管壳式换热器
管壳式换热器规格标准

管壳式换热器规格标准一、介绍管壳式换热器是一种非常常见的换热设备,可以广泛应用于化工、石油、制药、食品等行业的热交换过程中。
在使用管壳式换热器之前,需要先了解它的标准尺寸,以便选择合适的型号。
二、管壳式换热器标准尺寸管壳式换热器的标准尺寸通常是按照壳体内径和管道外径计算的。
一般标准尺寸的管壳式换热器有以下规格:1. DN25/25,壳体内径为219mm,管道外径为25mm;2. DN32/25,壳体内径为273mm,管道外径为25mm;3. DN40/25,壳体内径为325mm,管道外径为25mm;4. DN50/25,壳体内径为426mm,管道外径为25mm;5. DN65/25,壳体内径为529mm,管道外径为25mm;6. DN80/25,壳体内径为630mm,管道外径为25mm;7. DN100/25,壳体内径为720mm,管道外径为25mm;以上标准尺寸仅供参考,实际情况还需根据具体使用要求进行选择。
三、注意事项在选择管壳式换热器之前,还需要注意以下事项:1. 确定换热器的流量和热载荷;2. 确认换热器的使用压力和温度范围;3. 根据流体特性和腐蚀情况选择合适的材质;4. 根据使用环境选择适当的防腐形式。
以上是关于管壳式换热器标准尺寸的介绍,希望能帮助您了解相关知识并选择合适的型号。
二、管壳式换热器国家标准规格1. 壳体尺寸壳体尺寸一般以壳体直径和长度表示。
国家标准中规定的壳体直径从50mm到5000mm不等,长度也有所不同,最长可达20m。
2. 管束数量管壳式换热器管束数量的多少直接决定了热交换的效率。
国家标准中规定管壳式换热器的管束数量应在1到12根之间,具体数量可根据使用条件及要求来进行选择。
3. 温度管壳式换热器的工作温度一般受制于材质、管束数量以及流体性质等多个因素。
国家标准中对于常用的曲率半径、沸点温度、加热量及换热系数等参数进行了规定。
4. 压力管壳式换热器的工作压力也是一个重要的参数。
管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构一、管壳式换热器的基本概念管壳式换热器是一种常见的换热设备,其主要由管束和外壳两部分组成。
其中,管束是由许多平行排列的管子组成,而外壳则是将这些管子包裹在一起的结构。
通过这种结构,管壳式换热器可以实现两种介质之间的热量传递。
二、工作原理1. 热媒流动原理在管壳式换热器中,介质A和介质B分别通过内部的管子和外部的壳体进行流动。
其中,介质A通常为高温流体,而介质B则为低温流体。
当两种介质在内外两侧经过时,由于存在温度差异,会发生热量传递。
2. 热媒传递原理在介质A和介质B之间进行热量传递时,主要有三个过程:对流传热、传导传热和辐射传热。
其中,对流传热是最主要的一种方式。
3. 工作过程在工作过程中,高温流体通过内部的管子进入到换热器中,并沿着管子表面流动。
同时,低温流体从外部的壳体进入到换热器中,并沿着管子外表面流动。
在这个过程中,高温流体和低温流体之间进行了热量传递,使得高温流体的温度降低,而低温流体的温度升高。
三、结构特点1. 管束结构管束是管壳式换热器的主要组成部分之一。
在管束中,许多平行排列的管子被固定在两个端盖板上,并通过密封垫圈与外壳连接。
由于管子间距离较小,因此可以有效地增加热量传递面积。
2. 壳体结构外壳是管壳式换热器的另一个重要组成部分。
它通常由两个半球形或长方形壳体组成,并通过法兰连接。
在使用过程中,外壳起到保护内部管束不受损坏的作用。
3. 密封结构为了保证介质A和介质B之间不发生混合,在管壳式换热器中需要设置密封结构。
这种密封结构通常采用密封垫圈或波纹垫片等材料制成,可以有效地防止介质泄漏。
4. 清洗结构由于管壳式换热器在使用过程中会产生一定的污垢和腐蚀物,因此需要定期进行清洗。
为了方便清洗,管壳式换热器通常设置有进出口和排污口等结构。
四、应用领域管壳式换热器广泛应用于化工、石油、制药、食品等领域中。
在这些领域中,管壳式换热器可以实现高效的热量传递,提高生产效率,并减少能源消耗。
管壳式换热器的设计

管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。
它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。
下面将从换热原理、设计要求和结构设计等方面进行详细介绍。
一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。
其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。
壳侧流体通过壳体流动,而管侧流体则通过管束流动。
热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。
二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。
2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。
3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。
4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。
三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。
壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。
2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。
管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。
3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。
管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。
4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。
管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。
在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。
同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。
第十章管壳式换热器

第⼗章管壳式换热器第⼗章管壳式换热器第⼀节管壳式换热器基本知识【学习⽬标】学习GB151-1999《管壳式换热器》,了解该标准适⽤范围及相关定义、规定。
了解管壳式换热器型号表⽰⽅法。
⼀、GB151《管壳式换热器》标准适⽤范围GB151-1999《管壳式换热器》标准规定了⾮直接受⽕管壳式换热器(已下简称“换热器”)的设计、制造、检验和验收的要求。
GB151-1999《管壳式换热器》1 “范围”⼆、换热器型号表⽰⽅法GB151-1999《管壳式换热器》标准第3章“总则”中,规定了换热器型号的表⽰⽅法。
1、换热器的主要组合部件(GB151图1)图10-1 AES、BES浮头式换热器1-平盖;2-平盖管箱(部件);3-接管法兰;4-管箱法兰;5-固定管板;6-壳体法兰;7-防冲板8-仪表接⼝;9-补强圈;10-壳体(部件);11-折流板;12-旁路挡板;13-拉杆;14-定距管;15-⽀持板;16-双头螺柱或螺栓;17-螺母;18-外头盖垫⽚;19-外头盖侧法兰;20-外头盖法兰;2、换热器型号的表⽰⽅法采⽤碳素钢、低合⾦钢冷拔钢管做换热管时,其管束分为Ⅰ、Ⅱ两级:Ⅰ级管束——采⽤较⾼级、⾼级冷拔钢管;Ⅱ级管束——采⽤普通级冷拔钢管。
⽰例:a )浮头式换热器平盖管箱,公称直径500mm ,管程和壳程设计压⼒均为1.6MPa ,公称换热⾯积54m 2,碳素钢较⾼级冷拨换热管外径25mm ,管长6m ,4管程,单壳程的浮头式换热器,其型号为:4256546.1500----AES Ⅰ b )固定管板式换热器封头管箱,公称直径700mm ,管程设计压⼒2.5MPa ,壳程设计压⼒1.6MPa ,公称换热⾯积200m 2,碳素钢较⾼级冷拨换热管外径25mm ,管长9m ,4管程,单壳程的固定管板式换热器,其型号为:42592006.15.2700----BEM Ⅰ c )U 形管式换热器封头管箱,公称直径500mm ,管程设计压⼒4.0MPa ,壳程设计压⼒1.6MPa ,公称换热⾯积75m 2,不锈钢冷拨换热管外径19mm ,管长6m ,2管程,单壳程的U 形管式换热器,其型号为:2196756.10.4500----BIU f )填料函式换热器平盖管箱,公称直径600mm ,管程和壳程设计压⼒均为1.0MPa ,公称换热⾯积90m 2,16Mn 较⾼级冷拨换热管外径25mm ,管长6m ,2管程,2壳程的填料函浮头式换热器,其型号为:22256900.1600----AFP Ⅰ三、换热器部分定义及规定GB 151标准许多定义和规定是与GB 150⼀致的,以下内容摘录了⼀部分不同于GB 150的规定。
管壳式热交换器

2.5.2 流体温度和终温的确定
• 在换热器设计中加热剂或冷却剂出口温度需由设计 者确定。如冷却水进口温度需依当地条件而定,但 出口温度需通过经济权衡作出选择。在缺水地区可 使出口温度高些,这样操作费用低,但使传热平均 温差下降,需传热面积增加使得投资费用提高,反 之亦然。根据经验一般应使∆tm大于10℃为宜, 此外若工业用水作为冷却剂出口温度不宜过高,因 工业用水中所含的盐类(主要CaCO3,MgCO3,CaSO4、 MgSO4等)的溶解度随温度升高而减小,若出口温度 过高,盐类析出,形成垢层使传热过程恶化,因此 一般出口温度不超过45℃。所以应根据水源条件, 水质情况等加以综合考虑后确定。水源严重缺乏地 区可采用空气作为冷却剂,但使传热系数下降。对 于加热剂可按同样原则选择出口温度
一、管、壳程介质的配置 有利于传热、压力损失小。具体如下: 1、流量小、粘度大的流体走壳程较好。 2、温差较大时,K大的流体走壳程。 3、与外界温差大的流体走管程。 4、饱和蒸汽走壳程。 5、含杂质流体走管程。 6、有毒介质走管程。 7、压降小走壳程。 8、高温、高压、腐蚀性强的流体走管程。
2.5.1 流体在换热器中内的流动 空间选择
管程变化对阻力影响
• 对同一换热器,若由单管程改为两管程, 阻力损失剧增为原来的8倍,而强制对流 传热、湍流条件下的表面传热系数只增 为原来的1.74倍;若由单管程改为四管程, 阻力损失增为原来的64倍,而表面传热 系数只增为原来的3倍。由此可见,在选 择换热器管程数目时,应该兼顾传热与 流体压降两方面的得失。
– 见公式2.21
2.3 管壳式换热器的传热计算
• • • • • 一、热力设计任务 1.合理的参数选择及结构设计 2.传热计算和压降计算 热力设计:设计计算,校核计算。 设计计算:已知传热量Q,换热工质工作 参数(进、出口温度),求F和结构形式。 • 校核计算:已知换热器的具体结构、某 些参数来核定另一参数。
管壳式换热器结构介绍

后封头
L型后封头:和A型前封头相同 M型后封头:和B型前封头相同 N型后封头:和N型前封头相同 U型:U型管束,管束可移动,壳侧容易清洗;热膨胀处理优秀,经济无法兰; 缺点是管侧无法清洗,更换管束困难,弯头部位容易冲刷损伤, P型封头和W型封头已经被淘汰,不在使用, S型封头:其尺寸特点是其后封头要比壳体的直径大,优点是可以解决换热 器设计过程中的两个问题,一是可以消除换热器的热应力,二是换热器的管
造遵循标准:国外TEMAASME国内GB151、GB150
换热器封头选取原则
1、管壳侧是否需要清洗; 2、是否需要移动管束; 3、是否需要考虑热膨胀; 前封头类型:A、B、C、D、N 后封头类型:L、M、N、P、S、T、W 后封头又分为固定式、浮头式以及U型管,相对于固定式,浮头式造价更高、 需要更大的壳径、低的换热效果由于泄漏流C的存在,优点则是一端具有自 由度可以处理好热膨胀问题,
温度,
5、设备结构的选择
对于一定的工艺条件,首先应确定设备的形式, 例如选择固定管板形式还是浮头形式等,参
螺纹管性能特点
在管子类型中,螺纹管属于管外扩展表面的类型,在普通换热管外壁轧制成 螺纹状的低翅片,用以增加外侧的传热面积,螺纹管表面积比光管可扩展 1.6-2.7倍,与光管相比,当管外流速一样时,壳程传热热阻可以缩小相应的倍 数,而管内流体因管径的减小,则压力降会略有增大,螺纹管比较适宜于壳
K型壳体:主要用于管程热介质,壳侧蒸发的工况,在废热回收条件下使用,
X型壳体:冷热流体属于错流流动,其优点是压降非常小,当采用其他壳体 发生振动,且通过调整换热器参数无法消除该振动时可以使用此壳体形式,
其不足之处是流体分布不均匀,X型壳体并不经常使用,
在化工工艺手册中,I型壳体类型可EDR软件中的不是同一种壳体,其形式见 I1,它的使用方式仅有一种搭配,就是BIU,U型管换热器,
管壳式换热器
第十七章管壳式换热器(shellandtubeheatexchange)本章重点讲解内容:(1)熟悉管壳式换热器的整体结构及其类型;(2)熟悉主要零部件的作用及适用场合;(3)熟悉膨胀节的功能及其设置条件。
第一节总体结构管壳式换热器又称列管式换热器,是一种通用的标准换热设备。
它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。
管内的通道及与其相贯通的管箱称为管程(tube-side);管外的通道及与其相贯通的部分称为壳程(shell-side)。
一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。
以下结合不同类型的管壳式换热器介绍其相应的总体结构。
1、固定管板换热器其由壳体、管束、封头、管板、折流挡板、接管等部件组成。
结构特点为:两块管板分别焊于壳体的两端,管束两端固定在管板上。
换热管束可做成单程、双程或多程。
它适用于壳体与管子温差小的场合。
图1固定管板换热器结构示意图优点:结构简单、紧凑。
在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。
缺点:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50°C)时产生温差应力,需在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高。
固定管板式换热器适用于壳方流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的场合。
2、浮头式换热器浮头式换热器适用于壳体和管束壁温差较大或壳程介质易结垢的场合。
结构特点是两端管板之一不与壳体固定连接,可在壳体内沿轴向自由伸缩,称为浮头。
图2浮头式换热器结构示意图优点:当换热管与壳体有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力;管束可从壳体内抽出,便于管内和管间的清洗。
四种管壳式换热器的结构特点
四种管壳式换热器的结构特点管壳式换热器是一种常见的换热设备,广泛应用于工业生产和能源领域。
根据不同的结构特点,可以将管壳式换热器分为四种类型:固定管板式、浮动管板式、固定管束式和浮动管束式。
固定管板式换热器是最常见的一种结构类型。
它由一个壳体和多个平行排列的管板组成。
管板上开有管孔,通过这些管孔将管子固定在板上。
流体通过管子流动,进行换热。
固定管板式换热器的主要优点是结构简单、制造成本较低,适用于一般的换热任务。
然而,由于管子固定在板上,清洗和维修时比较困难。
浮动管板式换热器是在固定管板式换热器的基础上改进而来的。
它的管板不再固定,而是可以上下浮动。
这样,在清洗和维修时,可以通过松开法兰螺栓,将管板抬起,方便清理管道内部。
浮动管板式换热器的结构稍复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
固定管束式换热器是将管子固定在壳体内部的一个管束上的换热器。
管束通常由多个平行排列的管子组成,管束两端通过管板与壳体连接。
流体在管束内流动,进行换热。
固定管束式换热器的优点是结构紧凑,热效率高,适用于对换热效果要求较高的场合。
然而,由于管束固定在壳体内部,清洗和维修时比较困难。
浮动管束式换热器是在固定管束式换热器的基础上改进而来的。
它的管束可以上下浮动,方便清洗和维修。
浮动管束式换热器的结构复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
四种管壳式换热器的结构特点分别是:固定管板式换热器结构简单、制造成本低;浮动管板式换热器清洗和维修方便;固定管束式换热器热效率高;浮动管束式换热器清洗和维修方便。
每种结构类型都有其适用的场合,选择合适的换热器结构可以提高换热效率,降低维护成本,确保设备的正常运行。
管壳式换热器
管/壳程设计压力(MPa),压力相等时只写Pt 公称直径(mm),对釜式重沸器用分数表示, 分子为管箱内直径,分母为圆筒内直径
第一个字母代表前端管箱型式,第二个字母代表壳体型式, 第三个字母代表后端结构型式
管壳式换热器的类型、标准与结构
管壳式换热器的类型、标准与结构
粘度在10-3 Pa·s以下的低粘性液体,Ft=0. 应用虎克定律,可分别求出管子所受的压缩力和壳体所受的拉伸力。 拉杆是一根两端皆带螺纹的长杆,一端拧入管板,折流板穿在拉杆上,各折流板之间则以套在拉杆上的定距管来保持板间距离,最后 一块折流板用螺母拧在拉杆上紧固。 折流板泄漏校正系数Rl 折流板厚度:为了防振、并能承受拆换管子时的扭拉作用,折流板须有一定厚度。 旁路挡板的安装:旁路挡板厚度一般与折流板厚度相同,可将它嵌入折流板槽内,并点焊在每块折流板上。 第三个字母代表后端结构型式 管壳式换热器主要组合部件有前端管箱、壳体和后端结构(包括管束)三部分,三部分的不同组合,就形成结构不同的换热器。 当设备上无安装折流板的要求(如冷凝换热)时,应该安装一定数量的支持板,用来支撑换热管,防止它产生过大挠度。 解决方法:在外壳上装设膨胀节,减小但不能完全消除温差热应力,且在多程换热器中,这种方法不能照顾到管子的相对移动。 管壳式换热器的热补偿问题 具有膨胀节的固定管板式换热器 公称直径(mm),对釜式重沸器用分数表示, 14因子来校正,则不论加热或冷却,均可取(mf/mw)0. 此修正项的计算,往往由于壁温未知而要用试算法; 显然,长管不便于拆换和清洗,增加程数则使构造复杂,并在无相变的换热器中引起平均温差的降低。 (3)当管束与壳体的温差太大而产生不同的热膨胀时,常会使管子与管板的接口脱开,从而发生流体的泄漏。 (1)传热面一定时,增加管长可使换热器直径减小,从而使换热器的成本有所降低。 (8) 折流板外缘与壳体内壁之间的泄漏面积Asb 管长应选用标准值:GBl51-1999推荐换热管长度为:l000、1500、2000、2500、3000、4500、6000、7500、9000、12000 mm等
管壳式换热器
填料函式
U型管式
管内不便清洗; 管板上布管少,结构不紧凑, 管外介质易短路,影响传热效果; 内层管子损坏后不易更换。
根据我们前面学习的内容,请说说序号2、3、8、12、 21各代表什么零件?
换热器构件名称
1-管箱(A,B,C,D型);2-接管法兰;3-设备法兰;4-管板;5-壳程接管;6-拉杆;7-膨 胀节;8-壳体;9-换热管;10-排气管;11-吊耳;12-封头;13-顶丝;14-双头螺 柱;15-螺母;16-垫片;17-防冲板;18-折流板或支承板;19-定距管;20-拉杆螺 母;21-支座;22-排液管;23-管箱壳体;24-管程接管;25-分程隔板;26-管箱盖
1)、结构特点:两块管板均与壳体相焊接,并加入了热补偿
原件——膨胀节。
2 )、优点:结构简单、紧凑、能承受较高的压力,造价低, 管程清洗方便,管子损坏时易于堵管或更换。 3)、缺点:不易清洗壳程,壳体和管束中可能产生较大的热 应力。冷热流体温差不能太大(<50℃)
4)、适用场合:适用于壳程介质清洁,不易结垢,管程需清
37
2).拉脱力的计算
计算的目的:保证胀接接头的牢固连接和良好的密封性。 拉脱力定义:管子每平方米胀接周边上所受的力,单位为 帕。 引起拉脱力的因素为:操作压力和温差力。 (1)操作压力引起的拉脱力qp: 介质压力作用的面积 f 如图示
38
介质压力p,取管程压力和壳程压力两者中的较大者。
管子外径为d0 ;管子胀接长度为l。 则拉脱力为: q p
和大型换热器的主要结构型式。
二、管壳式换热器的种类及其结构
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包 起来,形成两个独立的空间:管内通道及与其相贯通的管箱,称为 管程空间;换热管外的通道及与其贯通的部分,称为壳程空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
噪音
产生强烈的噪音 (通常大于150 分贝)
流体弹性激振的条件
(1)壳程流体的流 速达到或超过临界流 速
(2)有其它的激 振机理存在
流体弹性 激振的特点
自激性
湍流颤振主频率与换热管自振频率 相等时会引起换热管共振
关于声振动 应注意的几点
(3)声振动在顺排管中 比在错排管中更容易发 生,在转角正方形排列
折流板的安装
折流杆
3、 壳 程 流 路
F
4、防短路结构
DN≤500mm时,设一对旁路挡板。 DN=500mm~1000时,设两对旁路挡板。
DN≥1000mm时,设三对旁路挡板。
管
每隔3~4排换热管设置一根挡管, 折流板缺口处不设挡管。
DN≤500mm时,设一块挡板。 DN=500mm~1000时,设两块挡板。 DN≥1000mm时,设不少于三块挡板。
中间挡板一般与折流板点焊固定, 其数量不宜多于4块。
壳程分程
对分流
双分流
6.2.3管板设计
GB151 《管壳式换热器》
(1)管束对管 板的约束作用
(2)管孔对管板 的削弱作用
(3)管板周边不布管区 对管板应力的影响
1、影响管板强度 计算的因素
(4)管板边缘的支承 形式和连接结构
(5)法兰力距对 管板应力的影响
换热器的工艺设计计算依据设计任务的不同可分为设计计算 和校核计算两种,包括计算换热面积和选型两个方面。
管壳式换热器 工艺设计计算步骤
图6-30
§6-3 传热强化技术
传热方程式
Q=KA△tm
强化传热的途径
1、增大传热面积
新型换热器 小直径管 翅片结构
2、加大平均温差
逆流换热
3、提高传热系数
主动强化 (有源强化)
壳程结构
1、防冲挡板和导流筒
2、折流板
折流板的布置原则
1、折流板一般应等距布置,尽量靠近壳程进出 口接管。
2、折流板最小间距应不小于壳体内直径的1/5, 且不小于50mm,最大间距应不大于壳体内直径。 3、折流板管孔与换热管间隙、折流板与壳体内 壁间隙不能太大或太小。
4、弓形折流板缺口弦高一般取(0.20~0.45)Di, 通常取0.25Di。 5、支持板形状与尺寸 按折流板设计。
(2)防止管子与管板连接处被拉脱。
膨胀节的计算
判断是否需要设置膨胀节 膨胀节的尺寸设计 膨胀节的应力计算和强度校核
GB16749《压力容器波形膨胀节》
6.2.5管束的振动和防振
横向流诱振
纵向流诱振
振动产生的不利后果
机械 失效
管子与管板连 接处发生泄漏
管子发生严重弯曲;交变应力导致管子发 生疲劳破坏;换热管的摩擦和碰撞;管子 通过折流板处的自锯作用;壳程流体压力 将增大;
的管束中最容易发生。
(1)由于声振强度随壳 程流体流速的增大而增 大,但达到共振点以后, 会随壳程流体流速的增 大而减小,所以声振强
度不会无限制地增大。
(2)壳程流体的物理性 质决定声速,壳程流体 为液体时,由于声音在 液体中传播速度很高, 很少会发生声振动。
节径比≤1.5
横流速度较低时
卡曼涡街 声振动
防振措施
(4)抑制周期性旋涡。
(5)设置防冲板或导流筒。
6.2.6 设计方法和工艺计算
换热器设计的主要任务是参数选择和结构设计、传热计算 及压降计算等。
设计主要包括壳体型式、管程数、换热管类型、管长、管 子排列、管子支承结构(如折流板结构等)、冷热流体的流动 通道、工艺设计和封头、壳体、管板等零部件的结构、强度设 计计算。
6.3.2 余热锅炉的基本特点
与锅炉基本相似,通常由省热器、蒸发器和过热器等 部件组成。无燃烧装置。 1. 结构形式多种多样 2. 热源广,介质多种多样, 3. 有些主体设备与辅助设备分散安装在工艺流程的不同 位置。 4. 操作不稳定受到余热源热负荷波动的影响。 5. 有些水侧、气侧均处于高温、高压条件下。
壳程分程
补充1:余热锅炉
余热锅炉的作用
什么是锅炉?
余热锅炉——余热锅炉是利用工业生产中的余热来生产蒸 汽的一种换热设备。
广泛应用于化工、石油、冶金等工业部门。
作用: 1. 满足工艺生产的需要 2. 提高热能总利用率,节约一次能源消耗 3. 消除环境污染,减少公害
燃油锅炉 燃气锅炉
燃煤锅炉
6.3 余热锅炉
这种方法适用于各种薄管板的强度校核及 厚度计算。
(3)把管板视为在广义弹性基础上承受均布 载荷作用的多孔圆平板,即把实际的管板简化 为受到规则排列的管孔削弱、同时又被管子加 强的等效弹性基础上的均质等效圆平板。根据 载荷大小、管束刚度和周边支承情况来确定管 板的弯曲应力。
目前我国换热器计算采用第三种方法。
3、 管 板 受 力 分 析
管板危险截面
环形不 布管区
外缘
环形不 布管区
内缘
圆形布管区 最大径向弯 矩处
险工况组合
PS≠0,Pt=0,△t=0 σmax≤1.5[σ]t
PS≠0,Pt=0,△t ≠ 0 Smax≤3Sm
Pt ≠0, PS =0,△t=0 σmax≤1.5[σ]t
Pt ≠0, PS =0,△t ≠ 0 Smax≤3Sm
横流速度较高时
流体弹性激振
横流速度很高时
射流转换
2. 管子固有频率 3. 防振措施 (1)改变流速(流量↓,管间距↑)。
(2)改变管子固有频率。
① 减小跨距。
②管子间插入杆状物或板条。
③增大管子的强度和刚度(如增大壁厚)。
④增大管子支承的强度和刚度(如增大折流板的厚 度、采用折流杆等)。
(3)增设消声板。
被动强化 (无源强化)
扩展表面
选用导热系 数大的材料
管程分程
防止结垢并 及时除垢
传热强化举例
螺旋 槽管
槽管
螺旋翅 片管
翅片结构不适用于: 高表面张力的液体冷凝 含有大量固体颗粒的流体 易结垢的流体
其它形状换热管
壳程强化传热
改变管子外形或 在管子外加翅片
采用折流杆代替 折流板
采用新型折 流板结构
4、管板应力的调整
增加管板厚度
降低壳体轴向刚度 5、薄管板设计
查表6-4确定或按JB/T6917《制冷装置 用压力容器》
6.2.4膨胀节设计
设置膨胀节的作用:
(1)膨胀节是挠性构件,其轴向柔度大, 在不大的轴向力作用下,可产生较大的 轴向变形,可以有效地减小壳体和换热 管由于温差产生的热应力及换热管与壳 体上的轴向应力。
2、管板强度计算的基本假设
(1)把管板当作周边支承、承受均布载荷 作用的实心圆平板,应用平板理论得到圆平 板最大弯曲应力,加入修正系数考虑管孔的 削弱作用。
这种设计方法对管板作了很大程度的简化, 是一种半径验公式,美国TEMA标准。
(2)把管板当作承受管束支承的固定圆平 板,管板厚度取决于无管子支承区域的管 板面积。