投影与视图经典题型总结
专题25投影与视图(10个高频考点)(举一反三)(原卷版)

专题25 投影与视图(10个高频考点)(举一反三)【题型1 判断几何体的三视图】 (1)【题型2 根据三视图确定几何体】 (2)【题型3 在格点中作几何体的三视图】 (3)【题型4 根据三视图确定小立方体的个数】 (5)【题型5 根据三视图确定最多或最少的小立方体的个数】 (6)【题型6 根据俯视图中的小正方形中的数字确定其他视图】 (7)【题型7 去掉或移动小立方体确定视图是否改变】 (8)【题型8 平行投影的概念及特点】 (9)【题型9 中心投影的概念及特点】 (10)【题型10 正投影的概念及特点】 (11)【题型1 判断几何体的三视图】【例1】(2022·河南南阳·三模)下列几何体均是由若干个大小相同的小正方体搭建而成的,其三视图都相同的是()A.B.C.D.【变式11】(2022·福建省龙岩市永定区第二初级中学一模)如图所示空心圆柱体,则该几何体的主视图是()A.B.C.D.【变式12】(2022·辽宁阜新·中考真题)在如图所示的几何体中,俯视图和左视图相同的是()A.B.C.D.【变式13】(2022·河北·育华中学三模)如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是()A.B.C.D.【题型2 根据三视图确定几何体】【例2】(2022·浙江台州·一模)如图是某几何体的三视图,则该几何体是()A.B.C.D.【变式21】(2022·陕西咸阳·一模)如图是某个几何体的三视图,该几何体是()主视图左视图俯视图A.B.C.D.【变式22】(2022·甘肃酒泉·一模)下面的三视图所对应的物体是().A.B.C.D.【变式23】(2022·云南·盈江县教育体育局教育科研中心模拟预测)如图,图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的等腰三角形.若主视图腰长为6,俯视图是直径等于4的圆,则这个几何体的体积为_____.【题型3 在格点中作几何体的三视图】【例3】(2022·山东青岛·二模)如图是由一些棱长均为1个单位长度的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图:(2)若给该几何体露在外面的面(不含底图)都喷上红漆,则需要喷漆的面积是;(3)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,则最多可以再添加块小正方体.【变式31】(2022·江西吉安·一模)(1)如图是由10个同样大小的小正方体搭成的几何体,请分别画出它的主视图和左视图;(2)在不改变主视图和左视图的情况下,你认为最多..还可以添加________个小正方体.【变式32】(2022·江苏南京·一模)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是.(2)请按要求在边长为1网格图里画出这个零件的视图.【变式33】(2022·河南安阳一模)如图,学校3D打印小组制作了1个棱长为4的正方体模型(图中阴影部分是分别按三个方向垂直打通的通道).(1)画图:按从前往后的顺序,依次画出每一层从正面看到的图形,通道部分用阴影表示;(2)求这个正方体模型的体积.【题型4 根据三视图确定小立方体的个数】【例4】(2022·河南·三模)某几何体是由若干个大小相同的小正方体组合而成,下面是该几何体的三视图,则组成该几何体的小正方体的个数为()A.3B.4C.5D.6【变式41】(2022·河南安阳一模)如图是由若干个相同的正方体组成的一个立体图形从三个不同方向看到的形状图,根据形状图回答下列问题:(1)原立体图形共有几层?(2)立体图形中共有多少个小正方体?【变式42】(2022·河南安阳一模)用若干个大小相同,棱长为1的小正方体搭成一个几何体,其三视图如图所示,则搭成这个几何体所用的小正方体的个数是()A.3B.4C.5D.6【变式43】(2022·宁夏·银川北塔中学一模)一个几何体是由若干个棱长为2cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.【题型5 根据三视图确定最多或最少的小立方体的个数】【例5】(2022·黑龙江·齐齐哈尔市富拉尔基区教师进修学校二模)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,下列正确的是()A.m=5,n=13B.m=8,n=10C.m=10,n=13D.m=5,n=10【变式51】(2022·安徽合肥一模)用小立方块搭一个几何体,主视图与左视图如下图,它最少要多少个立方块?最多要多少个立方块?画出这个几何体最多、最少两种情况下的俯视图,并用数字表示在该位置的小立方体的个数.【变式52】(2022·山东省枣庄市第四十一中学一模)用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.【变式53】(2022·河南安阳一模)如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图;(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值;(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.【题型6 根据俯视图中的小正方形中的数字确定其他视图】【例6】(2022·河南安阳一模)如图,是由几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的左视图是()A.B.C.D.【变式61】(2022·广西贵港·三模)如图是由大小相同的小正方体搭成的几何体从上向下看得到的平面图形,小正方形中的数字表示该位置上小正方体的个数,则从左向右看得到的平面图形是()A.B.C.D.【变式62】(2022·四川资阳·中考真题)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.【变式63】(2022·内蒙古包头·模拟预测)如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【题型7 去掉或移动小立方体确定视图是否改变】【例7】(2022·江苏· 二模)如图是由6个大小相同的小正方体拼成的几何体,当去掉某一个小正方体时,与原几何体比较,则下列说法正确的是()A.去掉①,主视图不变B.去掉②,俯视图不变C.去掉③,左视图不变D.去掉④, 俯视图不变【变式71】(2022·山东济南·二模)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.俯视图B.主视图和俯视图C.主视图和左视图D.左视图和俯视图【变式72】(2022·江西·一模)如图是由6个相同的小正方体搭成的几何体,若去掉上层的1个小正方体,则下列说法正确的是()A.主视图一定变化B.左视图一定变化C.俯视图一定变化D.三种视图都不变化【变式73】(2022·山东淄博·二模)如图是由5个同样大小的小正方体摆成的几何体,现将第6个小正方体摆放在①、②、③哪个正方体前面,新几何体从正面看到的形状不发生变化()A.放在①前面,从正面看到的形状图不变B.放在②前面,从正面看到的形状图不变C.放在③前面,从正面看到的形状图不变D.放在①、②、③前面,从正面看到的形状图都不变【题型8 平行投影的概念及特点】【例8】(2022·北京朝阳·二模)在太阳光的照射下,一个矩形框在水平地面上形成的投影不可能是()A.B.C.D.【变式81】(2022·浙江杭州·九年级二模)小明在操场上练习双杠时,发现两横杠在地上的影子().A.相交B.平行C.垂直D.无法确定【变式82】(2022·河南·平顶山市第四十二中学一模)下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.【变式83】(2022·浙江杭州·九年级二模)如图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),可判断形成该影子的光线为()A.该影子实际不可能存在B.可能是太阳光线也可能是灯光光线C.太阳光线D.灯光光线【题型9 中心投影的概念及特点】【例9】(2022·浙江杭州·九年级二模)人从路灯下走过时,影子的变化是().A.长→短→长B.短→长→短C.长→长→短D.短→短→长【变式91】(2022·浙江杭州·九年级二模)下列属于中心投影的有()①中午用来乘凉的树影;②灯光下小明读书的影子;③上午10点时,走在路上的人的影子;④升国旗时,地上旗杆的影子;⑤在空中低飞的燕子在地上的影子.A.1个B.2个C.3个D.4个【变式92】(2022·浙江杭州·九年级二模)如图所示是两根标杆在地面上的影子,根据这些投影,在灯光下形成的影子是()A.①和②B.②和④C.③和④D.②和③【变式93】(2022·江苏·东海实验中学三模)三根等长的木杆竖直地立在平地的同一个圆周上,圆心处有一盏灯光,其俯视图如图所示,图中画出了其中一根木杆在灯光下的影子.下列四幅图中正确画出另两根木杆在同一灯光下的影子的是()A.B.C.D.【题型10 正投影的概念及特点】【例10】(2022·浙江杭州·九年级二模)当投影线由上到下照射水杯时,如图所示,那么水杯的正投影是()A.B.C.D.【变式101】(2022·浙江杭州·九年级二模)当棱长为20的正方体的某个面平行于投影面时,这个面的正投影的面积为()A.20B.300C.400D.600【变式102】(2022·浙江杭州·九年级二模)一张矩形纸板(不考虑厚度,不折叠)的正投影可能是()①矩形;②平行四边形;③线段;④三角形;⑤任意四边形;⑥点A.②③④B.①③⑥C.①②⑤D.①②③【变式103】(2022·安徽合肥一模)把一个正五棱柱按如图所示的方式摆放,则投射线由正前方射到后方时所形成的影子是()A.B.C.D.。
投影与视图难题汇编含答案

【答案】A
【解析】
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面可看到从左往右2列一个长方形和一个小正方形,
故选A.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
14.发展工业是强国之梦的重要举措,如图所示零件的左视图是()
A. B. C. D.
【答案】D
【详解】
这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,
所以这个几何体的侧面展开图的面积= .
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )
【详解】
解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,
故选C.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
9.如图所示,该几何体的主视图为()
A. B. C. D.
【答案】B
【解析】
【分析】
找到从正面看所得到的图形即可.
【详解】
从正面看两个矩形,中间的线为虚线,
故选:B.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
10.如图是某个几何体的三视图,该几何体是()
A.长方体B.圆锥C.圆柱D.三棱柱
投影与视图常见题型解析

ห้องสมุดไป่ตู้
琵 | ◇ .
l l
l l
|
蠢
图, 则图 中的 口 = ( )
4 口. + .口 叫
皿 三 田
主视 图 左 视 图
7 . 如图 1 0 , 王华晚上 由路灯 A下 的 B处走 到 C处 时, 测得 影子 C D的 长为 1米 , 继续往前 走 3米到达 E处时 , 测得 影子 E ,的长为 2米 ,
题 型三 : 根据三视图进行计算
根据 三视 图进 行计 算要 抓 住 各种 空 间几 何体 的结 构 特征 ,认 识各 种 空间几 何 体 的三 视 图和直 观 图 ,通 过 三视 图 和直 观 图判 断 空 间几 何体 的结 构 ,在 此基 础 上掌 握好 空 间几 何体的表面积和体积的计算方法.
题型一 : 由几何体判 断其三视 图
题型二 : 由三视 图确定原几何体的构成
由三视图描述几何体 ( 或实物原型 ) , 一 般先 根 据各 视 图想象 从各 个 方 向看到 的几何 体的形状 , 然后综合起来确定几何体( 或实物 原型) 的形状 , 再 根 据三个 视 图“ 长对 正 、 高平 齐、 宽相等 ” 的关 系 , 确定轮廓线 的位置以及 各个 方 向 的尺 寸 .
3 . 由一些相 同的小立方块搭 成 的几何 体 的
判 断一个 几 何体 的三视 图 时 ,要有 一定 三 视 图如 图 3所 示 ,则拼 成 该 几何 体 的 小 立 方 ) . 的想象 能力 , 想 象从 正 面 、 侧 面 和上 面来 看 它 块 的数量有( 分 别 是 什 么 图形 , 然 后通 过 仔 细 观 察 、 比较 、 分析 , 确 定其 三视 图.
投影与视图难题汇编及答案

投影与视图难题汇编及答案一、选择题1.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.2.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为1222,高为3,∴该几何体的体积为23=2,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B【解析】【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图底层的正方形位置发生了变化.∴不改变的是主视图和左视图.故选:B.【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.下面是一个几何体的俯视图,那么这个几何体是()A.B.C.D.【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B中的图形是和题目中的俯视图看到的一样,故选:B.【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.6.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A .10:2B .9:2C .10:1D .9:1【答案】C【解析】【分析】 由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C .【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.7.下列几何体中,主视图与俯视图不相同的是( )A .B .C .D .【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B .点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.8.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.9.如图所示,该几何体的左视图是( )A .B .C .D .【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B .【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.10.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.11.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.12.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.13.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.14.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.15.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.16.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.17.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.18.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.19.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.20.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.。
(易错题精选)初中数学投影与视图难题汇编附答案解析

(易错题精选)初中数学投影与视图难题汇编附答案解析一、选择题1.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.2.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.4.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.5.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.6.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.7.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.8.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键. 9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.12.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.13.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( ) A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.14.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.16.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.17.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m ).根据三视图可以得出每顶帐篷的表面积为( )A .6πm 2B .9πm 2C .12πm 2D .18πm 2【答案】B【解析】【分析】 根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是( )A.B.C.D.【答案】C【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有3列,每列小正方形数目分别为2、1、1.故选:C.【点睛】此题主要考查简单几何体的三视图,熟练画图是解题关键.19.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.20.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.。
投影与视图(知识点+题型分类练习+答案)

投影与视图知识梳理【知识网络】【考点梳理】一、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。
当平行光线垂直投影面时叫正投影。
投影三视图都是正投影。
(2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.二、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。
三个图的位置展示:要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.(1)主视图:三视图(2)左视图:(3)俯视图:投影与视图专题练习类型一:平行投影1.有两根木棒AB、CD在同一平面上竖着,其中AB这根木棒在太阳光下的影子BE如图(1)所示,则CD 这根木棒的影子DF应如何画?2.如图所示,某居民小区内A、B两楼之间的距离MN=30米,两楼的高都是20米,A楼在B楼正南,B楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离DN=2米,窗户高CD=1.8米.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2≈1.414,3≈1.732,5≈2.236)3.如图所示,在一天的某一时刻,李明同学站在旗杆附近某一位置,其头部的影子正好落在旗杆脚处,那么你能在图中画出此时的太阳光线及旗杆的影子吗?4.已知,如图所示,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下时投影长为6m.请你计算DE的长.类型二:中心投影1.如图所示,小明在广场上乘凉,图中线段AB表示站在广场上的小明,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小明在照明灯P照射下的影子.(2)如果灯杆高PO=12m,小明身高AB=1.6m,小明与灯杆的距离BO=13m,请求出小明影子的长度.2.确定图中路灯灯泡所在的位置。
专题44 投影与视图【考点精讲】(含答案解析)

专题44投影与视图【考点精讲】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)专题44投影与视图考点1:图形的投影1.中心投影(1)由同一点(点光源)发出的光线形成的投影叫做()投影.(2)中心投影的投影线交于一点.(3)投影面确定时,物体离点光源越近,影子越();物体离点光源越远,影子越().2.平行投影(1)太阳光线可以看成平行光线,由平行光线形成的投影叫做()投影.(2)平行投影的投影线相互平行.(3)不同时刻,物体在太阳光下的影子的大小和方向都改变.(4)垂直于投影面产生的投影叫做()投影.【例1】(2020•绍兴)1.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()【例2】2.如图所示“属于物体在太阳光下形成的影子”的图形是()A.B.C.D.投影的判断方法(1)判断投影是否为平行投影的方法是看光线是否是平行的,如果光线是平行的,那么所得到的投影就是平行投影.(2)判断投影是否为中心投影的方法是看光线是否相交于一点,如果光线是相交于一点的,那么所得到的投影就是中心投影.3.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一百五十寸,立一标杆,长一十五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一百五十寸,同时立一根一十五寸的小标杆,它的影长五寸,则竹竿的长为()A.500寸B.450寸C.100寸D.50寸4.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.5.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为_______cm.考点2:几何体的三视图1.三视图:主视图、左视图、俯视图(1)主视图:从正面看到的图形,称为()视图;(2)左视图:从左面看到的图形,称为()视图;(3)俯视图:从上面看到的图形,称为()视图.2.三视图的关系主视图反映物体的长和高;左视图反映物体的宽和高;俯视图反映物体的长和宽,因此三视图有如下对应关系:(1)长对正:主视图与俯视图的长度相等,且相互对正;(2)高平齐:主视图与左视图的高度相等,且相互平齐;(3)宽相等:俯视图与左视图的宽度相等,且相互平行.“长对正,高平齐,宽相等”,这“九字令”是阅读和绘制三视图必须遵循的对应关系.3.常见几何体的三视图正方体的三视图都是();圆柱的三视图有两个是(),另一个是();圆锥的三视图中有两个是(),另一个是();球的三视图都是().【例3】6.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.B.C.D.【例4】(2020•河北)7.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同1.画物体的三视图的口诀:主、俯:长对正;主、左:高平齐;俯、左:宽相等.注意:几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线画成虚线.2.由三视图确定几何体的方法(1)由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.8.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A .B .C .D .9.下列四个几何体中,从正面看是三角形的是()A .B .C .D .(2020深圳光明一模)10.如图所示的几何体的左视图为()A .B .C .D .考点3:由视图确定实物【例5】(2020•北京)11.如图是某几何体的三视图,该几何体是()A .圆柱B .圆锥C .三棱锥D .长方体(2020十堰)12.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱(2020内蒙古呼和浩特)13.一个几何体的三视图如图所示,则该几何体的表面积为____________.考点4:几何展开图1.多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的.2.正方体的展开图:【例6】(2021·北京中考真题)14.如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱1.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的;2.正方体的展开图分为“一四一”型、“二三一”型、“二二二”型、“三三”型四类.(2021·浙江中考真题)15.将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.(2021·四川自贡市·中考真题)16.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜(2021·江苏扬州市·中考真题)17.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱参考答案:1.A【分析】根据对应边的比等于相似比列式进行计算即可得解.【详解】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .【点睛】本题主要考查了位似变换的应用.2.A【分析】根据平行投影特点在同一时刻,不同物体的物高和影长成比例且方向相同解答即可.【详解】解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B 、D 的影子方向相反,都错误;C 中物体的物高和影长不成比例,也错误.故选A .【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.3.B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x 寸, 竹竿的影长=150寸,标杆长=15寸,影长=5寸, 151505x =,解得:450x =.答:竹竿长为450寸, 故选:B .【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.4.4m【分析】设路灯的高度为x(m),根据题意可得△BEF ∽△BAD ,再利用相似三角形的对应边正比例整理得DF=x ﹣1.8,同理可得DN=x ﹣1.5,因为两人相距4.7m ,可得到关于x 的一元一次方程,然后求解方程即可.【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴EF BF AD BD=,即1.8 1.8x 1.8DF=+,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MN CN AD CD=,即1.5 1.5x 1.5DN=+,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.5.18【分析】根据题意可画出图形,根据相似三角形的性质对应边成比例解答.【详解】解:如图,∵DE∥BC,∴△AED∽△ABC.∴AE DE AC BC=.设屏幕上的小树高是x,则206 2040x=+.解得x=18cm.故答案为:18.6.D【分析】根据正方体、三棱柱、圆锥、圆柱的三视图的形状进行判断即可.【详解】解:根据三视图的定义可知,选项A主视图和左视图都是三角形,但俯视图是有圆心的圆;选项B主视图和左视图都是矩形,但俯视图是圆;选项C主视图是一个矩形,中间有一条线段,左视图是矩形,俯视图是三角形;选项D的主视图、左视图和俯视图都是正方形,完全相同.故选D.【点睛】本题考查简单几何体的三视图,掌握简单几何体三视图的形状是正确判断的前提.7.D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.8.A【分析】从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,据此可得.【详解】从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,故它的左视图是故选A.【点睛】此题考查三视图的知识;左视图是从几何体左面看得到的平面图形.9.B【分析】逐一分析从正面看到的图形即可解题.【详解】解:A.从正面看是长方形,故A不符合题意;B.从正面看是三角形,故B符合题意;C.从正面看是是长方形,故C不符合题意;D.从正面看是是正方形,故D不符合题意,故选:B.【点睛】本题考查从正面看几何体,是基础考点,掌握相关知识是解题关键.10.B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看易得左视图为“”.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.11.D【分析】根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D.【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.12.B【详解】解:圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.【点睛】本题考查三视图.13.3π+4【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【详解】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.14.B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.15.A【分析】依据长方体的展开图的特征进行判断即可.【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.16.B【分析】正方体的表面展开图“一四一”型,相对的面之间一定相隔一个正方形,根据这一特点解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方体,“迎”与“党”是相对面,“建”与“百”是相对面,“喜”与“年”是相对面.故答案为:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.A【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.。
九年级数学下册第二十九章《投影与视图》综合知识点总结(含解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图3.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图所示,该几何体的主视图为()A.B.C.D.5.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.6.如图,在平整的地面上,有若干个完全相同的边长为 2cm 的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是( )A.30cm2B.32cm2C.120cm2D.128cm27.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个8.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.69.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.如图所示的几何体的左视图是()A.B.C.D.13.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.14.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是() A.B.C.D.二、填空题15.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.16.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.17.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.18.由n个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的个数是________.19.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.20.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.21.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______22.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.23.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.26.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.三、解答题27.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.28.如图为从三个方向看一个几何体的形状.(1)任意画出它的一种表面展开图;(2)若从正面看的长为10cm,从上面看正方形的边长为4cm,求这个几何体的表面积.29.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)30.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接起来;(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.【参考答案】一、选择题1.A2.C3.C4.B5.A6.D7.A8.C9.D10.C11.C12.B13.A14.B二、填空题15.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题16.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分17.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个18.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;19.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视20.4或5【解析】如图方块有4或5块21.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭22.10【解析】试题23.bdca【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca考点:简单几24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯26.6【解析】【分析】根据题意画出示意图易得:Rt△EDC∽Rt△CDF进而可得代入数据可得答案【详解】如图在中米米易得即米故答案为:6【点睛】本题通过投影的知识结合三角形的相似求解高的大小是平行投影性三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.4.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.5.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.D解析:D【分析】根据露出的小正方体的面数,可得几何体的表面积.【详解】解:露出表面的面一共有32个,则这个几何体喷漆的面积为32×4=128cm2,故答案为:D.【点睛】本题考查了几何体的表面积,关键是观察出小正方体露出表面的面的个数.7.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.8.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.9.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线.11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.14.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.二、填空题15.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题解析:4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】解:如图所示:过点D作DC⊥AB于点C,连接AE,由题意可得:DE=BC=1m,BE=1.5m,∵一根长为1m的竹竿的影长是0.5m,∴AC=2CD=3m,故AB=3+1=4(m).故答案为4m.【点睛】此题主要考查了平行投影,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.16.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.17.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个 解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.18.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体; 解析:5【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故答案为5.【点睛】本题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.19.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视解析:11【解析】综合正视图和左视图,底面最多有3×3=9个小正方体,第二层最多有2个小正方体,那么x的最大值应该是9+2=11.故答案为:11.点睛:本题考查对三视图的理解应用及空间想象能力.本题中虽然没有告诉俯视图,但是说明了x取最大值也就间接的说明了俯视图的情况.20.4或5【解析】如图方块有4或5块解析:4或5【解析】如图方块有4或5块.21.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.22.10【解析】试题解析:10【解析】试题如图所示,作DH⊥AB与H,则DH=BC=8 m,CD=BH=2 m,根据题意得∠ADH = 45°,所以△ADH为等腰直角三角形,所以AH=DH=8 m,所以AB=AH+BH=8+2=10 m.所以本题的正确答案应为10米.23.bdca【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca考点:简单几解析:bdca.【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b,d,c,a.考点:简单几何体的三视图.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 25.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n 的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯 解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.26.6【解析】【分析】根据题意画出示意图易得:Rt △EDC ∽Rt △CDF 进而可得代入数据可得答案【详解】如图在中米米易得即米故答案为:6【点睛】本题通过投影的知识结合三角形的相似求解高的大小是平行投影性解析:6【解析】【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △CDF ,进而可得ED CD CD FD=,代入数据可得答案.【详解】如图,在EFC ∆中,90,9ECF ED ︒∠==米,4FD =米,易得~ EDC Rt CDF ∆∆, ED CD CD FD ∴=,即94CD CD =, 6CD ∴=米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.三、解答题27.(1)11;(2)见解析;(3)4【分析】(1)根据图形求解;(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(3)可在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,相加即可求解.【详解】解:(1)有图可得,图中共有11个小立方体故答案为:11(2)如图:(3)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.故答案为:4.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.28.(1)见解析;(2)192(cm2)【分析】(1)根据三视图可得这个几何体是长方体,再把它展开即可;(2)根据长方体的表面积计算公式进行计算即可.【详解】解:(1)表面展开图如图所示:(2)这个几何体的表面积是:4×10×4+4×4×2=192(cm2).【点睛】本题考查了立体图形的三视图和展开图,根据三视图得出立体图形的形状是解决此题的关键.29.见详解【分析】几何体的主视图有3列,每列小正方形数目分别为3,2,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1.即可画出三视图.【详解】解:如图所示:【点睛】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.30.(1)详见解析;(2)体积是:34a ,表面积是:218a .【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:344a a a a ⨯⨯⨯=,表面积是:21818a a a ⨯⨯=.【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影与视图知识点一:三视图1、画物体的三视图时,应首先确定的位置,画出,然后在主视图的下面画出,在主视图的右面画出。
2、主视图反映物体的和,俯视图反映物体的和,左视图反映物体的和,因此在画三视图时,主、俯...视图要...对正,主、左视图要.........平齐,左、俯视图要.........相等..3、在画视图时,看得见部分的轮廓线要画成线,看不见部分的轮廓线要画成线。
知识点二:投影1、一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子..叫做物体的________,照射光线叫做________,投影所在的平面叫做___________。
2、有时光线是一组互相平行的射线,例如太或探照灯光的一束光中的光线。
由平行光线形成的投影是_____________。
3、太与影子的关系:物体在太照射的不同时刻,不但影子的大小在变化,而且影子的方向也在变化,在早晨太阳位于正,此时的影子较长,位于_______:在上午,影子随着太阳位置的变化,其长度逐渐变短,方向向正北方向移动;中午影子最短,方向正北;下午,影子的长度又逐渐______,其方向向正东移动。
3、由同一点(点光源发出的光线)形成的投影叫做__________。
4、投影线垂直于投影面产生的投影叫做_________。
5、产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作_________,这两条直线的________,即为光源的位置。
知识点三、探究 “投影”类考题“投影”是现行初中数学教材新增的一个知识点,其解题的核心是抓住某一时刻物高与影长的变化规律,探究一:比例求高“投影”类题题型1 (2006年市)如图1,小华为了测量所住楼房的高度,他请来同学帮忙,在下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为________米.变化1-1 如果物体的投影一部分落在平地上,另一部分落在坡面上:如图2,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m变化1-2 如果物体的投影一部分落在平地上,另一部分落在台阶上:兴趣小组的同学要测量树的高度.在下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图3,若此时落在地面上的影长为4.4米,则树高为( )(A)11.5米 (B)11.75米 (C)11.8米 (D)12.25米变化1-3 如果将上题中的DE 改为斜坡,再改变部分已知条件梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB 的高度.如图5,当从正西方向照射过来时,旗杆AB 的顶端A的影子落在教学楼前的坪地C 处,测得影长CE=2 m,图1图2图3DE=4m ,BD=20m,DE与地面的夹角30α=.在同一时刻,测得一根长为1m 的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(结果保留两个有效数字)探究二:三角函数求高“投影”类题题型2 (2007年)如图7,当太与地面成55°角时,直立于地面的玲玲测得自己的影长为1.16m,则玲玲的身高约为m.(精确到0.01m)变化2-1如果将太改为照明灯,再适当改变已知条件和问题的形式:(2007年市)如图9所示,点P表示广场上的一盏照明灯.若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米)..探究三:相似三角形求高“投影”类题题型3 (2007年市)如图11,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具。
移动竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为__________m.变化3-1 如果将上题的太线的平行投影改为灯具的中心投影,再适当改变已知条件和问题的形式:(2008年聊城市)如图12,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?图8图7图9图11单元检测1、一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.242、如图2,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长3、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,22B.2,22C.3,2 D.2,34、在一个晴朗的上午,皮皮拿着一块正方形术板在下做投影实验,正方形木板在地面上形成的投影不可能是()32左视图4俯视图5、如图,是一个工件的三视图,则此工件的全面积是(A )85πcm 2 (B )90πcm 2 (C )155πcm 2 (D )165πcm 26、一个几何体的三视图如右图所示,那么这个几何体的侧面积是A. 4πB.6πC. 8πD. 12π7、由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是( )8、如图是一房子的示意图,则其左视图是( )9、有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )1 2A .B .C .D .2 31(第11题)3 2310、如图是四棱锥(底面是矩形,四条侧棱等长),则它的俯视图是().A.B.C.D.11、如图是一个包装盒的三视图,则这个包装盒的体积是()A.3192πcm B.31152πcm C.32883cm D.33843cm12、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()(A)两个外离的圆(B)两个外切的圆(C)两个相交的圆(D)两个切的13、.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为12cm4cm14、一个几何体的三视图如图12:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为()A.2πB.12πC.4πD.8π15、16、小正方体组成的立体图形,它的左视图为()17、右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()18、下列图形中,不是正方形的表面展开图的是()A.B.C.D.19、如图,桌上放着一摞书和一个茶杯,从左边看到的图形是( ) DA.B.C.D.第12题图42 24左视图右视图俯视图A.B.C.D.A B C第22题从正面看20、左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )21、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( ) A 、文 B 、明 C 、奥 D 、运 22、如图,是由8相同的小立方块搭成的几何体的左视图,它的三个视图是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉...),其三个仍都为2×2的正方形,则最多能小立方块的个数为A .1B .2C .3D .423、在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有( ) A .9箱 B .10箱 C .11箱 D .12箱二、填空13、 如图是某几何体的表面展开图,则这个几何体是____________。
14、一个几何体的三视图如图,则这个几何体是(A )圆锥 (B )三棱锥 (C )球 (D )圆锥15、一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.16、 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .(D) (C) 从上面看从左面看 讲文 明 迎 奥 运左视图 主视图 俯视图(23题图)17、三角尺在灯泡O 的照射下在墙上形成影子(如图6所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .三、解答题18、如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积; (3)如果一只蚂蚁要从这个几何体中的点B 出发,沿 表面爬到AC 的中点D ,请你求出这个线路的最短路程.19、问题背景 在某次活动课中,甲、乙、丙三个学习小组于同一时刻在下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm 的竹竿的影长为60cm. 乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm ,影长为156cm. 任务要求(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度; (2)如图3,设太线NH 与O 相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG 的影长;需要时可采用等式222156208260+=).图6A AO 灯三角尺投影俯视图主视图 4 6左视图单位:厘米F图2 图1图3(第23题)。