2019版一轮创新思维文数(人教版A版)练习:第五章 第一节 数列的概念与简单表示法 Word版含解析
2019年人教版A版高三数学(理)高考一轮复习5.1 数列的概念与简单表示法教学设计及答案

第一节列的概念与简单表示法列的概念及表示方法(1)了解列的概念和几种简单的表示方法(列表、图象、通项公式).(2)了解列是自变量为正整的一类函.知识点一列的概念1.列的定义按照一定顺序排列的一列称为列,列中的每一个叫作这个列的项.排在第一位的称为这个列的第1项(通常也叫作首项).2.列的分类易误提醒1.由前n 项写通项、列的通项并不唯一.2.易混项与项两个不同的概念,列的项是指列中某一确定的,而项是指列的项对应的位置序号.[自测练习]1.列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +)B .a n =(-1)n -12n +1n 3+3n(n ∈N +) C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n(n ∈N +)解析:观察列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知列的通项公式为a n =n 2-8n +15,则3( ) A .不是列{a n }中的项 B .只是列{a n }中的第2项 C .只是列{a n }中的第6项 D .是列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是列{a n }中的第2项或第6项.答案:D知识点二 列与函关系及递推公式 1.列与函的关系从函观点看,列可以看作定义域为正整集N +(或它的有限子集)的函,当自变量从小到大依次取值时,该函对应的一列函值就是这个列.2.列的递推公式如果已知列{a n }的首项(或前几项),且任一项a n 与它的前一项a n-1(n ≥2)(或前几项)间的关系可用一个公式表示,那么这个公式叫列的递推公式.必记结论 a n 与S n 的关系若列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( )A .30B .31C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知列{a n }的前n 项和S n =2n -3,则列{a n }的通项公式是________.解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:an =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由列的前几项求列的通项公式|1.下列公式可作为列{a n }:1,2,1,2,1,2,…的通项公式的是( )A .a n =1B .a n =-n+12 C .a n =2-⎪⎪⎪⎪⎪⎪sin n π2D .a n =-n -1+32解析:由a n =2-⎪⎪⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,….答案:C2.根据列的前几项,写出各列的一个通项公式: (1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…;(3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实); (4)9,99,999,9 999,….解:(1)各都是偶,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个列的前4项的绝对值都等于序号与序号加1的积的倒,且奇项为负,偶项为正,所以它的一个通项公式a n =(-1)n ×1n n +.(3)这是一个摆动列,奇项是a ,偶项是b ,所以此列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇,b ,n 为偶.(4)这个列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求列的通项公式的两个技巧(1)根据列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转为一些常见列的通项公式求.(2)对于正负符号变,可用(-1)n 或(-1)n +1调整.考点二 由a n 与S n 的关系求通项a n |已知下面列{an }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式.当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段写.已知各项均为正的列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2, 由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差列,故{a n }的通项公式为a n =3n -1.考点三 由递推关系式求列的通项公式|递推公式和通项公式是列的两种表示方法,它们都可以确定列中的任意一项,只是由递推公式确定列中的项时,不如通项公式直接.归纳起常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .4.形如a n +1=Aa nBa n +C(A ,B ,C 为常),求a n .探究一 形如a n +1=a n f (n ),求a n . 1.在列{a n }中,a 1=1,a n =n -1na n -1(n ≥2). 解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n.探究二 形如a n +1-a n =f (n ),求a n . 2.在列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以an =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n n +2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以列{a n +1}为等比列,公比q =3.又a 1+1=2,所以a n +1=2·3n-1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常),求a n .4.已知列{a n }中,a 1=1,a n +1=2a na n +2,求列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差列.∴1a n=1a1+(n-1)×12=n2+12,∴a n=2n+1(n∈N*).已知列的递推关系,求列的通项时,通常利用累加法、累乘法、构造法求解.1.形如a n=a n-1+f(n)(n≥2,n∈N*)时,用累加法求解.2.形如a na n-1=f(n)(a n-1≠0,n≥2,n∈N*)时,用累乘法求解.3.形如a n=a n-1+m(n≥2,n∈N*)时,构造等差列求解;形如a n =xa n-1+y(n≥2,n∈N*)时,构造等比列求解.16.函思想在列中的应用【典例】已知列{a n}.(1)若a n=n2-5n+4.①列中有多少项是负?②n为何值时,a n有最小值?并求出最小值.(2)若a n=n2+kn+4且对于n∈N*,都有a n+1>a n成立.求实k的取值范围.[思路点拨] (1)求使a n<0的n值;从二次函看a n的最小值.(2)列是一类特殊函,通项公式可以看作相应的解析式f(n)=n2+kn+4.f(n)在N*上单调递增,但自变量不连续.从二次函的对称轴研究单调性.[解] (1)①由n2-5n+4<0,解得1<n<4.∵n ∈N *,∴n =2,3.∴列中有两项是负,即为a 2,a 3.②∵a n =n 2-5n +4=⎝⎛⎭⎪⎫n -522-94,∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该列是一个递增列,又因为通项公式a n =n 2+kn +4,所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的列通项公式可以看作是一个定义在正整集上的二次函,因此可以利用二次函的对称轴研究其单调性,得到实k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了列作为函的特殊性,即自变量是正整.3.在利用二次函的观点解决该题时,一定要注意二次函对称轴位置的选取.[跟踪练习] 已知列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明由.解:法一:∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =⎝ ⎛⎭⎪⎫1011n ×9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ;当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该列中有最大项,为第9、10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎪⎨⎪⎧n ×⎝ ⎛⎭⎪⎫1011n -1n +⎝ ⎛⎭⎪⎫1011n ,n +⎝ ⎛⎭⎪⎫1011n n +⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该列中有最大项,为第9、10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.A 组 考点能力演练1.已知列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.32解析:本题由列递推关系式,推得列{a n }是周期变的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:列{a n }是周期变的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +n 为奇,2a nn 为偶,则a 5等于( )A .12B .14C .20D .22解析:本题考查列的基本性质.代入得a 4=a 3+2=10,a 5=2a 4=20.答案:C4.在列{a n }中,有a n +a n +1+a n +2(n ∈N *)为定值,且a 7=2,a 9=3,a 98=4,则此列{a n }的前100项的和S 100=( )A .200B .300C .298D .299解析:由题意,知a n +a n +1+a n +2=a n +1+a n +2+a n +3,则a n =a n +3,所以列{a n }是周期为3的周期列,则a 1=a 4=a 7=…=a 97=a 100=2,a 2=a 5=…=a 98=4,a 3=a 6=a 9=…=a 99=3,所以列的前100项和为(a 1+a 2+a 3)×33+a 100=299,故选D.答案:D5.已知在列{a n }中,a 1=2,a 2=7,若a n +2等于a n a n +1(n ∈N *)的个位,则a 2 016的值为( )A .8B .6C .4D .2解析:因为a 1a 2=2×7=14,所以a 3=4;因为a 2a 3=7×4=28,所以a 4=8;因为a 3a 4=4×8=32,所以a 5=2;因为a 4a 5=8×2=16,所以a 6=6;因为a 5a 6=2×6=12,所以a 7=2;因为a 6a 7=6×2=12,所以a 8=2;依次计算得a 9=4,a 10=8,a 11=2,a 12=6,所以从第3项起,列{a n }成周期列,周期为6,因为2 016=2+335×6+4,所以a 2 016=6.答案:B6.已知在列{a n }中,a 1=1,a 2=0,若对任意的正整n ,m (n >m ),有a 2n -a 2m =a n -m a n +m ,则a 2 015=________.解析:令n =2,m =1,则a 22-a 21=a 1a 3,得a 3=-1;令n =3,m =2,则a 23-a 22=a 1a 5,得a 5=1;令n =5,m =2,则a 25-a 22=a 3a 7,得a 7=-1,所以猜想当n 为奇时,{a n }为1,-1,1,-1,…,所以a 2015=-1. 答案:-17.若列{(n -a )2}是递增列,则实a 的取值范围是________. 解析:由题意得,对任意的n ∈N *.(n +1-a )2>(n -a )2恒成立,即2a <2n +1恒成立,所以2a <(2n +1)min =3,则a <32.答案:⎝⎛⎭⎪⎫-∞,328.(2016·蚌埠检查)已知列{a n }满足:a 1为正整,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶,3a n +1, a n 为奇,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知列{a n }的通项公式为a n =-n +p ,列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在列{c n }中,c 8>c n (n ∈N *,n ≠8),求实p 的取值范围.解:由题意得,c 8是列{c n }中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知列{a n }中,a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0),又∵a=-7,∴a n =1+12n -9.结合函f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2.∵对任意的n ∈N *,都有a n ≤a 6成立, 结合函f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n=32,而S 1=a 1=1,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B. 答案:B2.(2011·高考四川卷)列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该列从第2项开始是以4为公比的等比列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1n =,3×4n -2n,∴当n =6时,a 6=3×46-2=3×44. 答案:A3.(2014·高考新课标全国卷Ⅱ)列{a n }满足a n +1=11-a n,a 8=2,则a 1=________.解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,…,∴{a n }是以3为周期的列,∴a 1=a 7=12.答案:124.(2012·高考上海卷)已知f (x )=11+x .各项均为正的列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n ,a 1=1,∴a 3=12,a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012,即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0,∴a 2 010=5-12⎝ ⎛⎭⎪⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12,∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326.答案:135+3265.(2015·高考江苏卷)设列{a n }满足a 1=1,且a n +1-a n =n +1(n∈N *),则列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n=n n +2,则1a n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1,故列⎩⎨⎧⎭⎬⎫1a n 前10项的和 S 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2⎝⎛⎭⎪⎫1-111=2011.答案:2011。
新高考一轮复习人教A版第5章第1节数列的概念课件(69张)

D.1+n+ln n
解析:因为an+1-an=ln
n+1 n
=ln (n+1)-ln n,
所以a2-a1=ln 2-ln 1,
a3-a2=ln 3-ln 2,
a4-a3=ln 4-ln 3,
……
an-an-1=ln n-ln (n-1)(n≥2),
把以上各式分别相加得an-a1=ln n-ln 1,
3.数列的分类 分类标准 项数
项与项间 的大小关系
类型 有穷数列 无穷数列 递增数列 递减数列
常数列
an+1_>_an an+1_<_an an+1=an
满足条件 项数有__限__ 项数无__限__
其中n∈N*
4.数列的表示法 数列有三种表示法,它们分别是列__表__法__、图象法和解__析__法__.
3 2
,1,
7 10
,
9 17
,则这个数列的一个通项公式是an=
________. 解析:数列{an}的前4项可变形为21×21++11 ,22×22++11 ,23×23++11 ,24×24++11 ,故an=
2n+1 n2+1
.
答案:2nn2++11
4.数列{an}的项为-1,32 ,-13 ,34 ,-15 ,36 ,…,则{an}的一个通项公式是 ____________.
故a1+2a2+3a3+…+(n-1)an-1=2n-1(n≥2),② 由①-②,得nan=2n-2n-1=2n-1, 所以an=2nn-1 (n≥2).
显然当n=1时不满足上式,
2,n=1, 所以an=2nn-1,n≥2.
(3)根据2Sn=3an-3,可得2Sn+1=3an+1-3,两式相减得2an+1=3an+1-3an,即an+1
[推荐学习]2019版一轮创新思维文数(人教版A版)练习:第五章 第三节 等比数列及其前n项和 Wo
![[推荐学习]2019版一轮创新思维文数(人教版A版)练习:第五章 第三节 等比数列及其前n项和 Wo](https://img.taocdn.com/s3/m/dc490e447e21af45b307a83f.png)
课时规范练 A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B. 答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19D .-19解析:由题知公比q ≠1,则S 3=a 1(1-q 3)1-q =a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q 5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±2解析:因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,a 1=a 3q 2=1,故选A.答案:A5.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n解析:因为a 1=1,公比q =23,所以a n =⎝⎛⎭⎫23n -1,S n =a 1(1-q n)1-q=3⎣⎡⎦⎤1-⎝⎛⎭⎫23n =3-2⎝⎛⎭⎫23n -1=3-2a n ,故选D. 答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 1(1-25)1-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1,∴a n =3n -1+12.答案:3n -1+129.已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.证明:(1)由a n +1=3a n +1得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn }为等比数列;(2)求数列{a n }的前n 项和S n .解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn ,∴{a n n }是以12为首项、12为公比的等比数列. (2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n2n +1=1-n +22n +1,∴S n =2-n +22n .B 组 能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时, a 1=a 2=a 3=9, ∴S 3=3×9=27.当q ≠1时,S 3=a 1-a 3q1-q ,∴27=a 1-9q 1-q ,∴a 1=27-18q , ∴a 3=a 1q 2, ∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( ) A .1 B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2. 答案:D3.已知正项等比数列{a n }满足:a 3=a 2+2a 1,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B.53 C.256D .不存在解析:∵正项等比数列{a n }满足:a 3=a 2+2a 1, ∴a 1q 2=a 1q +2a 1,即q 2=q +2,解得q =-1(舍)或q =2, ∵存在两项a m ,a n ,使得a m a n =4a 1, ∴a m a n =16a 21,∴(a 1·2m -1)·(a 1·2n -1)=16a 21,∴a 21·2m +n -2=16a 21,∴m +n =6, ∴1m +4n=⎝⎛⎭⎫1m +4n ⎣⎡⎦⎤16(m +n ) =16⎝⎛⎭⎫5+n m +4m n ≥16⎝⎛⎭⎫5+2n m ·4m n =32(当且仅当n =2m 时取等号), ∴1m +4n 的最小值是32. 答案:A4.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4(14×q 3-1),∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=________.解析:由已知S n +a 1=2a n ,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1. 又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1), 解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列, 故a n =2n ,则a 1+a 5=2+25=34. 答案:347.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n .解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列,∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1)=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 8.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式;(2)设b n =a n4n -a n ,若数列{b n }的前n 项和是T n ,求证:T n <2.解析:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝⎛⎭⎫12n -1=22-n ,a n=n ·22-n=4n 2n . (2)证明:b n =a n 4n -a n =4n2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1, 所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝⎛⎭⎫1-12n <2.。
近年届高考数学一轮复习第五章数列课堂达标26数列的概念与简单表示法文新人教版(2021年整理)

2019届高考数学一轮复习第五章数列课堂达标26 数列的概念与简单表示法文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第五章数列课堂达标26 数列的概念与简单表示法文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第五章数列课堂达标26 数列的概念与简单表示法文新人教版的全部内容。
课堂达标(二十六)数列的概念与简单表示法[A基础巩固练]1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )A.错误!B.cos错误!C.cos错误!π D.cos错误!π[解析]令n=1,2,3,…,逐一验证四个选项,易得D正确.[答案]D2.数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为( )A.5 B。
错误!C.错误!D。
错误![解析]∵a n+a n+1=错误!,a2=2,∴a n=错误!∴S21=11×错误!+10×2=错误!.[答案]B3.(2018·福建福州八中质检)已知数列{a n}满足a1=1,a n+1=a错误!-2a n+1(n∈N*),则a2 017等于( )A.1 B.0C.2 017 D.-2 017[解析]∵a1=1,∴a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知数列{an}是以2为周期的数列,∴a2 017=a1=1.[答案]A4.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的()A.必要不充分条件B.充分不必要条件C.必要条件D.既不充分也不必要条件[解析]当a n+1〉|a n|(n=1,2,…)时,∵|a n|≥a n,∴a n+1>a n,∴{a n}为递增数列.当{a n}为递增数列时,若该数列为-2,0,1,则a2>|a1|不成立,即知:a n+1>|a n|(n=1,2,…)不一定成立.故综上知,“a n+1〉|a n|(n =1,2,…)”是“{a n}为递增数列"的充分不必要条件.[答案]B5.设曲线f(x)=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,则x1·x2·x3·x4…x2 017等于()A。
2020年一轮创新思维文数(人教版A版)练习:第五章第一节数列的概念与简单表示法Word版含解析.d

课时规范练A 组基础对点练1设数列{a n }的前n 项和S n = n 2 + n ,贝V a 4的值为( )A . 4B . 6C . 8D . 10解析: a 4= S 4 — S 3= 20— 12 =8. 答案: C2.已知数列{a n }的前n 项和为S n , a 1= 1 , 5= 2a n + 1,则S n =()B.P 1 c ®1n — 1A . 2 1D?n -1解析:由已知 Sn = 2an + 1 得S=2(Sn +1 — 5),即 2S n + 1 = 3Sn ,Sn 1 2,而 S 1= a 1= 1,所以 S n S n=3 n — 1,故选 B.答案:B3.已知数列{a n }的前n 项和为S n ,若S n = 2a n — 4, n € N ,n +1nA . 2B . 2n —1n —2C . 2D . 2则 a n =( )解析:• a n +1 = S n +1 — S n = 2a n +1 — 4 — (2a n — 4),…a n +1 = 2a n , - a 1 = 2a 〔 一 4,• • a 〔 = 4,・•数列{ a n }是以4为首项,2为公比的等比数列,• a n = 4 2n 1= 2^1,故选A. 答案:A4.在数列{a n }中,a 1 = 1, a n a n -1= a n -1 + (— 1)n(n >2,祇N *),则譽的值是()A 15 A.花c 15 B.?3c・解析:由已知得 a 2= 1 + (—1)2= 2,• 2a 3= 2+ (—1)3,a 3 = 2 二 |a 4=; + (— 1)4, a 4 = 3,・3a 5 = 3 +(— 1)5,二 a 5= 3,• a 3= l x 3= 3 'a 5 2 2 4.答案:C5. (2018唐山模拟)设数列{a n }的前n 项和为S n ,若 a 4= 32,则 a 1 =解析: • S n = 1, a 4 = 32,.255a i 63a i 1…—32,…a i ——33 12'1答案:16.已知数列{a n }的前n 项和S n —2n ,则a 3+ a 4 —解析:当 n 》2 时,a n — 2n -2n -1 — 2n -1,所以 a 3 + a 4— 22+ 23— 12. 答案: 12n + 27.已知数列{a n }中,a i — 1,前n 项和S n — ^~an .3 (1)求 a 2, a 3;⑵求{a n }的通项公式.4解析:(1)由?2— ?a 2 得 3(a 1 + a 2)— 4a 2,解得 a 2— 3a 1 — 3.5由 S 3 — §a 3 得 3(a 1+ a 2+ a 3)— 5a 3, 3解得 a 3 — 2(a 1+ a 2)— 6.于是a 1 — 1, a 2 —討,a 3—务2,…,_ n _ n + 1 %-1—n —2处-2,a n —7亦-1.将以上n 个等式两端分别相乘, 整理得a n —呼1.显然,当n — 1时也满足上式.综上可知,{a n }的通项公式a n — 峯严.&已知数列{a n }的通项公式是a n — n 2+ kn + 4. (1)若k —- 5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;⑵对于n € N *,都有a n +1>a n ,求实数k 的取值范围. 解析:(1)由 n 2- 5n + 4<0,解得 1<n<4. 因为n € N *,所以n — 2,3, 所以数列中有两项是负数,即为a 2, a 3.(2)由题设知 a 1— 1.当n 》2时, 有 a n — S n — S n -1—专a n -宁a n -1,整理得a n —n +1 荷a n_1.因为 a n = n 2— 5n + 4 = n — 2 2 — 4,由二次函数性质,得当 n = 2或n = 3时,a n 有最小值,其最小值为 a 2 = a 3=— 2. ⑵由对于n € N *,都有a n + i >a n 知该数列是一个递增数列,又因为通项公式 a *= n 2+ kn + 4,可以看作是关于 n 的二次函数,考虑到 n € N *,所以—号<|,即得k> — 3. 所以实数k 的取值范围为(一3 ,+^).B 组能力提升练1.已知数列{a n }满足 a i = 15,且 3a n +1 = 3a *— 2•若 a k a k +1<0,则正整数 k =( )A . 21B . 22C . 23D . 242 47 2解析:由 3a n +1= 3a n — 2 得 a *+1 = a n — 3,则{a n }是等差数列,又 a 1= 15,二 a n = — — §na k+1<0,「.47— |k •45 — |k <0,••• 45<k<47,••• k = 23.故选 C.答案:Ca n — 1 a n a n a n +1 〒 =h (n > 2),则这个数列的第10项等1 A .210 1 C .1答案:C故选B.答案:B4. (2018临沂联考)观察下列各图,并阅读图形下面的文字,贝U10条直线相交,交点的个数2.如果数列{a n }满足a 1 = 2 , a ?= 1,且 a n + 11 B .29解析:T 二色=an — an +11—』a n—1a n + 1a n—1a n +1並—1,即直+-a ^=2 ,.••」,12a n—1a n + 1 + a n—1a n +1a n,故」'■an 」是等差数列.又•••d = 1 —丄 1a 2 a 1 2'11 1 1a1=1+9x2=5,故a 10=i3.设数列{a n }的前n 项和为S n ,且 a 1= 1, { S n + na n }为常数列,则 a n =()1 A ・3n—C _C . n + 1 n + 25 — 2n D . 丁解析:由题意知,S n + na n = 2,当n 》2时,S n -1+ (n — 1)a n -1 =2 , --(n + 1)a n = (n—1)an -1 ,a 2 a 3 a 4从而_ • •a 1 a 2 a 3 a n = 12 a n -1= 34,则 a n =n + 12 2nn + 1 '当n = 1时上式成立'所以a n = nn + 1,最多是( )6. ________________________________________________________________ 已知数列{a n }中,a 1= 1,若a n = 2a .-1 + 1(n 》2),则的值是 ______________________________________解析:T a n = 2a n —1 + 1,— a n + 1 = 2(a n -1+ 1),A . 40B . 45C . 50D . 55解析:设n 条直线的交点个数为 a n (n 》2),则 「a 3— a 2= 2,a — a = 3, a io — a g = 9.累加得 a io — *2= 2+ 3 + …+ 9,a 10 = 1 + 2 + 3 + …+ 9 = 45.答案:B5. 现定义 a n = 5n + 5 n ,其中 n € 秸,5, *, 1:贝U a n 取最小值时,n 的值为 _______________1解析:令5n = t>0,考虑函数y =t +1,易知其在(0,1]上单调递减,在(1,+^)上单调递增, 且当t = 1时,y 的值最小,再考虑函数 t = 5x ,当0<x W 1时,t € (1,5],则可知a = 5n + 1 n在(0,1]上单调递增,所以当n =1时,a n 取得最小值.答案:丄10a n + 1a n -1+1=2,又a 1= 1,.・. {a n + 1}是以2为首项, 2为公比的等比数列,即a n + 1 = 2X 2n2条直线相交 3条出线相交 4锵直线相交 绘多有1亍套点 域彩冇亨个交点 厳當有方个交点由a n + 2 — a n = 4知,数列{ a 2n }和{a 2n —l }都是公差为4的等差数列,二a 2n = 3+ 4( n — 1) == 2(2 n) —1, a 2n -1= 1 + 4(n — 1) = 2(2n — 1) — 1, — a n = 2n — 1.&已知数列{a n }中,a 1 = 3, a 2 = 5,其前 n 项和 0 满足 S n + S n ~2= 2S n -1+ 2 1(n 》3).(1)求数列{ a n }的通项公式;求最大值.解析:(1)由题意知 S n — S n -1= Sn -1 — Si -2+ 2“ 1(n > 3),即 a n = a “-1 + 2n 1 (n >3),二 a n = (a n —a n -1) + …+ (a 3 — a 2) + a 2= 2+ 2+ …+ 2 + 5= 2+ 2+ …+ 2 + 2 + 1 + 2= 2 +1(n > 3),经检验,知n = 1,2时,结论也成立,故a n = 2n + 1.25628- 2n*(2)b n = log 2 = log^2n = log 22= 8 — 2n ,n € N ,a 2n — I 2当 1< n w 3 时,b n = 8 — 2n>0;当 n = 4 时,b n = 8 — 2n = 0; 当 n 》5 时,b n = 8— 2n<0.故n = 3或n = 4时,5有最大值,且最大值为 &= S 4 = 12.1= 2n ,「. a 5 +1 = 25,即卩 a 5= 31.答案:317. 已知数列{a n }的前 n 项和为 S n , a 1= 1, a n * 0, a *a n +1 = 4S n —1(n € N ). (1)证明:a n + 2—an =4;⑵求{a n }的通项公式.解析:(1)证明:T a n a n +1 = 4S n — 1,--an + 1a n + 2 = 4Sn +1—1…an + 1 (a n +2—an ) = 4a n +1,又 an *,…an + 2—an =4・(2)由 a n a n +1= 4Sn — 1, a 1= 1,求得 a ?= 3,⑵若b n = log2562a 2n — 1,n € N *,设数列{b n }的前n 项和为S,当n 为何值时, S n 有最大值?并。
高三数学一轮复习讲义 数列的概念与简单表示法教案 新人教A版

数列的概念与简单表示法自主梳理1.数列的定义按照________________着的一列数叫数列,数列中的______________都叫这个数列的项;在函数意义下,数列是________________________的函数,数列的一般形式为:______________________,简记为{a n },其中a n 是数列的第____项.1.一定顺序排列 每一个数 定义域为N *(或它的子集)a 1,a 2,a 3,…,a n ,… n 2.通项公式:如果数列{a n }的______与____之间的关系可以____________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.2.第n 项 n 用一个公式3.数列有三种表示法:它们分别是_________、________、________. .解析法(通项公式或递推公式) 列表法 图象法 4.数列的分类:数列按项数来分,分为____________、__________;按项的增减规律分为________、________、__________和__________. 递增数列⇔a n +1______a n ;递减数列⇔a n +1______a n ;常数列⇔a n +1______a n . 按其他标准分类 有界数列存在正数M ,使|a n |≤M摆动数列 a n 的符号正负相间,如1,-1,1,-1,…4.有穷数列 无穷数列 递增数列 递减数列 摆动数列 常数列 > < = 5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1,,n ≥2.S 1 S n -S n -11.对数列概念的理解(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现.(3)数列的项与项数:数列的项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 2.数列的函数特征数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应的函数解析式,即f (n )=a n (n ∈N *).自我检测1.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大 ( ) A .10 B .11 C .10或11 D .122.已知数列{a n }的通项公式a n =n +156n(n ∈N *),则数列{a n }的最小项是 ( )A.a 12B.a 13 C .a 12或a 13 D.不存在3.在数列{a n }中,a 1=1,a 2=5,a n +2=a n +1-a n (n ∈N *),则a 100等于( )A.1B .-1C.5D.-54.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于 ( ) A .-165 B .-33 C .-30 D .-215.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是( )A .a n =(-1)n ·n 2+n 2n +1 B .a n =(-1)n·n n +32n +1C .a n =(-1)n ·n +12-12n +1D .a n =(-1)n·n n +22n +36.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点; ④数列的通项公式是唯一的.其中说法正确的序号是 ( )A .①②③B .②③④C .①③D .①②③④7.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为__ a n =2n -1 (n ∈N *)________. 8.已知数列2,5,22,…,根据数列的规律,25应该是该数列的第___7_____项.9.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =___.2n -11_______;数列{na n }中数值最小的项是第________项.10.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2 (n ∈N *),则该数列的通项a n =___1n___.题型一 由数列的前几项归纳数列的通项公式探究点一 由数列前几项求数列通项例1 根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…; (3)12,14,-58,1316,-2932,6164,…; (4)32,1,710,917,…; (5)0,1,0,1,…. (6)23,415,635,863,1099,…;解题导引 根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,要使用添项、还原、分割等方法,转化为一些常见数列的通项公式来求;解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5). (2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝ ⎛⎭⎪⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n-32n .(4)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,因此可得它的一个通项公式为a n =2n +1n 2+1.(5)a n =⎩⎪⎨⎪⎧n 为奇数1 n 为偶数或a n =1+-1n2或a n =1+cos n π2.(6)原数列为222-1,2×242-1,2×362-1,2×482-1,2×5102-1,…,∴a n =2n (2n )2-1=2n4n 2-1.探究提高 (1)据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: ①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的各部分特征;④各项符号特征等,并对此应多进行对比分析、从整体到局部多角度观察、归纳、联想.. (2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n +1来调整.变式训练1 写出下列数列的一个通项公式:(1)3,5,9,17,33,…;(2)12,2,92,8,252,…;(3)2,5,22,11,…;(4)3,5,7,9,…;(5)12,34,78,1516,3132,…;(6)-1,32,-13,34,-15,36,…;(7)3,33,333,3 333,….解 (1)∵a 1=3=21+1,a 2=5=22+1,a 3=9=23+1,…,∴a n =2n+1.(2)将数列中各项统一成分母为2的分数,得 12,42,92,162,252,…, 观察知,各项的分子是对应项数的平方,∴数列通项公式是a n =n 22.(3)将数列各项统一成f (n )的形式得 2,5,8,11,…;观察知,数列各项的被开方数逐个增加3,且被开方数加1后,又变为3,6,9,12,…,所以数列的通项公式是a n =3n -1.(4)各项减去1后为正偶数,所以a n =2n +1.(5)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(6)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1, 所以a n =(-1)n·2+-1nn.也可写为a n=⎩⎪⎨⎪⎧-1nn 为正奇数3nn 为正偶数.(7)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n-1).题型二 已知数列的递推公式求通项公式 例2 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +n ;(2)a n +1=a n +3n +2,且a 1=2,(3)a 1=1,2n -1a n =a n -1 (n ≥2).(4)a 1=1,a n =n -1na n -1 (n ≥2);(5)a 1=1,a n +1=3a n +2;解 (1)当n =1,2,3,…,n -1时,可得n -1个等式,a n -a n -1=n -1,a n -1-a n -2=n -2,…,a 2-a 1=1,将其相加,得a n -a 1=1+2+3+…+(n -1).∴a n =a 1+(1+n -1)(n -1)2=2+n (n -1)2.(2)∵a n +1-a n =3n +2,∴a n -a n -1=3n -1 (n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n2.(3)方法一 a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1 =⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫121=⎝ ⎛⎭⎪⎫121+2+…+(n -1)=⎝ ⎛⎭⎪⎫12n (n -1)2, ∴a n =⎝ ⎛⎭⎪⎫12n (n -1)2. 方法二 由2n -1a n =a n -1,得a n =⎝ ⎛⎭⎪⎫12n -1a n -1.∴a n =⎝ ⎛⎭⎪⎫12n -1a n -1=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2a n -2 =⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫121a 1 =⎝ ⎛⎭⎪⎫12(n -1)+(n -2)+…+2+1=⎝ ⎛⎭⎪⎫12n (n -1)2 (4)∵a n =n -1na n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .(5)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.探究提高 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解. 变式训练2 根据下列条件,确定数列{a n }的通项公式.(1) a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n .(2)a 1=1,a n +1=(n +1)a n ;(3) 在数列{a n }中,a 1=1,a n +1=a n2a n +1;(4)在数列{a n }中,a n +1=3a 2n ,a 1=3; (5) 在数列{a n }中,a 1=2,a n +1=4a n -3n +1;(6) 在数列{a n }中,a 1=8,a 2=2,且满足a n +2-4a n +1+3a n =0.(7) 数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n0≤a n<12,2a n-1 12≤a n<1,若a 1=67,则a 2 010的值为__37__.解 (1) ∵a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,∴a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n.∴a n -a n -1=lnnn -1,a n -1-a n -2=ln n -1n -2,……a 2-a 1=ln 21,累加可得,a n -a 1=ln nn -1+ln n -1n -2+…+ln 21=ln n -ln(n -1)+ln(n -1)-ln(n -2)+…+ln 2-ln 1 =ln n .又a 1=2,∴a n =ln n +2.(2)∵a n +1=(n +1)a n ,∴a n +1a n=n +1. ∴a n a n -1=n ,a n -1a n -2=n -1, ……a 3a 2=3, a 2a 1=2, a 1=1.累乘可得,a n =n ×(n -1)×(n -2)×…×3×2×1=n !. 故a n =n !. (3) 将a n +1=a n2a n +1取倒数得: 1a n +1=2+1a n,∴1a n +1-1a n=2,又1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.∴1a n =1+2(n -1),∴a n =12n -1.(4)由已知a n >0,在递推关系式两边取对数. 有lg a n +1=2lg a n +lg 3, 令b n =lg a n ,则b n +1=2b n +lg 3, ∴b n +1+lg 3=2(b n +lg 3), ∴{b n +lg 3}是等比数列, ∴b n +lg 3=2n -1·2lg 3=2nlg 3,∴b n =2nlg 3-lg 3=(2n-1)lg 3=lg a n , ∴a n =32n-1.(5) 由a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),又a 1-1=1,所以数列{a n -n }是首项为1,且公比为4的等比数列, ∴a n -n =(a 1-1)4n -1,∴a n =4n -1+n .(6) 将a n +2-4a n +1+3a n =0变形为a n +2-a n +1=3(a n +1-a n ),则数列{a n +1-a n }是以a 2-a 1=-6为首项,3为公比的等比数列,则a n +1-a n =-6·3n -1,利用累加法可得a n =11-3n.题型三 由a n 与S n 的关系求通项a n例3 (1)已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式. 解 当n =1时,a 1=S 1=2×12-3×1+1=0;当n ≥2时,a n =S n -S n -1=(2n 2-3n +1)-2(n -1)2+3(n -1)-1=4n -5; 又n =1时,a n =4×1-5=-1≠a 1,∴a n =⎩⎪⎨⎪⎧0, n =1,4n -5, n ≥2.(2) 已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求{a n }的通项公式.解 由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项为a n =3n -1.探究提高 (1)已知{a n }的前n 项和S n ,求a n 时应注意以下三点:① a n 与S n 的关系式a n =S n -S n -1的条件是n ≥2,求a n 时切勿漏掉n =1,即a 1=S 1的情况. ②由S n -S n -1=a n 推得的a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. ③由S n -S n -1=a n 推得的a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应 分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1 n =1,S n -S n -1n ≥2.(2)利用S n 与a n 的关系求通项是一个重要内容,应注意S n 与a n 间关系的灵活运用. 变式训练3 (1)已知{a n }的前n 项和S n =3n+b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n . 解 (1)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式.∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b (n =1)2·3n -1(n ≥2). (2)由2S n =a n +1,得S n =⎝ ⎛⎭⎪⎫a n +122,当n =1时,a 1=S 1=⎝ ⎛⎭⎪⎫a 1+122,得a 1=1;当n ≥2时,a n =S n -S n -1 =⎝ ⎛⎭⎪⎫a n +122-⎝ ⎛⎭⎪⎫a n -1+122, 整理,得(a n +a n -1)(a n -a n -1-2)=0, ∵数列{a n }各项为正,∴a n +a n -1>0. ∴a n -a n -1-2=0.∴数列{a n }是首项为1,公差为2的等差数列. ∴a n =a 1+(n -1)×2=2n -1.(3) 设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn+2 (n -1) (n ∈N *). ①求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;②是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.解 ①由a n =S n n+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)·a n -1-4(n -1),即a n -a n -1=4,∴数列{a n }是以a 1=1为首项,4为公差的等差数列. 于是,a n =4n -3,S n =a 1+a n n2=2n 2-n (n ∈N *).②由S n =na n -2n (n -1),得S n n=2n -1 (n ∈N *),∴S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.题型四 用函数的思想方法解决数列问题数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.例4已知数列{a n }. (1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.(1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续. 解 (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.(1)本题给出的数列通项公式可以看做是一个定义在正整数集N *上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决. (2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取.(3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数.(3)已知数列{a n }的通项a n =(n +1)⎝ ⎛⎭⎪⎫1011n (n ∈N *),试问该数列{a n }有没有最大项?若有,求出最大项的项数;若没有,说明理由.解 方法一 令⎩⎪⎨⎪⎧n +1⎝ ⎛⎭⎪⎫1011n ≥n ·⎝ ⎛⎭⎪⎫1011n -1n +1⎝ ⎛⎭⎪⎫1011n ≥n +2·⎝ ⎛⎭⎪⎫1011n +1⇔⎩⎪⎨⎪⎧10n +10≥11n11n +11≥10n +20⇔⎩⎪⎨⎪⎧n ≤10n ≥9,∴n =9或n =10时,a n 最大,即数列{a n }有最大项,此时n =9或n =10. 方法二 ∵a n +1-a n =(n +2)·⎝ ⎛⎭⎪⎫1011n +1-(n +1)·⎝ ⎛⎭⎪⎫1011n=⎝ ⎛⎭⎪⎫1011n ·9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,∴数列{a n }中有最大项,为第9、10项.有关数列的最大项、最小项,数列有界性问题均可借助数列的单调性来解决,判断单调性常用①作差法,②作商法,③图象法.求最大项时也可用a n 满足⎩⎪⎨⎪⎧a n ≥a n +1a n ≥a n -1;若求最小项,则用a n 满足⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1.数列实质就是一种特殊的函数,所以本题就是用函数的思想求最值.方法与技巧1.求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1n =1S n -S n -1 n ≥2.3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有三种常见思路: (1)算出前几项,再归纳、猜想;(2)“a n +1=pa n +q ”这种形式通常转化为a n +1+λ=p (a n +λ),由待定系数法求出λ,再化为等比数列;(3)逐差累加或累乘法.数列的概念与简单表示法一、选择题1.下列说法正确的是( )A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D.数列0,2,4,6,…可记为{2n } 2.数列{a n }中,a 1=a 2=1,a n +2=a n +1+a n 对所有正整数n 都成立,则a 10等于( ) A.34B .55C.89D.1003.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是( )A.a n =2(n 2+n +1) B.a n =3·2nC.a n =3n +1 D .a n =2·3n二、填空题4.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,a 36=__4______.5.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,且1<S k <9 (k ∈N *),则a 1的值为___-1_____,k 的值为__4____.6.已知a 1=2,a n +1-a n =2n +1 (n ∈N *),则a n =_ n 2+1_______. 三、解答题7.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍).∴从第7项起各项都是正数. 一、选择题1.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则a 1·a 2·…·a 2 011的值为 ( )A.-3B.1C.2D .32.数列{a n }满足a n +a n +1=12 (n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A.5B .72C.92D.1323.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A .6116B.259C.2516D.31151.设数列{a n }的前n 项和S n =n 2,则a 8的值为 ( ) A .15 B .16 C .49 D .642.已知数列{a n }的通项公式是a n =2n3n +1,那么这个数列是 ( )A .递增数列B .递减数列C .摆动数列D .常数列 3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于 ( ) A .4 B .2 C .1 D .-24.数列{a n }中,若a n +1=a n2a n +1,a 1=1,则a 6等于 ( )A .13 B.113 C .11 D.1115.数列{a n }满足a n +a n +1=12 (n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为 ( )A .5B .72 C.92 D.132二、填空题4.已知数列{a n }中,a 1=12,a n +1=1-1a n (n ≥2),则a 16=__12______.5.数列53,108,17a +b ,a -b 24,…中,有序数对(a ,b )是______⎝ ⎛⎭⎪⎫412,-112________.6.若数列⎩⎨⎧⎭⎬⎫n n +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =__4______.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________⎩⎪⎨⎪⎧2 (n =1)2n -1 (n ≥2,n ∈N *)________. 8.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是__n 2-n +62__________.三、解答题7.已知数列{a n }中,a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 7.解 (1)∵a n =1+1a +2n -1 (n ∈N *,a ∈R ,且a ≠0),∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性.可知1>a 1>a 2>a 3>a 4; a 5>a 6>a 7>…>a n >1 (n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2n -1=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,并结合函数f (x )=1+12x -2-a 2的单调性,∴5<2-a 2<6,∴-10<a <-8.9.写出下列各数列的一个通项公式.(1)112,223,334,445,…; (2)-1,32,-13,34,-15,36.9.解 (1)∵a 1=1+12,a 2=2+23,a 3=3+34,…,∴a n =n +n n +1(n ∈N *).(2)∵a 1=-2-11,a 2=2+12,a 3=-2-13, a 4=2+14,…,∴a n =(-1)n ·2+(-1)nn(n ∈N *)10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2); (2)a 1=1,a n a n -1=n -1n(n ≥2);(3)a 1=1,a n =2a n -1+1 (n ≥2).10.解 (1)由题意得,a n -a n -1=n ,a n -1-a n -2=n -1,…,a 3-a 2=3,a 2-a 1=2. 将上述各式等号两边累加得, a n -a 1=n +(n -1)+…+3+2,即a n =n +(n -1)+…+3+2+1=n (n +1)2,故a n =n (n +1)2.(2)由题意得,a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 3a 2=23,a 2a 1=12.将上述各式累乘得,a n a 1=1n ,故a n =1n(3)由a n =2a n -1+1,得a n +1=2(a n -1+1), 又a 1+1=2≠0,所以a n +1a n -1+1=2,即数列{a n +1}是以2为首项,以2为公比的等比数列.所以a n +1=2n ,即a n =2n-111.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n . (1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n . 11.(1)解 a 1=S 1=4对于n ≥2有a n =S n -S n -1=2n (n +1)-2(n -1)n =4n .a 1也适合, ∴{a n }的通项公式a n =4n将n =1代入T n =2-b n ,得b 1=2-b 1,故T 1=b 1=1 (求b n 方法一)对于n ≥2,由T n -1=2-b n -1, T n =2-b n ,得b n =T n -T n -1=-(b n -b n -1),∴b n =12b n -1,b n =21-n(求b n 方法二)对于n ≥2,由T n =2-b n 得 T n =2-(T n -T n -1),2T n =2+T n -1,T n -2=12(T n -1-2),T n -2=21-n(T 1-2)=-21-n , T n =2-21-n , b n =T n -T n -1=(2-21-n )-(2-22-n )=21-n . b 1=1也适合综上,{b n }的通项公式b n =21-n . (2)证明 方法一 由c n =a 2n ·b n =n 225-n, 得c n +1c n =12⎝ ⎛⎭⎪⎫1+1n 2 当且仅当n ≥3时,1+1n ≤43<2,∴c n +1c n <12·(2)2=1,又c n =n 2·25-n >0,即c n +1<c n 方法二 由c n =a 2n ·b n =n 225-n,得c n +1-c n =24-n [(n +1)2-2n 2] =24-n [-(n -1)2+2].当且仅当n ≥3时,c n +1-c n <0,即c n +1< c n .。
2021高考数学人教版一轮复习练习:第五章 第1节 数列的概念与简单表示法

多维层次练28[A级基础巩固]1.已知数列5,11,17,23,29,…,则55是它的() A.第19项B.第20项C.第21项D.第22项解析:数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.答案:C2.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为“a n>0”⇒“数列{S n}是递增数列”,所以“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n不一定大于零,还有可能小于零,所以“数列{S n}是递增数列”不能推出“a n>0”,所以“a n>0”不是“数列{S n}是递增数列”的必要条件.所以“a n>0”是“数列{S n}是递增数列”的充分不必要条件.答案:A3.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( )A .31B .42C .37D .47解析:由题意,得S n +1-S n =S n +1(n ∈N *),所以S n +1+1=2(S n+1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.答案:D4.在数列{a n }中,a 1=2,a n +1n +1=a n n+ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A .2+n ln nB .2n +(n -1)ln nC .2n +n ln nD .1+n +n ln n解析:由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,(n -1)取代,累加得a n n -a 11=ln n -ln 1=ln n ,a nn =2+ln n ,所以a n =2n +n ln n .答案:C5.(2020·广东广雅中学模拟)在数列{a n }中,已知a 1=2,a n +1=a n3a n +1(n ∈N *),则a n 的表达式为( ) A .a n =24n -3B .a n =26n -5C .a n =24n +3D .a n =22n -1解析:(1)数列{a n }中,由a 1=2,a n +1=a n3a n +1(n ∈N *),可得1a n +1=3+1a n ,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为3的等差数列,所以1a n =12+3(n -1)=6n -52.可得a n =26n -5(n ∈N *).答案:B6.(2019·上海卷)已知数列{a n }前n 项和为S n ,且满足S n +a n =2,则S 5=________.解析:n =1时,S 1+a 1=2,所以a 1=1. n ≥2时,由S n +a n =2得S n -1+a n -1=2, 两式相减得a n =12a n -1(n ≥2),所以{a n }是以1为首项,12为公比的等比数列,所以S 5=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:31167.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________.解析:因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,…, a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=40×412=820.答案:8208.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解析:由题意可知,a 1·a 2·a 3·…·a n -1=(n -1)2, 所以a n =n 2(n -1)2(n ≥2), 所以a 3+a 5=3222+5242=6116.答案:61169.(2020·天河模拟)已知S n 为数列{a n }的前n 项和,且a 1<2,a n >0,6S n =a 2n +3a n +2,n ∈N *.(1)求数列{a n }的通项公式;(2)若∀n ∈N *,b n =(-1)n a 2n ,求数列{b n }的前2n 项的和T 2n . 解:(1)当n =1时,6a 1=a 21+3a 1+2,且a 1<2,解得a 1=1.当n ≥2时,6a n =6S n -6S n -1=a 2n +3a n +2-(a 2n -1+3a n -1+2).化简得(a n +a n -1)(a n -a n -1-3)=0, 因为a n >0,所以a n -a n -1=3,所以数列{a n }是首项为1,公差为3的等差数列, 所以a n =1+3(n -1)=3n -2.(2)b n =(-1)n a 2n =(-1)n (3n -2)2.所以b 2n -1+b 2n =-(6n -5)2+(6n -2)2=36n -21. 所以数列{b n }的前2n 项的和T 2n =36(1+2+…+n )-21n =36×n (n +1)2-21n =18n 2-3n .10.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式. 解:(1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[B 级 能力提升]11.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( ) A.9998 B .2 C.9950D.99100解析:由a n +1=1+a n +n ,得a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2n -2n +1, 则1a 1+1a 2+…+1a 99=2×[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫199-1100]=2×⎝⎛⎭⎪⎫1-1100=9950. 答案:C12.(一题多解)(2020·湛江二模)一元线性同余方程组问题最早可见于中国南北朝时期(约公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个.解析:法一由题设a=3m+2=5n+3,m,n∈N,则3m=5n +1,m,n∈N,当m=5k时,n不存在;当m=5k+1时,n不存在;当m=5k+2时,n=3k+1,满足题意;当m=5k+3时,n不存在;当m=5k+4时,n不存在,其中k∈N.故2≤a=15k+8≤2 019,解得-615≤k≤2 01115,故k=0,1,2,…,134,共135个,即符合条件的a共有135个.故答案为135.法二一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135115,因为n∈N*,所以n=1,2,3,…,135,共有135个.答案:13513.(一题多解)已知数列{a n}中,a1=3,且n(n+1)(a n-a n+1)=2.(1)求数列{a n}的通项公式;(2)设b n=a1·a2·…·a n(n+1)·2n,求数列{b n}的前n项和S n.解:(1)法一 由题意知,a n -a n +1=2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, 所以n ≥2时,a n -1-a n =2⎝ ⎛⎭⎪⎪⎫1n -1-1n ,a n -2-a n -1= 2⎝ ⎛⎭⎪⎪⎫1n -2-1n -1,…,a 1-a 2=2⎝ ⎛⎭⎪⎫11-12, 以上(n -1)个式子左右两边分别相加得a 1-a n =2⎝⎛⎭⎪⎫1-1n , 又a 1=3,所以a n =1+2n (n ≥2).又a 1=3符合上式,故a n =1+2n(n ∈N *).法二 由题意知,a n -a n +1=2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, 所以a n +1-2n +1=a n -2n ,所以a n -2n =a n -1-2n -1=…=a 1-21=3-2=1,所以a n =1+2n.(2)法一 由(1)知,a n =1+2n =n +2n,所以a 1a 2…a n =31×42×…×n +1n -1×n +2n =(n +1)(n +2)2,所以b n =a 1·a 2·…·a n(n +1)·2n=n +22n +1,所以S n =322+423+524+…+n +12n +n +22n +1,12S n =323+424+525+…+n +12n +1+n +22n +2, 两式相减得12S n =322+⎝ ⎛⎭⎪⎪⎫123+124+…+12n +1-n +22n +2=34+123⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-n +22n +2=1-12n +1-n +22n +2=1-n +42n +2, 故S n =2-n +42n +1.法二 由(1)知a n =1+2n =n +2n,所以a 1·a 2·…·a n =31×42×…×n +1n -1×n +2n =(n +1)(n +2)2,所以b n =a 1·a 2·…·a n(n +1)·2n =n +22n +1=n +32n -n +42n +1, 所以S n =⎝ ⎛⎭⎪⎫421-522+⎝ ⎛⎭⎪⎫522-623+…+⎝⎛⎭⎪⎫n +32n -n +42n +1=2-n +42n +1.[C 级 素养升华]14.(多选题)已知数列{a n }满足12a 1+122a 2+123a 3+…+12n a n =2n +5,则下列数字在数列{a n }中的是( )A .14B .18C .20D .32解析:由题意知,数列{a n }满足12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n >1, 两式相减得,a n2n =2n +5-2(n -1)-5=2,所以a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,所以a 1=14.综上可知,数列{a n }的通项公式为a n =⎩⎨⎧14,n =1,2n +1,n ≥2.答案:AD。
(精品推荐)2019版一轮创新思维文数(人教版A版)练习:第五章 第二节 等差数列及其前n项和

课时规范练 A 组 基础对点练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:由题知,a 2+a 4=2a 3=2, 又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 答案:B2.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( ) A .-2 B .0 C .2D .4 解析:设等差数列{a n }的公差为d , ∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧⎝⎛⎭⎫8a 1+8×72d -⎝⎛⎭⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎪⎨⎪⎧a 1=-2,d =2.故选A.答案:A3.等差数列{a n }中,a 1=1, a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( ) A .3,7,9,15,100 B .4,10,12,34,100 C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B4.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1, ∴S 5=5(a 1+a 5)2=5a 3=5,故选A.答案:A5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15 解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13. 答案:B6.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________. 解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10. 答案:107.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________. 解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5.答案:58.(2018·河北三市联考)已知S n 是等差数列{a n }的前n 项和,若S 5=5a 4-10,求数列{a n }的公差.解析:由S 5=5a 4-10,得5a 3=5a 4-10,则公差d =2.9.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n (n ∈N *).(1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n ,且 a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n ,∴b n +1-b n =2a n +1a n -1a n=2.又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. B 组 能力提升练1.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( ) A .0 B .-109 C .-181D .121解析:设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.答案:B2.(2018·唐山统考)已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9D .6解析:设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D. 答案:D3.已知数列{a n }是等差数列,数列{b n }是等比数列,公比为q ,数列{c n }中,c n =a n b n ,S n 是数列{c n }的前n 项和.若S m =11,S 2m =7,S 3m =-201(m 为正偶数),则S 4m 的值为( ) A .-1 601 B .-1 801 C .-2 001D .-2 201解析:令A =S m =11,B =S 2m -S m =-4,C =S 3m -S 2m =-208, 则q m ·A =(a 1b 1+a 2b 2+…+a m b m )q m =a 1b m +1+…+a m b 2m .故B -q m ·A =(a m +1-a 1)b m +1+…+(a 2m -a m )b 2m =md (b m +1+…+b 2m ),其中,d 是数列{a n }的公差,q 是数列{b n }的公比.同理C -q m ·B =md (b 2m +1+…+b 3m )=md (b m +1+…+b 2m )·q m ,故C -q m ·B =q m (B -q m ·A ).代入已知条件,可得11(q m )2+8q m -208=0,解得q m =4或q m =-5211(因m 为正偶数,舍去).又S 4m -S 3m =(a 1b 1+a 2b 2+…+a m b m )q 3m +3md (b m +1+…+b 2m )q 2m =11×43+3(B -q m ·A )×42=11×43-3×12×43=-1 600. 故S 4m =S 3m -1 600=-1 801. 答案:B4.(2018·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( ) A .9 B .10 C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值,故选B. 答案:B5.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于__________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:1326.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知得⎩⎨⎧S10=10a 1+10×92d =0S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,又n =6时,6S 6=-48,n =7时,7S 7=-49,故nS n 的最小值为-49. 答案:-497.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解析:∵2a n +1=a n +a n +2, ∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧ b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小. ∵数列{b n }的首项是-29,公差为2, ∴T 15=15×(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.8.(2018·长春模拟)在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值. 解析:(1)当n =1时,a 2+a 1=-42,a 1=-23, ∴a 2=-19,同理得,a 3=-21,a 4=-17.故a 1,a 3,a 5,…是以a 1为首项,2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项,2为公差的等差数列.从而a n =⎩⎪⎨⎪⎧n -24,n 为奇数,n -21,n 为偶数.(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+…+[2·(n -1)-44] =2[1+3+…+(n -1)]-n 2·44=n 22-22n ,故当n =22时,S n 取得最小值为-242. 当n 为奇数时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =a 1+(2×2-44)+…+[2×(n -1)-44] =a 1+2[2+4+…+(n -1)]+n -12·(-44)=-23+(n +1)(n -1)2-22(n -1)=n 22-22n -32. 故当n =21或n =23时,S n 取得最小值-243.综上所述:当n 为偶数时,S n 取得最小值为-242;当n 为奇数时,S n 取最小值为-243.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练 A 组 基础对点练1.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8D .10解析:a 4=S 4-S 3=20-12=8. 答案:C2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B. 答案:B3.已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n =( ) A .2n +1B .2nC .2n -1D .2n -2解析:∵a n +1=S n +1-S n =2a n +1-4-(2a n -4),∴a n +1=2a n ,∵a 1=2a 1-4,∴a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4·2n -1=2n +1,故选A. 答案:A4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.答案:C5.(2018·唐山模拟)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=__________.解析:∵S n =a 1(4n -1)3,a 4=32,∴255a 13-63a 13=32,∴a 1=12.答案:126.已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=________. 解析:当n ≥2时,a n =2n -2n -1=2n -1,所以a 3+a 4=22+23=12. 答案:127.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解析:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1.于是a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘, 整理得a n =n (n +1)2.显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =n (n +1)2.8.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解析:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞).B 组 能力提升练1.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ·⎝⎛⎭⎫453-23k <0,∴452<k <472,∴k =23.故选C.答案:C2.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( ) A.1210 B.129 C.15D.110解析:∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.答案:C3.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( )A.13n 1 B.2n (n +1) C.6(n +1)(n +2)D.5-2n 3解析:由题意知,S n +na n =2,当n ≥2时,S n -1+(n -1)a n -1=2,∴(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1),故选B. 答案:B4.(2018·临沂联考)观察下列各图,并阅读图形下面的文字,则10条直线相交,交点的个数最多是()A .40B .45C .50D .55解析:设n 条直线的交点个数为a n (n ≥2),则⎩⎪⎨⎪⎧a 3-a 2=2,a 4-a 3=3,……a 10-a 9=9.累加得a 10-a 2=2+3+…+9, a 10=1+2+3+…+9=45. 答案:B5.现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为__________. 解析:令5n =t >0,考虑函数y =t +1t ,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x ,当0<x ≤1时,t ∈(1,5],则可知a n =5n +⎝⎛⎭⎫15n在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:1106.已知数列{a n}中,a1=1,若a n=2a n-1+1(n≥2),则a5的值是__________.解析:∵a n=2a n-1+1,∴a n+1=2(a n-1+1),∴a n+1a n-1+1=2,又a1=1,∴{a n+1}是以2为首项,2为公比的等比数列,即a n+1=2×2n-1=2n,∴a5+1=25,即a5=31.答案:317.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=4S n-1(n∈N*).(1)证明:a n+2-a n=4;(2)求{a n}的通项公式.解析:(1)证明:∵a n a n+1=4S n-1,∴a n+1a n+2=4S n+1-1,∴a n+1(a n+2-a n)=4a n+1,又a n≠0,∴a n+2-a n=4.(2)由a n a n+1=4S n-1,a1=1,求得a2=3,由a n+2-a n=4知,数列{a2n}和{a2n-1}都是公差为4的等差数列,∴a2n=3+4(n-1)=2(2n)-1,a2n-1=1+4(n-1)=2(2n-1)-1,∴a n=2n-1.8.已知数列{a n}中,a1=3,a2=5,其前n项和S n满足S n+S n-2=2S n-1+2n-1(n≥3).(1)求数列{a n}的通项公式;(2)若b n=log2256a2n-1,n∈N*,设数列{b n}的前n项和为S n,当n为何值时,S n有最大值?并求最大值.解析:(1)由题意知S n-S n-1=S n-1-S n-2+2n-1(n≥3),即a n=a n-1+2n-1(n≥3),∴a n=(a n -a n-1)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n-1+2n-2+…+22+2+1+2=2n+1(n≥3),经检验,知n=1,2时,结论也成立,故a n=2n+1.(2)b n=log2256a2n-1=log22822n=log228-2n=8-2n,n∈N*,当1≤n≤3时,b n=8-2n>0;当n=4时,b n=8-2n=0;当n≥5时,b n=8-2n<0.故n=3或n=4时,S n有最大值,且最大值为S3=S4=12.。