次数最多的数据及第10、11个数据的平均数求出中位数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9.【答案】C【解析】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则△CPE的面积y是x的一次函数,面积y随x 增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而减小,最小面积为0;故选:C.根据题意,分类讨论,即可得解.本题考查了动点问题的函数图象,难度不大.10.【答案】B【解析】解:如图所示:由题意可得:∠BAC=75°,∵A(0,3),B(−√3,0),∴BO=√3,AO=3,∴tan∠BAO=√3,3则∠BAO=30°,∴∠OAC=45°,则AO=CO=3,故C(3,0),∴设直线b的解析式为:y=kx+3,则0=3k+3,解得:k=−1,则直线b的解析式为:y=−x+3,∵一直线m向上平移4个单位后所得直线n,∴直线m的函数关系式为:y=−x−1.故选:B.根据题意画出图象,进而利用旋转的性质得出C点坐标,进而得出其解析式,再求出平移前的解析式即可.本题考查了一次函数图象与几何变换,解决本题的关键是得到直线n的解析式.11.【答案】B【解析】【分析】此题考查了一元二次方程的解和一元二次方程的应用,熟练掌握完全平方公式是解本题的关键.表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=a2,设AD=x,根据勾股定理得:(x+a2)2=b2+(a2)2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选B.12.【答案】C【解析】解:由图象可得,a=10−6=4,乙的速度为:10÷2=5(个/小时),b=4+(40−10)÷5=10,故①正确;甲2小时之后的速度为:6×2÷(4−2)=6(个/小时),甲完成40个零件用了:2+(40−4)÷6=8(小时),故②正确;由图象可得,甲比乙早完成40个零件,故③正确;由图象可得,在整个安装过程中,甲、乙两人生产的零件总数相差5个时,时间有四个时刻,故④错误;故选:C.根据题意和函数图象中的数据,可以分别计算出各个小题中的结论是否成立,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.13.【答案】<2)2=12,(3√2)2=18,【解析】解:∵(√3而12<18,∴2√3<3√2.故答案为:<.先把两个实数平方,然后根据实数的大小比较方法即可求解.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.【答案】5【解析】解:根据题意得x−3=0,y−2=0,解得:x=3,y=2,所以x+y=3+2=5.故答案为:5.利用绝对值的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.此题主要考查了算术平方根以及绝对值的性质,正确把握非负数的性质是解题的关键.15.【答案】91.4【解析】解:由题意,则该名教师的综合成绩为:92×40%+90×50%+96×10%=36.8+45+9.6=91.4.故答案为:91.4.根据加权平均数的计算方法求值即可.本题考查的是加权平均数的求法.本题易出现的错误是求92,90,96这三个数的平均数,对平均数的理解不正确.16.【答案】5【解析】解:设每轮传染中平均每个人传染了x人.依题意得x(1+x)=30,∴x2+x−30=0,∴(x+6)(x−5)=0.∴x1=5,x=−6(不合题意,舍去).所以,每轮传染中平均一个人传染给5个人.故答案为:5.设每轮传染中平均每个人传染了x人,第一轮后有(1+x)人患了流感,第二轮后会传染给x(1+x)人,然后根据第二次被传染的有30人就可以列出方程求解.此题主要考查了一元二次方程在增长率问题中的应用,分清题意,准确列式,巧妙利用因式分解法求得方程的解是解题的关键.17.【答案】22n+1【解析】解:连接CO,交AB于点D,作CE垂直于x轴.∵CB=CA,OB=OA,∴OC 垂直平分线段AB ,∴OC 平分∠AOB ,∴∠COE =45°,∵AB =√2,CB :AB =√10:2.∴CB =CA =√5,AD =BD =√22. ∴CD =√AC 2−AD 2=3√22. ∵OD =12AB =√22. ∴OC =OD +CD =2√2.∴CE =2,OE =CE =2,∵OA 1=2OE =4.∴A 1B 1=4√2,连接CC 1作C 1F 垂直于x 轴.同理可得OF =23.依此规律类推,C n 的横坐标为22n+1.故答案为:22n+1.用相似及勾股定理求出点C 坐标,依据点C 坐标变化寻找规律.考查解直角三角形及相似三角形知识点,解题关键在于解出点C 及C 1坐标.18.【答案】√102【解析】解:当DF ⊥BC 时,DF 取得最小值,∵DE ⊥DF ,∠C =90°,∴此时四边形DECF 是矩形,∴DE ⊥AC ,DE//BC ,DF//AC ,DE =CF ,∴此时DE 也取得最小值,当DE 、DF 取得最小值时,斜边EF 取得最小值,∵D 是AB 中点,∴E 是AC 中点,F 是BC 中点,∴AE =CE =DF =32,CF =12,∴EF =√CE 2+CF 2=√102,故线段EF 的最小值为√102, 故答案为:√102. 当DF ⊥BC 时,DF 取得最小值,由DE ⊥DF ,∠C =90°知此时四边形DECF 是矩形,从而得DE ⊥AC ,此时DE 也取得最小值,当DE 、DF 取得最小值时,斜边EF 取得最小值,由D 是AB 中点知E 是AC 中点,F 是BC 中点,从而得AE =CE =DF =32,CF =12,继而可得EF 的最小值.本题主要考查勾股定理、矩形的判定和性质等知识,解题的关键是得出当DE 、DF 取得最小值时,斜边EF 取得最小值.19.【答案】解:(1)原式=3√2−2√2+√62=√2+√62; (2)原式=3−1−(√3−1)=3−1−√3+1=3−√3.【解析】(1)直接化简二次根式,进而合并得出答案;(2)直接利用乘法公式以及二次根式的性质分别化简,进而合并得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.【答案】解:(1)(x −1)2=4;x −1=±2,∴x 1=3,x 2=−1;(2)x 2−2x −5=0.x 2−2x =5,x 2−2x +1=5+1,即(x −1)2=6,∴x −1=±√6,∴x 1=1+√6,x 2=1−√6.【解析】(1)开方,即可得出两个一元一次方程,求出方程的解即可;(2)移顶后配方,开方,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.21.【答案】89 2.8君君变小【解析】解:(1)标标5次的射击成绩为6、6、9、9、10,∴其平均数为6+6+9+9+105=8(环),中位数为9环,方差为15×[2×(6−8)2+2×(9−8)2+(10−8)2]=2.8(环 2)填写表格如下:故答案为:8,9,2.8;(2)选君君,理由:∵两人的平均值相等,君君的方差较小,成绩更稳定,∴选君君;(3)如果标标再射击1次,命中8环,命中的环数等于平均数,而总次数增加一次,那么标标的射击成绩的方差变小.故答案为:变小.(1)根据平方数、中位数、方差的定义求解即可;(2)根据甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.22.【答案】解:(1)∵关于x的一元二次方程x2−2(a−1)x+a2−a−2=0有两个不相等的实数根,∴Δ=[−2(a−1)]2−4(a2−a−2)>0,解得:a<3,∵a 为正整数,∴a =1,2;(2)∵x 1+x 2=2(a −1),x 1x 2=a 2−a −2,∵x 12+x 22−x 1x 2=16,∴(x 1+x 2)2−3x 1x 2=16,∴[2(a −1)]2−3(a 2−a −2)=16,解得:a 1=−1,a 2=6,∵a <3,∴a =−1.【解析】本题主要考查的是一元二次方程根与系数的关系及根的判别式,先判断出a 的取值范围,再由根与系数的关系得出方程组是解答此题的关键.(1)根据关于x 的一元二次方程x 2−2(a −1)x +a 2−a −2=0有两个不相等的实数根,得到Δ=[−2(a −1)]2−4(a 2−a −2)>0,于是得到结论;(2)根据x 1+x 2=2(a −1),x 1x 2=a 2−a −2,代入x 12+x 22−x 1x 2=16,解方程即可得到结论.23.【答案】解:(1)把C(m,2)代入y =2x −2,得2m −2=2,解得m =2,即m 的值是2;(2)把C(2,2),B(3,1)代入y =kx +b ,得{2k +b =23k +b =1, 解得{k =−1b =4, ∴直线l 2的解析式为y =−x +4;(3)由图象可得,1<kx +b <2x −2的解集是2<x <3.【解析】(1)根据点C(m,2)在直线直线l 1:y =2x −2上,可以求得m 的值;(2)根据直线l 2过点B(3,1)和点C ,即可求得直线l 2的解析式;(3)根据图象可得,在点C 的右侧,直线l 1在直线l 2的上方,在点B 的左侧,直线l 2对应的函数值大于1,从而可以直接写出1<kx +b <2x −2的解集.本题考查一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数与一元一次不等式的关系,利用数形结合的思想解答是解答本题的关键.24.【答案】解:(1)根据题意得:50−360−20010=34(辆),答:当每辆车的日租金定为360元时,能租出34辆车;(2)设每辆车的日租金为(200+x)元,根据题意,得(50−x10)[(200+x)−20]−x10×10=11200,整理,得x2−310x+22000=0.解得:x1=200,x2=110,∴200+x=400或200+x=310,答:当每辆车的月租金为400元或310元时,租赁公司的日收益(租金收入扣除维护费)可达到11200元.【解析】(1)根据题意列出算式,计算即可得到结果;(2)设每辆车的月租金为(3000+x)元,根据题意列出方程,求出方程的解即可得到结果.此题考查了一元二次方程的应用,弄清题中的等量关系是解本题的关键.25.【答案】解:(1)设A城运往C乡的农机为x台,则可得A城运往D乡的农机为30−x台,B城运往C乡的农机为34−x台,B城运往D乡的农机为40−(34−x)=6+x台,W=250x+200(30−x)+150(34−x)+240(6+x)=140x+12540(0≤x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台,(3)W=(250−a)x+200(30−x)+150(34−x)+240(6+x)=(140−a)x+12540,①当0<a<140时,即:140−a>0,当x=0时,W最小值=12540元,此时从A城调往C城0台,调往D城30台,从B城调往C城34台,调往D城6台;②当a=140时,W=12540元,∴各种方案费用一样多;③当140<a≤200时,140−a<0,此时从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台,可使运费最少.且当a=200时,W=−60x+12540,令x=30时,W最小值=10740元.【解析】本题考查一次函数的应用,解答本题的关键是根据题意得出W与x的函数关系式,要掌握运用一次函数的性质来判断函数的最值问题.(1)A城运往C乡的农机为x台,则可得A城运往D乡的农机为30−x台,B城运往C乡的农机为34−x台,B城运往D乡的农机为40−(34−x)台,从而可得出W与x的函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意得到W=(140−a)x+12540,分0<a<140,a=140,140<a≤200三种情况讨论,可知当0<a<140时,此时从A城调往C城0台,调往D城30台,从B城调往C城34台,调往D城6台;当a=140时,各种方案费用一样多;当a=200时,此时从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台,可使运费最少.于是得到结论.26.【答案】解:(1)当x=125时,y=−34×125+3=65,∴P(125,65 );(2)如图2,作PE ⊥AC 于E ,DG ⊥PE 于G 交x 轴于H ,∴∠AEP =∠CEP =90°,∠PEC =∠G =90°,∵AE =3−65=95,PE =125,CE =65+2=165, ∴PE CE =AE PE =34, ∴△AEP∽△PEC ,∴∠PAE =∠EPC ,∵∠PAE +∠APE =90°,∴∠EPC +∠APE =90°,即∠APC =∠CPD =90°,∵∠PCD =45°,∴∠PDC =90°−∠PCD =45°,∴∠PDC =∠PCD ,∴CP =DP ,∵∠PCD =90°,∴∠EPC +∠PCE =90°,∵∠CPD =90°,∴∠EPC +∠DPG =90°,∴∠PCE =∠DPG ,∴△CEP≌△PGD(AAS),∴PG =CE =165,DG =PE =125, ∴EG =PE +PG =165+125=285, ∴DH =DG −GH =125−65=65,∴D(285,−65);(3)如图2,设P(a,−34a+3),∴PF=a,OF=作PF⊥AC于F,EG⊥AC与G,∴∠PFC=∠EGC=∠PCE=90°,∴∠PCF+∠FPC=∠ECG+∠PCF=90°,∴∠FPC=∠ECG,∵CP=CE,∴△PFC≌△CGE(AAS),∴CG=PF,GE=CF=−34a+5,∴OG=a+2,设点E(x,y),∴{x=−34a+5 y=−a−2,∴y=43x−263,∴y=43x−263,设y=43x−263交x轴于M,交y轴于N,∴当OE⊥MN时,OE最小,设ON=4k,OM=3k,∴MN=5k,根据S△MON=12OM⋅ON=12MN⋅OE得,OE=125k,∵4k=263,∴OE=35×263=265,∴OE的最小值是265;(4)如图3,当QG=Q′G=AG=2时,设点Q(a,−32a+3),∴a2+(−32a+3−1)2=22,∴a1=0(舍去),a2=2413,∴S△COQ=12×2×2413=2413,如图4,当AQ′=GQ′,即Q′在AG的垂直平分线Q′K上,∵KG=AK=1,AQ′//x轴,此时△AQ′K≌△FOG,∴Q点和F重合,∴Q(3,0),S△COQ=12×2×3=3,如图5,当AQ′=AG=2,Q′G=QG时,设Q(a,−32a+3),∵2−(−32a+3)=32a−1∴Q′(−a,32a−1),∴(−a)2+(32a−1−3)2=22,∵Δ<0,∴原方程无解,这种情况不存在,综上所述:当△AGQ′是等腰三角形,△COQ的面积是2413或3.【解析】(1)把x=125代入函数关系式求得结果;(2)先证明CP⊥AD,然后作PE⊥AC于E,DG⊥PE于G交x轴于H,证明△CEP≌△PGD,进而求得结果;(3)先计算CP=3,从而确定点E在以点C为圆心,3为半径的圆上运动,从而确定OE的最小值;(4)分为三种情形,当QG=Q′G=AG=2时,设点Q(a,−32a+3),从而列出方程a2+(−32a+3−1)2=22,当AQ′=GQ′,即Q′在AG的垂直平分线Q′K上,可判断Q点和F重合,当AQ′=AG=2,Q′G=QG时,设Q(a,−32a+3),可列出(−a)2+(32a−1−3)2=2,进而得出结果.本题考查了一次函数的求值,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识,解决问题的关键是正确分类,画出图形,转化条件.。
浙江省宁波市2019-2020学年数学八上期末模拟检测试题(1)

浙江省宁波市2019-2020学年数学八上期末模拟检测试题(1)一、选择题1.如果分式y 77y --的值为0,那么y 的值是( ) A .7-B .7C .0D .7或7- 2.若213x M N x 1x 1x 1-=+-+-,则M 、N 的值分别为( ) A .M=-1,N=-2B .M=-2,N=-1C .M=1,N=2D .M=2,N=1 3.在一次学习小组习题检测的活动中,小刚的作答如下: ①a c ac b d bd ÷=; ②1b a a b b a+=--; ③222224a a a b a b ⎛⎫= ⎪--⎝⎭; ④4453·m n m n m n =. 请问小刚做对了( )A.1道B.2道C.3道D.4道4.如果924a ka -+是完全平方式,那么k 的值是( )A .一12B .±12C .6D .±6 5.下列多项式中,能用提公因式法因式分解的是( )A. B. C. D. 6.下列计算正确的是( )A .(﹣5)0=0B .a 2+a 3=2a 5C .3a 2•a ﹣1=3aD .(﹣2x ﹣1)(2x ﹣1)=4x 2﹣1 7.下列手机手势解锁图案中,是轴对称图形的是( )A. B. C. D.8.已知点A (–7,9)与点B 关于x 轴对称,则点B 的坐标为( )A .(7,–9)B .(7,9)C .(–7,–9)D .(9,–7)9.用尺规作图法作已知角∠AOB 的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 的内部相交于点C ;③作射线OC .则射线OC 为∠AOB 的平分线.由上述作法可得△OCD ≌△OCE 的依据是( )A.SASB.ASAC.AASD.SSS10.如图,已知ΔABC ,下面甲、乙、丙、丁四个三角形中,与ΔABC 全等的是( )A .甲B .乙C .丙D .丁11.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .12.如图,在Rt △ABC 中,∠A =30°,DE 是斜边AC 的中垂线,分别交AB ,AC 于D 、E 两点,若BD =2,则AC 的长是( )A .B .C .D .13.只用下列图形不.能.进行平面镶嵌的是( ) A.全等的三角形B.全等的四边形C.全等的正五边形D.全等的正六边形 14.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有( ) A .3块 B .4块 C .5块 D .6块15.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,若∠BFC=116°,则∠A=( )A.51°B.52°C.53°D.58°二、填空题 16.已知34(1)(2)12x A B x x x x +=+----,则实数A-B=_________. 17.已知222246140x y z x y z ++-+-+=,则()2017x y z --=_____.【答案】2017218.如图1,已知AB=AC ,D 为∠BAC 的角平分线上面一点,连接BD ,CD ;如图2,已知AB=AC ,D 、E 为∠BAC 的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB=AC ,D 、E 、F 为∠BAC 的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是_________。
浙江省宁波市海曙区2019学年第一学期期末考试八年级数学试题

2019学年第一学期八年级数学学科期末试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列是世界各国银行的图标,其中不是轴对称图形的是()A .B.C.D .2.一个正比例函数的图象过点(2,-3),它的表达式为()A.y=-32x B.y=23x C.y=32x D.y=-23x 3.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21B.20C.19D.184.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2B.1C.0D.-15.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC的度数为()A.60°B.45°C.75°D.90°第4题图第5题图第6题图6.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC 7.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60°B.95°,105°C.30°,60°D.90°,90°8.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。
若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5B.6C.7D.1032469.如图的△ABC 中,AB >AC >BC ,且D 为BC 上一点。
现打算在AB 上找一点P ,在AC 上找一点Q ,使得△APQ 与以P 、D 、Q 为顶点的三角形全等,以下是甲、乙两人的作法:甲:连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求;乙:过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求;对于甲、乙两人的作法,下列判断何者正确()?A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确10.如图,直线y 1=kx+b 过点A (0,3),且与直线y 2=mx 交于点P (1,m),则不等式组mx>kx+b>mx﹣2的解集是().A .451<<x B .341<<x C .351<<x D .1<x <2第9题图第10题图二、填空题(本题有8小题,每小题3分,共24分)11.6与x 的2倍的和是负数,用不等式表示为__________.12.将点P (-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为.13.已知CD 是Rt △ABC 的斜边AB 上的中线,若∠A =35°,则∠BCD =_____________.14.已知点A(-3,m )与点B (2,n )是直线y =-23x +b 上的两点,则m 与n 的大小关系是_____________.15.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=.第15题图16.已知点A (4,3),AB ∥y 轴,且AB =3,则点B 的坐标为.17.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.18.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A (1,0)点的一条直线,将这10个正方形分成面积相等的两部分,则该直线的解析式为.三、解答题(本题有6小题,共46分)19.(本题6分)解不等式组⎪⎩⎪⎨⎧<--≥+02413,235x x x ,并把它的解集在数轴上表示出来.20.(本题6分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A (2,﹣3),B (5,﹣1),C (1,3),结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出△ABC ;(2)画出△ABC 关于y 轴对称的△A'B'C',并写出△A'B'C'各顶点坐标。
《试卷3份集锦》宁波市2019-2020年八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线y kx b =+()0b>经过点(2,0),则关于x 的不等式0kx b +≥的解集是( )A .x>2B .x<2C .x≥2D .x≤2【答案】D 【分析】写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可.【详解】解:当x ≤2时,y ≥1.所以关于x 的不等式kx +3≥1的解集是x ≤2.故选D .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)1的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2.平面直角坐标系中,点(2,﹣1)关于y 轴的对称点为(a ,b ),则a b 的值为( ) A .1B .12C .﹣2D .﹣12 【答案】D【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:∵点(2,﹣1)关于y 轴的对称点为(a ,b ),∴a =﹣2,b =﹣1,∴a b 的值为1(2)--=12-, 故选:D .【点睛】本题考查了点关于坐标轴的对称,关于x 轴对称,横坐标不变,纵坐标互为相反数,关于y 轴的对称横坐标互为相反数,纵坐标不变,熟练掌握点坐标关于坐标轴的对称特点是解题的关键.3.在△ABC 和△FED 中,如果∠A=∠F ,∠B=∠E ,要使这两个三角形全等,还需要的条件是( ) A .AB=DEB .BC=EFC .AB=FED .∠C=∠D 【答案】C【解析】试题解析:A. 加上AB=DE ,不能证明这两个三角形全等,故此选项错误;B. 加上BC=EF ,不能证明这两个三角形全等,故此选项错误;C. 加上AB=FE ,可用ASA 证明两个三角形全等,故此选项正确;D. 加上∠C=∠D ,不能证明这两个三角形全等,故此选项错误;故选C.4.已知点M 到x 轴的距离为3,到y 轴距离为2,且在第二象限内,则点M 的坐标为( ) A .()2,3-B .()2,3C .()3,2-D .不能确定【答案】A【分析】根据坐标的表示方法由点M 到x 轴的距离为3,到y 轴的距离为2,且它在第二象限内即可得到点M 的坐标为()2,3-.【详解】解:∵点M 到x 轴的距离为3,到y 轴的距离为2,且它在第二象限内,∴点M 的坐标为()2,3-.故答案为()2,3-.【点睛】本题考查了点的坐标:在直角坐标系中,过一点分别作x 轴和y 轴的垂线,用垂足在x 轴上的坐标表示这个点的横坐标,垂足在y 轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数. 5.点()23P -,关于y 轴的对称点的坐标是( ) A .(2,-3)B .(-2,-3)C .(-2,3)D .(-3,2)【答案】B【分析】根据关于y 轴的对称点的点的特点是保持y 不变,x 取相反数即可得出. 【详解】根据关于y 轴的对称点的点的特点得出,点()23P -,关于y 轴的对称点的坐标是(-2,-3) 故答案选B .【点睛】本题考查了坐标点关于y 轴对称点的坐标,属于坐标轴中找对称点的基础试题.6.已知:一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)且1x <2x ,则它的图像大致是( ).A .B .C .D .【答案】B【分析】结合题意,得12x k =,22x k-=;结合1x <2x ,根据不等式的性质,得k 0<;再结合1y kx =-与y 轴的交点,即可得到答案.【详解】∵一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)∴111kx =-,231kx -=- ∴12x k =,22x k-= ∵1x <2x∴22k k-< ∴k 0<∴选项A 和C 错误当0x =时,1y =-∴选项D 错误故选:B .【点睛】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.7.如下书写的四个汉字,其中为轴对称图形的是( )A .B .C .D .【答案】B【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.【点睛】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成. 8.等腰三角形的一边长等于4,一边长等于9,则它的周长是( )A .17B .22C .17或22D .13 【答案】B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为4时,4+4<9,不能构成三角形;当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=1.故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.9.如图,直线a、b被直线c、d所截,若∠1=100°,∠2=80°,∠3=125°,则∠4的度数是()A.55°B.75°C.100°D.125°【答案】D【解析】由题意得∠1=∠5=100°,然后得出∠5+∠2=180°,证出a∥b,由平行线的性质即可得出答案.【详解】解:如图∵∠1=∠5=100°,∠2=80°,∴∠5+∠2=180°,∴a∥b,∴∠4=∠3=125°,故选:D.【点睛】本题主要考查平行线的判定及性质,掌握平行线的判定及性质是解题的关键.10.下列图案是轴对称图形的是().A.B.C.D.【答案】D【分析】根据轴对称图形的概念求解.【详解】轴对称图形是图形两部分沿对称轴折叠后可重合.A,B,C图都不满足条件,只有D沿某条直线(对称轴)折叠后,图形两部分能重合,故选D.二、填空题11.下列各式:①21()93--=;②3226(3)9ab a b -=;③232()(1)()()a b a b a b b a --+=-+-;④222()a b a b +=+.其中计算正确的有__________(填序号即可).【答案】①②③【分析】根据负整式指数幂、积的乘方、多项式乘以多项式、完全平方公式,分别进行计算,即可得到答案.【详解】解:①21()93--=,正确; ②3226(3)9ab a b -=,正确;③23232()(1)()()()()a b a b a b a b a b b a --+=-+-=-+-,正确;④222()2a b a ab b +=++,故④错误;∴计算正确的有:①②③;故答案为:①②③.【点睛】本题考查了整式的混合运算,负整数指数幂的运算法则,解题的关键是熟练掌握整式乘法的运算法则进行计算.12.如图,△ABC ≌△DEC ,其中AB 与DE 是对应边,AC 与DC 是对应边,若∠A=∠30°,∠CEB=70°,则∠ACD=_____°.【答案】40【分析】根据全等三角形的性质可得CE=BC ,∠ACB=∠DCE ,根据等腰三角形的性质可得∠B 的度数,进而可得∠ECB 的度数,根据等量代换可证明∠ACD=∠ECB ,即可得答案.【详解】∵△ABC ≌△DEC ,其中AB 与DE 是对应边,AC 与DC 是对应边,∴∠ACB=∠DCE ,CE 与BC 是对应边,即CE=BC ,∴∠B=∠CEB=70°,∴∠ECB=180°-2×70°=40°,∵∠ACD+∠ACE=∠ECB+∠ACE ,∴∠ACD=∠ECB=40°.故答案为40【点睛】本题考查了全等三角形的性质及等腰三角形的性质,熟练掌握相关性质是解题关键.13.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=________.【答案】1【解析】先利用勾股定理求出AB ,然后利用勾股定理的逆定理判断出△ABD 是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.解:在Rt△ABC 中,AB=22AC BC +=5, ∵AD=13,BD=12,∴AB 2+BD 2=AD 2,即可判断△ABD 为直角三角形,阴影部分的面积=12AB×BD -12BC×AC=30-6=1. 答:阴影部分的面积=1.故答案为1.“点睛”此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD 为直角三角形. 14.如图,在△ABC 中,∠C=31°,∠ABC 的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么∠A= °.【答案】1.【解析】试题分析:∵在△ABC 中,∠C=31°,∠ABC 的平分线BD 交AC 于点D ,∴∠DBE=12∠ABC=12(180°﹣31°﹣∠A )=12(149°﹣∠A ),∵DE 垂直平分BC ,∴BD=DC ,∴∠DBE=∠C ,∴∠DBE=12∠ABC=12(149°﹣∠A )=∠C=31°,∴∠A=1°.故答案为1.考点:线段垂直平分线的性质. 15.如图,D 是ABC ∆中BC 边中点,60EDF ∠=,CE AB ⊥于E ,BF AC ⊥于F ,若4EF =,则BC =__________.【答案】1【分析】根据直角三角形斜边上的中线等于斜边的一半得出ED=12BC,FD=12BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.【详解】解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,∴ED=12BC,FD=12BC,∴ED=FD,又∠EDF=60°,∴△EDF是等边三角形,∴ED=FD=EF=4,∴BC=2ED=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.16.计算1139-的结果是______.【答案】0【分析】先计算绝对值、算术平方根,再计算减法即可得.【详解】解:原式=1133-=0,【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质.17.中国高铁再创新高,2019年全国高铁总里程将突破35000公里,约占世界高铁总里程的23,稳居世界第一,将35000用科学计数法表示为__________.【答案】3.5×1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】35000=3.5×1.故答案为:3.5×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题18.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【答案】(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.计算(111233327(25032428-【答案】(1) 43-3;(2)2.【解析】把原式化为最简二次根式,合并即可得到结果. 【详解】(1)原式333=43 3-3(2)原式524222222 2故答案为:(1)333-;(2)2【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键. 20.计算题:(1)1(436312)233-+÷ (2)21(1)(23)(23)3-++- 【答案】(1)4;(2)723- 【分析】(1)原式利用二次根式除法法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:(1)原式=43÷23﹣613÷23+312÷23 =2﹣1+3=4;(2)原式=1233-+1+4﹣3 =7233- =723-. 【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则和运算律,注意乘法公式的运用. 21.如图,过点(3,0)A 的两条直线1l ,2l 分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知13AB =.(1)求点B 的坐标;(2)若ABC ∆的面积为9,求直线2l 的解析式.【答案】(1)点B 的坐标为(0,2);(2)443y x =- 【分析】(1)先根据勾股定理求得BO 的长,再写出点B 的坐标;(2)先根据△ABC 的面积为9,求得CO 的长,再根据点A 、C 的坐标,运用待定系数法求得直线2l 的解析式.【详解】(1)∵点(3,0)A ,3AO =, 又∵13AB =,∴2242BO AB AO =-==,∴点B 的坐标为(0,2),(2)∵ABC ∆的面积为9,∴192BC AO ⨯⨯=, ∴1392BC ⨯⨯=,即6BC =. ∵2BO =,∴4CO =,∴(0,4)C -,设2l 的解析式为y kx b =+(0k ≠),则,034k b b =+⎧⎨-=⎩, 解得434k b ⎧=⎪⎨⎪=-⎩,∴2l 解析式为443y x =-; 【点睛】本题主要考查了勾股定理,待定系数法求解析式,掌握勾股定理,待定系数法求解析式是解题的关键. 22.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.【答案】(1)证明见解析;(2)∠ABE =40°.【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.23.如图,已知ABC ∆为等边三角形,点D 、E 分别在BC 、AC 边上,且AE CD =,AD 与BE 相交于点F .(1)求证:ABE CAD ∆≅∆;(2)求AFB ∠的度数.【答案】(1)证明见解析;(2)120°.【分析】(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA ,结合AE=CD ,可证明△ABE ≌△CAD (SAS );(2)根据∠AFB=180°-(∠ABE+∠BAD ),∠ABE=∠CAD ,可知∠AFB=180°-(∠CAD+∠BAD )=180°-60°=120°.【详解】(1)∵△ABC 为等边三角形,∴∠BAE=∠C=60°,AB=CA ,在△ABE 和△CAD 中,AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE △CAD (SAS ). (2)∵在△ABC 中,∠AFB=180°-(∠ABE+∠BAD ),又∵△ABE △CAD ,∴∠ABE=∠CAD ,∴∠AFB=180°-(∠ABE+∠BAD )=180°-(∠CAD+∠BAD )=180°-60°=120°.【点睛】本题考查等边三角形的性质,解题关键是熟练掌握等边三角形的性质定义.24.如图,ABC ∆和AED ∆是等腰直角三角形,AB AC =,AE AD =,90BAC EAD ∠=∠=︒,点E 在ABC ∆的内部,且130BEC ∠=︒.图1 备用图 备用图(1)猜想线段EB 和线段DC 的数量关系,并证明你的猜想;(2)求DCE ∠的度数;(3)设AEB α∠=,请直接写出α为多少度时,CED ∆是等腰三角形.【答案】(1)EB DC =,证明见解析;(2)40︒;(3)为115︒或85︒或145︒【分析】(1)EB =DC ,证明△AEB ≌△ADC ,可得结论;(2)如图1,先根据三角形的内角和定理可得∠ECB +∠EBC =50°,根据直角三角形的两锐角互余得:∠ACB+∠ABC =90°,所以∠ACE +∠ABE =90°−50°=40°,由(1)中三角形全等可得结论;(3)△CED 是等腰三角形时,有三种情况:①当DE =CE 时,②当DE =CD 时,③当CE =CD 时,根据等腰三角形等边对等角可得α的值.【详解】解:(1)证明:EB DC =90BAC EAD ∠=∠=︒BAC CAE EAD CAE ∴∠-∠=∠-∠EAB DAC ∴∠=∠在AEB ∆与ADC ∆中AB AC EAB DAC AE AD =⎧⎪∠=∠⎨⎪=⎩AEB ADC ∴∆≅∆,EB DC ∴=;(2)130BEC ∠=︒,360130230BEA AEC ∴∠+∠=︒-︒=︒AEB ADC ∆≅∆,AEB ADC ∠=∠,230ADC AEC ∴∠+∠=︒,又AED ∆是等腰直角三角形,90DAE ∴∠=︒,∴四边形AECD 中,3609023040DCE ∠=︒-︒-︒=︒;(3)当△CED 是等腰三角形时,有三种情况:①当DE =CE 时,∠DCE =∠EDC =40°,∴α=∠ADC =40°+45°=85°,②当DE =CD 时,∠DCE =∠DEC =40°,∴∠CDE =100°,∴α=∠ADE +∠EDC =45°+100°=145°,③当CE =CD 时,∵∠DCE =40°,∴∠CDE =180402︒-︒=70°, ∴α=70°+45°=115°,综上,当α的度数为115︒或85︒或145︒时,AED ∆是等腰三角形.【点睛】本题是三角形的综合题,考查了等腰三角形的判定和性质、三角形全等的性质和判定、等腰直角三角形的性质等知识,第一问证明全等三角形是关键,第二问运用整体的思想是关键,第三问分情况讨论是关键. 25.如图,P 为正方形ABCD 的边BC 的延长线上一动点,以DP 为一边做正方形DPEM ,以E 为一顶点作正方形EFGH ,且FG 在BC 的延长线上(提示:正方形四条边相等,且四个内角为90︒)(1)若正方形ABCD 、DPEM 的面积分别为a ,b ,则正方形EFGH 的面积为 (直接写结果). (2)过点P 做BC 的垂线交PDC ∠的平分线于点Q ,连接QE ,试探求在点P 运动过程中,DQE ∠的大小是否发生变化,并说明理由.【答案】(1)b a -;(2)DQE ∠的大小不会发生变化,理由见解析.【分析】(1)先通过全等,得到EF=CP ,通过勾股定理求222CP DP CD =-=b a -,则正方形EFGH 的面积=2EF =2CP =b a -(2)先通过证明PD PQ =,再通过正方形的性质得到PQ PE =,再通过证明得到1()2DQE DQP PQE CDP PEF ∠=∠+∠=∠+∠=45°,所以DQE ∠的大小不会发生变化. 【详解】(1) ∵四边形ABCD 、四边形EFGH 、四边形DPEM 是正方形∴DP=PE,∠DPE=90°,∠BCD=90°,∠EFG=90°∴∠PCD=∠EFP=90°,∠DPC+∠PDC=90°, ∠EPF+∠DPC=90°,∴∠PDC= ∠EPF∴△CDP ≌△FEP∴EF=CP∵在Rt △CDP 中,222CP DP CD =-,正方形ABCD 的面积=2CD =a ,正方形DPEM 的面积=2DP =b ∴正方形EFGH 的面积=2EF =222CP DP CD =-=b a -(2)DQE ∠的大小不会发生变化,理由如下,,,DC BC DQ BC EF BC ⊥⊥⊥//,//DC QP QP EF ∴CDQ PQD ∴∠=∠ DQ 平分CDP ∠CDQ QDP PQD ∴∠=∠=∠PD PQ ∴=在正方形DPEM 中,DP PE =PQ PE ∴=PQE PEQ ∴∠=∠//PQ EFPQE FEQ ∴∠=∠12PQE PEF ∴∠=∠ 1()2DQE DQP PQE CDP PEF ∠=∠+∠=∠+∠ 90,90CDP CPD CPD EPF ∠+∠=︒∠+∠=︒CDP EPF ∴∠=∠90CDP PEF ∴∠+∠=︒1()2DQE CDP PEF ∠=∠+∠ 190452DQE ∴∠=⨯︒=︒ ∴DQE ∠的大小不会发生变化.【点睛】本题考查的正方形与全等的综合性题目,灵活运用正方形的特征是解答此题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在实数0π,|﹣3|中,最小的数是()A.0 B C.πD.|﹣3| 【答案】B【分析】根据1大于一切负数;正数大于1解答即可.【详解】解:∵|﹣3|=3,∴实数1,π,|﹣3|<1<|﹣3|<π,,故选:B.【点睛】本题考查实数的大小比较;解答时注意用1大于一切负数;正数大于1.2.若关于x的分式方程1233m xx x-=---有增根,则实数m的值是()A.2B.2-C.1D.0【答案】A【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m 的值.【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=2,故选:A.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.102【答案】C【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为15×(92+94+98+91+95)=94, 其方差为15×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C .【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.4.实数5不能写成的形式是( )A .25B .2(5)-C .2(5)D .2(5)--【答案】D【分析】根据二次根式的意义和性质进行化简即可判断.【详解】A.25=25=5,正确;B.2(5)-=-5=5,正确;C.2(5)=5,正确;D. 2(5)--=--5=-5,错误,故选:D【点睛】此题考查了二次根式的意义和性质,掌握2a a =和2()a a =是解答此题的关键.5.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是()A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA【答案】D【详解】试题分析:△ABC 和△CDE 是等边三角形BC=AC ,CE=CD ,60BCA ACD ECD ACD ︒∠+∠=∠+∠=60BCA ECD ︒∠=∠=即在△BCD 和△ACE 中CD CE ACE BCD BC AC =⎧⎪∠=∠⎨⎪=⎩△BCD ≌△ACE故A 项成立;在△BGC 和△AFC 中60ACB ACD AC BC CAE CBD ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△BGC ≌△AFCB 项成立;△BCD ≌△ACE,在△DCG 和△ECF 中60ACD DCE CE CD CDB CEA ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△DCG ≌△ECFC 项成立D 项不成立.考点:全等三角形的判定定理.6.如图,等边ABC ∆边长为5cm ,将ABC ∆沿AC 向右平移1cm ,得到DEF ∆,则四边形ABEF 的周长为( )A .18cmB .17cmC .16cmD .15cm【答案】B 【分析】根据平移的性质易得AD=CF=BE=1,那么四边形ABFD 的周长即可求得.【详解】解:∵将边长为1cm 的等边△ABC 沿边AC 向右平移1cm 得到△DEF ,∴AD=BE=CF=1,各等边三角形的边长均为1.∴四边形ABFD 的周长=AD+AB+BE+FE+DF=17cm .故选:B.【点睛】本题考查平移的性质,找出对应边,求出四边形各边的长度,相加即可.7.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,图2中,BAC ∠的大小是( )A .72B .36C .30D .54【答案】B 【分析】根据多边形内角和公式可求出∠ABC 的度数,根据等腰三角形的性质求出∠BAC 的度数即可.【详解】∵ABCDE 是正五边形,∴∠ABC=15×(5-2)×180°=108°, ∵AB=BC ,∴∠BAC=12×(180°-108°)=36°, 故选B.【点睛】本题考查了多边形内角和及等腰三角形的性质,熟练掌握多边形内角和公式是解题关键.8.如图,在Rt △ABC 中,∠ABC =90°,点D 是BC 边的中点,分别以B ,C 为圆心,大于线段BC 长度一半的长为半径画圆弧.两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A =∠EBA ;③EB 平分∠AED .一定正确的是( )A .①②③B .①②C .①③D .②③【答案】B 【分析】利用基本作图得到DE BC ⊥,则DE 垂直平分BC ,所以EB =EC ,根据等腰三角形的性质得∠EBC =∠C ,然后根据等角的余角相等得到∠A =∠EBA .【详解】由作法得DE BC ⊥,而D 为BC 的中点,所以DE 垂直平分BC ,则EB =EC ,所以∠EBC =∠C ,而90ABC ∠︒=,所以∠A =∠EBA ,所以①②正确,故选:B .【点睛】本题主要考查了垂直平分线的性质及等腰三角形的性质,熟练掌握相关性质特点是解决本题的关键. 9.小明想用一长方形的硬纸片折叠成一个无盖长方体收纳盒,硬纸片长为a+1,宽为a-1,如图,在硬纸片的四角剪裁出4个边长为1的正方形,沿着图中虚线折叠,这个收纳盒的体积是( )A .a 2 -1B .a 2-2aC .a 2-1D .a 2-4a+3【答案】D 【分析】根据图形,表示出长方体的长、宽、高,根据多项式乘以多项式的法则,计算即可.【详解】解:依题意得:无盖长方体的长为:a+1-2=a-1;无盖长方体的宽为:a-1-2=a-3;无盖长方体的高为:1∴长方体的体积为()()2a-1a 31=a -4a+3-⨯ 故选:D【点睛】本题主要考查多项式乘以多项式,熟记多项式乘以多项式的法则是解决此题的关键,此类问题中还要注意符号问题.10.某教师招聘考试分笔试和面试两个环节进行,其中笔试按60%、面试按40%计算加权平均数作为最终的总成绩.吴老师笔试成绩为90分,面试成绩为85分,那么吴老师的总成绩为( )A .85分B .86分C .87分D .88分【答案】D【分析】根据加权平均数的计算方法进行计算即可得解.【详解】依题意得:9060%8540%88⨯+⨯=分,故选:D.【点睛】本题主要考查了加权平均数,熟练掌握加权平均数得解法是解决本题的关键.二、填空题11.直线2y x b =+与y 轴的交点坐标是(0,2),则直线2y x b =+与坐标轴围成的三角形面积是_______. 【答案】1【分析】根据直线与y 轴交点坐标可求出b 值,再求出与x 轴交点坐标,从而计算三角形面积.【详解】解:∵2y x b =+与y 轴交于(0,2),将(0,2)代入,得:b=2,∴直线表达式为:y=2x+2,令y=0,则x=-1,∴直线与x轴交点为(-1,0),令A(0,2),B(-1,0),∴△ABO的面积=12×2×1=1,故答案为:1.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.12.若M 1aab bab a=3,b=2,则M的值为_____.【答案】-1【分析】直接利用二次根式的性质化简进而求出答案.【详解】M 1aab bab=1aab b⋅=1﹣a,当a=3时,原式=1﹣3=﹣1.故答案为:﹣1.【点睛】此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.13.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】47【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为322437-=;②长为3、322435;∴第三边的长为:7或4.考点:3.勾股定理;4.分类思想的应用.14.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.【答案】AB=BC【解析】利用公共边BD 以及∠ABD=∠CBD ,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD 与△CBD 中,∠ABD=∠CBD ,BD=BD ,∴添加AB=CB 时,可以根据SAS 判定△ABD ≌△CBD ,故答案为AB=CB .【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .15.直线y =x+1与x 轴交于点D ,与y 轴交于点A 1,把正方形A 1B 1C 1O 1、A 2B 2C 2C 1和A 3B 3C 3C 2按如图所示方式放置,点A 2、A 3在直线y =x+1上,点C 1、C 2、C 3在x 轴上,按照这样的规律,则正方形A 2020B 2020C 2020C 2019中的点B 2020的坐标为_____.【答案】(22020﹣1,22019)【分析】求出直线y =x+1与x 轴、y 轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B 1、B 2、B 3……的坐标,根据规律得到答案.【详解】解:直线y =x+1与x 轴,y 轴交点坐标为:A 1(0,1),即正方形OA 1B 1C 1的边长为1, ∵△A 1B 1A 2、△A 2B 2A 3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B 1(1,1),B 2(3,2),B 3(7,4),B 4(15,8),即:B 1(21﹣1,20),B 2(22﹣1,21),B 3(23﹣1,22),B 4(24﹣1,23),故答案为:B 2020(22020﹣1,22019).【点睛】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B的坐标的概率是得出答案的关键.16.如图,将一张长方形纸片分别沿着EP 、FP 对折,使点A 落在点A′,点B 落在点B′,若点P ,A′,B′在同一直线上,则两条折痕的夹角∠EPF 的度数为_____.【答案】90°【分析】根据翻折的性质得到∠APE =∠A'PE ,∠BPF =∠B'PF ,根据平角的定义得到∠A'PE+∠B'PF =90°,即可求得答案.【详解】解:如图所示:∵∠APE =∠A'PE ,∠BPF =∠B'PF ,∠APE+∠A'PE+∠BPF+∠B'PF =180°,∴2(∠A'PE+∠B'PF )=180°,∴∠A'PE+∠B'PF =90°,又∴∠EPF =∠A'PE+∠B'PF ,∴∠EPF =90°,故答案为:90°.【点睛】此题考查折叠的性质,平角的定义.17.如图,ABC DEF ∆≅∆,120,20B F ∠=︒∠=︒,则D ∠=__________°.【答案】1【分析】根据全等三角形的性质得出∠E=∠B=120°,再根据三角形的内角和定理求出∠D 的度数即可.【详解】解:∵△ABC ≌△DEF ,∴∠E=∠B=120°,∵∠F=20°,∴∠D=180°-∠E-∠F=1°,故答案为1.【点睛】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.三、解答题18.请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.【答案】(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.19.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯30 40乙种节能灯35 50()1求甲、乙两种节能灯各进多少只?()2全部售完100只节能灯后,该商场获利多少元?【答案】()1甲、乙两种节能灯分别购进40、60只;()2商场获利1300元.【分析】(1)利用节能灯数量和所用的价钱建立方程组即可;。
2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下面各组线段中,能组成三角形的是()A. 5,11,6B. 8,8,16C. 10,5,4D. 6,9,142.下列命题中,是真命题的是()A. 两直线平行,内错角相等B. 两个锐角的和是钝角C. 直角三角形都相似D. 正六边形的内角和为360°3.等腰三角形腰长10cm,底边16cm,则面积()A. 96cm2B. 48cm2C. 24cm2D. 32cm24.把一块直尺与一块三角板放置,若∠1=50°,则∠2的度数为()A. 115°B. 120°C. 130°D. 140°5.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分,设她答对了x道题,则根据题意可列出不等式为( )A. 10x-5(20-x) ≥90B. 10x-5(20-x)>90C. 10x-(20-x) ≥90D. 10x-(20-x)>906.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A. 8(x﹣1)<5x+12<8B. 0<5x+12<8xC. 0<5x+12﹣8(x﹣1)<8D. 8x<5x+12<87.下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根;C. 0.2的算术平方根是0.02 ;D.8.函数y=ax2与y=-ax+b的图象可能是()A. B. C. D.9.甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(km)与行驶的时间x(h)之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40km/h,乙车的速度是80km/h;③当甲车距离A地260km时,甲车所用的时间为7h;④当两车相距20km时,则乙车行驶了3h或4h,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A. x>-1B. x>2C. x<2D. -1<x<2二、填空题(共6题;共24分)11.如图,已知∠ABD=∠CBD,若以“SAS”为依据判定△ABD≌△CBD,还需添加的一个条件是________.12.解不等式组请结合题意填空和画图,完成本题的解答:解:解不等式①,得________。
2019-2020学年浙江省宁波市海曙区八年级(上)期末数学试卷 及答案解析

2019-2020学年浙江省宁波市海曙区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图标不是轴对称图形的是()A. B.C. D.2.一个正比例函数的图象经过,则它的表达式为()D.A. B. y=3x C. y=−3x3.等腰三角形腰比底边长3cm,周长是30cm,则底边长是()A. 6cmB. 7cmC. 8cmD. 9cm4.关于x的不等式−2x+a≥2的解集如图所示,则a的值是()A. 0B. 2C. −2D. 45.将一副三角板按图中方式叠放,则∠m的度数为()A. 30°B. 45°C. 60°D. 75°6.如图△ABC≌△AEF,点F在BC上,下列结论:①AC=AF②∠FAB=∠EAB③∠FAC=∠BAE④若∠C=50°,则∠BFE=80°其中错误结论有()A. 1个B. 2个C. 3个D. 4个7.下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的是()A. ∠A=30°,∠B=50°B. ∠A=30°,∠B=70°C. ∠A=30°,∠B=90°D. ∠A=30°,∠B=110°8.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A. 5B. 6C. 7D. 109.已知在△ABC中,AB<BC.用尺规作图的方法在BC上取一点P,使得PA+PC=BC.下列选项中,正确的是()A. B.C. D.10.如图,函数y=2x和y=ax+5的图像交于点A(m,3),则不等式2x<ax+5的解集是()A. x<32B. x<3 C. x>32D. x>3二、填空题(本大题共8小题,共24.0分)11.用不等式表示“x的2倍与4的和是负数”:________.12.点P(−2,1)向上平移2个单位后的点的坐标为_______.13.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=______ cm.14.已知点A(−4,a),B(−2,b)都在直线y=12x+k(k为常数)上,则a与b的大小关系是a______b(填“=”、“<”或“>”)15.如图,在△ABC中,AB=AC,∠B=66°,D,E分别为AB,BC上一点,AF//DE,若∠BDE=30°,则∠FAC的度数为________.16.已知点A(1,2),AC//X轴,AC=5则点C的坐标是______17.14.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对_____道题.18.如图,正方形的边长为6,经过点(0,−4)的直线,把正方形分成面积为2:1的两部分,则直线的函数解析式.三、解答题(本大题共6小题,共46.0分)19.解下列不等式组,并把解集在数轴上表示出来.(1){4x+6>1−x, 3(x−1)≤x+5.(2){4x>2x−6, x−13≤x+19.20.下面的方格图是由边长为1的若干个小正方形拼成的,ABC的顶点A,B,C均在小正方形的顶点上.(1)在图中建立恰当的平面直角坐标系,取小正方形的边长为一个单位长度,且使点A的坐标为(−4,2);(2)在(1)中建立的平面直角坐标系内画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.21.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN.(2)求∠APN的度数.22.某学校积极响应市政府的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.23.如图,一次函数y=−2x+4与x轴,y轴分别交于A,B,以线段AB为直角边在第一象限内作Rt△ABC,使AB=AC.(1)点A的坐标是______,点B的坐标是______;(2)求直线AC的函数关系式;(3)若P(m,3)在第二象限内,求当△PAB与△ABC面积相等时m的值.24.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化⋅若不变,请求出其度数。
浙江省宁波市八年级上学期数学期末考试试卷

浙江省宁波市八年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题(本大题共 8 小题,每小题 3 分,满分 24 分。
) (共 8 题;共 24 分)1. (3 分) (2019 七下·宜昌期中) 在下列式子中,正确的是( )A.B.C.D. 2. (3 分) (2019 八上·淮安期中) 下列实数中,无理数是( )A.B.C.πD . 0.8080080003. (3 分) 抛物线 y=x2﹣8x+m 的顶点在 x 轴上,则 m 等于( )A . -16B . -4C.8D . 164. (3 分) (2019 八上·保定期中) 下列条件中,不能判断是直角三角形的是( )A.B. C. D. 5. (3 分) 如图,直线 m∥n,Rt△ABC 的顶点 A 在直线 n 上,∠C=90°,若∠1=25°,∠2=70°,则∠B=( )A . 65°第 1 页 共 15 页B . 55° C . 45° D . 35° 6. (3 分) (2012·遵义) 某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表 述错误的是( ) A . 众数是 80 B . 极差是 15 C . 平均数是 80 D . 中位数是 75 7.(3 分)(2019 九上·宁河期中) 函数 y=ax2 与函数 y=ax+a,在同一直角坐标系中的图象大致是图中的( )A.B.C.D. 8. (3 分) (2016·海南) 线段 MN 在直角坐标系中的位置如图所示,线段 M1N1 与 MN 关于 y 轴对称,则点 M 的对应的点 M1 的坐标为( )第 2 页 共 15 页A . (4,2) B . (-4,2) C . (-4,-2) D . (4,-2)二、 填空题(本大题共 6 个小题,每小题 3 分,共 18 分) (共 6 题;共 17 分)9. (2 分) (2020 八下·龙湖期末) 在式子中,的取值范围是________.10. (3 分) (2018 八上·汕头期中) 已知 y 与 x 成正比,且当 x=-1 时,y=-6,则 y 与 x 之间的函数关系式为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省宁波市海曙区2019-2020学年八年级上学期数学期末考试试卷一、选择题(共10题;共20分)1.下列是世界各国银行的图标,其中不是轴对称图形的是( )A. B. C. D.2.一个正比例函数的图象过点(2,﹣3),它的表达式为()A. y=-32x B. y=23x C. y=32x D. y=-23x3.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A. 21B. 20C. 19D. 184.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A. 2B. 1C. 0D. -15.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC的度数为( )A. 60°B. 45°C. 75°D. 90°6.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是( )A. AC=AFB. ∠AFE=∠BFEC. EF=BCD. ∠EAB=∠FAC7.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是( )A. 120°,60°B. 95°,105°C. 30°,60°D. 90°,90°8.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。
若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?()A. 5B. 6C. 7D. 109.如图的ΔABC中,AB>AC>BC,且D为BC上一点.今打算在AB上找一点P,在AC上找一点Q,使得ΔAPQ与ΔPDQ全等,以下是甲、乙两人的作法:(甲)连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求(乙)过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确10.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是().A. 1<x<54B. 1<x<43C. 1<x<53D. 1<x<2二、填空题(共8题;共12分)11.6与x的2倍的和是负数,用不等式表示为________。
12.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为________。
13.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=________.14.已知点A(-3,m)与点B(2,n)是直线y=-23x+b上的两点,则m与n的大小关系是________. 15.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=________.16.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为________.17.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了________道题。
18.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线l将这10个正方形分成面积相等的两部分,则该直线的解析式为________.三、解答题(共6题;共40分)19.解不等式组{5x+3≥2x3x−14−2<0,并把它的解集在数轴上表示出来。
20.如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,﹣3),B(5,﹣1),C(1,3),结合所给的平面直角坐标系,解答下列问题:( 1 )请在如图坐标系中画出△ABC;( 2 )画出△ABC关于y轴对称的△A'B'C',并写出△A'B'C'各顶点坐标。
21.已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.22.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。
设购进A种树苗x棵,购买两种树苗的总费用为w元。
(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
23.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,x的图象交点为C(m,4).且与正比例函数y=43(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为________.24.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.答案解析部分一、选择题1.【答案】D【解析】【解答】解:A、此图标是轴对称图形,故A不符合题意;B、此图标是轴对称图形,故B不符合题意;C、此图标是轴对称图形,故C不符合题意;D、此图标不是轴对称图形,故D不符合题意;故答案为:D.【分析】轴对称图形是将一个图形沿某直线折叠后直线两旁的部分互相重合,再对各选项逐一判断。
2.【答案】A【解析】【解答】设函数的解析式是y=kx,.根据题意得:2k=﹣3,解得:k= −32∴函数的解析式是:y=−3x.2故答案为:A.【分析】利用待定系数法求出过点(2,﹣3)的正比例函数的解析式,从而得出答案。
3.【答案】A【解析】【解答】解:∵等腰△ABC中,腰AB=8,底BC=5∴此三角形的周长为:8×2+5=21.故答案为:A.【分析】根据已知条件将三角形的三边求和即可。
4.【答案】D【解析】【解答】解:2x>m−3,,解得x>m−32∵在数轴上的不等式的解集为:x>−2,∴m−3=−2,2解得m=−1;故答案为:D.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.5.【答案】C【解析】【解答】解:如图,∵△ACE和△ABF是一副三角板,∴∠C=60°,∠CAE=90°,∠BAE=45°,∴∠CAD=∠CAE-∠BAE=90°-45°=45°,∵∠BDC=∠C+∠CAD∴∠BDC=30°+45°=75°.故答案为:C.【分析】由题意可知∠C=60°,∠CAE=90°,∠BAE=45°,利用角的和差求出∠CAD的度数,再根据三角形的一个外角等于不相邻的两内角的和,即可求出∠BDC的度数。
6.【答案】B【解析】【解答】解:∵△ABC≌△AEF∴AC=AF,故A不符合题意;∴∠AFE=∠C,故B符合题意;∴EF=BC,故C不符合题意;∴∠EAF=∠BAC∴∠EAF-∠BAF=∠BAC-∠BAF,即∠EAB=∠FAC,故D不符合题意;故答案为:B.【分析】利用全等三角形的对应边相等易证AC=AF,EF=BC,可对A,C作出判断;全等三角形的对应角相等,可证得∠AFE=∠C,可对B作出判断,同时可证∠EAF=∠BAC,利用等式的性质,可得到∠EAB=∠FAC,可对D作出判断。
7.【答案】D【解析】【解答】解:A、120°+60°=180°,这两个角一个是锐角,一个是钝角,故A不符合题意;B、95°+105°=180°,这两个角一个是锐角,一个是钝角,故B不符合题意;C、30°+60°=90°,这两个角互余,故C不符合题意;D、90°+90°=180°,这两个角都是直角,故D不符合题意;故答案为:D.【分析】以如果两个角互补,那么这两个角一个是锐角,另一个是钝角为假命题的两个角都是直角,根据选项可得答案。
8.【答案】C【解析】【解答】解:依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和。
因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合。
综上可得,任意两螺丝的距离之和的最大值为7,故答案为:C【分析】当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和,然后根据三角形三边关系即可一一判断得出答案.9.【答案】A【解析】【解答】解:如图1,∵PQ垂直平分AD,∴PA=PD,QA=QD,而PQ=PQ,∴ΔAPQ≌ΔDPQ(SSS),所以甲正确;如图2,∵PD//AQ,DQ//AP,∴四边形APDQ为平行四边形,∴PA=DQ,PD=AQ,而PQ=QP,∴ΔAPQ≌ΔDQP(SSS),所以乙正确.故答案为:A.【分析】如图1,根据线段垂直平分线的性质得到PA=PD,QA=QD,则根据“ SSS”可判断ΔAPQ≌ΔDPQ,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ为平行四边形,则根据平行四边形的性质得到PA=DQ,PD=AQ,则根据“ SSS”可判断ΔAPQ≌ΔDQP,则可对乙进行判断.10.【答案】C【解析】【解答】解:把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<5,3所以不等式组mx>kx+b>mx−2的解集是1<x<53.故答案为:C.【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<53,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.二、填空题11.【答案】6+2x<0【解析】【解答】解:∵6与x的2倍的和是负数,∴6+2x<0.故答案为:6+2x<0.【分析】抓住已知条件“和为负数”,根据负数都小于0,即可列式。