用坐标系解立体几何常见方法

合集下载

坐标法解立体几何

坐标法解立体几何

(一)本周学习与研究中的三个重点(一)本周学习与研究中的三个重点1、空间右手直角坐标系及其在空间右手直角坐标系下的向量坐标运算.、空间右手直角坐标系及其在空间右手直角坐标系下的向量坐标运算.空间直角坐标系是在仿射坐标系的基础上,选取空间任意一点O 和一个单位正交基底{}(按右手系排列)建立的坐标系.具体选择坐标系时,注意O 点的任意性,一方面既要有利于作图的直观性,另一方面又要注意有关要求点的坐标容易表示.有关要求点的坐标容易表示.在空间右手直角坐标系下的点,在空间右手直角坐标系下的点,向量坐标是唯一的,向量坐标是唯一的,向量坐标是唯一的,这一点的理解和证明可仿照向量分解定理的唯一性理解和证这一点的理解和证明可仿照向量分解定理的唯一性理解和证明.由此说明相等的向量其坐标是唯一的,这为后面的解题中常常需要进行向量的平移提供理论依据.明.由此说明相等的向量其坐标是唯一的,这为后面的解题中常常需要进行向量的平移提供理论依据.空间向量的坐标运算,加法、减法和数量积等与平面向量类似,具有类似的运算法则,同学们学习中可类比的学习.虽然一个向量在不同空间的表达方式不同,但其实质没变,即向量在平面上是用唯一确定的有序实数对表示,即=(x,y),而在空间则用唯一确定的有序实数组表示,即=(x,y,z).如向量的数量积在二维、三维空间都是这样定义的.不同点仅是向量在不同空间具有不同的表达形式.如在平面上,,在空间=(a 1,a 2,a 3), ,不论在平面或空间都有.2、空间两向量平行、垂直的充要条件、空间两向量平行、垂直的充要条件空间两向量平行时与平面两向量平行的表达式不一样,但实质是一致的,即对应坐标成比例,且比值为λ,空间两向量垂直的充要条件形式与平面向量里类似,仅多了一项基向量而已.两向量垂直的充要条件形式与平面向量里类似,仅多了一项基向量而已.3、空间两向量的夹角公式,距离公式,中点坐标公式、空间两向量的夹角公式,距离公式,中点坐标公式(1)(2)(3)为AB 的中点,的中点,则由可知夹角公式在平面向量正文里没有涉及,但可根据数量积的定义推出.这里应注意两向量夹角范围是:0°≤θ≤180°,当θ=0°时,表示两向量为同向共线向量,当θ=90°时,表示两向量垂直,当θ=180°时,表示两向量为反向共线向量.量为反向共线向量.两点间的距离公式是长度公式的推广.其推导过程是首先根据向量的减法,推出向量的坐标表示,然后再用长度公式推出.长度公式推出.这几个公式都与坐标原点的选取无关.这几个公式都与坐标原点的选取无关.(二)本周学习与研究中的两个难点(二)本周学习与研究中的两个难点1、空间任意一点的坐标确定、空间任意一点的坐标确定空间任一点P的坐标确定办法如下:过P分别作三个坐标平面的平行平面(或垂面),分别交坐标轴于A、B、C三点,|x|=OA,|y|=OB,|z|=OC,当方向相同时,x>0,反之x<0,同理,可确定y、z.具体理解,可以以长方体作为模型,以其一共点的三条棱,建立空间直角坐标系来理解.方体作为模型,以其一共点的三条棱,建立空间直角坐标系来理解.这其中同学们应准确判断一点在各坐标平面内的射影的坐标,并比较它们间的关系,以及一些特殊点,如落在坐标轴上的点的坐标形式等.标轴上的点的坐标形式等.2、距离公式,夹角公式的应用、距离公式,夹角公式的应用应用距离公式、夹角公式解决立体几何问题,关键在于选择建立适当的空间直角坐标系.它们在立体几何中的应用有:计算两异面直线所成角时,当用几何方法较困难时,可以建立适当的空间直角坐标系后,利用向量方法求解,此时应注意异面直线所成的角的范围与向量夹角范围的区别;求线段的长度时,有时用几何方法较难构造三角形,此时,可考虑应用向量方法,表示出线段两端点的坐标,然后再用两点间的距离加以解决.时,可考虑应用向量方法,表示出线段两端点的坐标,然后再用两点间的距离加以解决.。

三维立体几何中的坐标定位与距离计算

三维立体几何中的坐标定位与距离计算

三维立体几何中的坐标定位与距离计算在三维立体几何中,坐标定位和距离计算是非常重要的概念和技巧。

通过准确的坐标定位,我们可以确定一个点在三维空间中的位置,而距离计算则可以帮助我们衡量两个点之间的距离。

本文将探讨三维立体几何中的坐标定位和距离计算,并介绍一些常用的方法和公式。

一、坐标定位在三维空间中,我们可以使用三个坐标轴(x、y、z)来定位一个点。

这些坐标轴相互垂直,并且通过原点(0,0,0)来确定位置。

例如,一个点的坐标可以表示为(x,y,z),其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。

通过坐标定位,我们可以准确地描述和定位一个点在三维空间中的位置。

这对于计算机图形学、建筑设计和物理模拟等领域非常重要。

例如,在计算机图形学中,我们可以通过给定的坐标来绘制一个点,从而创建出各种形状和物体。

二、距离计算在三维空间中,距离是一个重要的概念。

它可以帮助我们衡量两个点之间的距离,并在许多应用中起到关键作用。

距离的计算可以通过欧几里得距离公式来实现,即:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)其中,(x1,y1,z1)和(x2,y2,z2)分别表示两个点的坐标,d表示这两个点之间的距离。

距离计算在许多领域都有广泛的应用。

例如,在物理学中,我们可以使用距离计算来确定两个物体之间的距离,并根据它们之间的距离来计算力的大小。

在导航系统中,我们可以使用距离计算来确定两个地点之间的距离,并找到最短的路径。

三、坐标变换在三维立体几何中,坐标变换是一种常见的操作。

通过坐标变换,我们可以将一个点从一个坐标系转换到另一个坐标系。

这在计算机图形学和机器人学等领域中非常有用。

常见的坐标变换包括平移、旋转和缩放。

平移是将一个点沿着坐标轴移动一定的距离,旋转是将一个点绕着某个中心点旋转一定的角度,缩放是改变一个点的大小。

通过坐标变换,我们可以改变一个点在三维空间中的位置和大小,从而实现各种复杂的效果和动画。

立体几何点的求法

立体几何点的求法

立体几何点的求法立体几何是研究三维空间中物体的形状、大小和位置关系的数学分支。

在立体几何中,点是最基本的元素,而求解点的位置是解决许多立体几何问题的关键。

下面将介绍立体几何点的求法。

一、坐标表示法在三维坐标系中,每个点都可以用一组有序数表示其位置。

这组有序数就是该点在三个坐标轴上的坐标值。

设一个点P(x,y,z),其中x、y、z分别为该点在x轴、y轴和z轴上的坐标值,则P可以表示为一个有序三元组(x,y,z)。

利用坐标表示法可以求解两个点之间的距离。

设两个点P1(x1,y1,z1)和P2(x2,y2,z2),则它们之间的距离d为:d = √[(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2]二、向量表示法向量是指具有大小和方向的量,用箭头来表示。

在三维空间中,每个向量都可以用一个有序三元组(a,b,c)来表示。

利用向量表示法可以求解线段或线段所在直线上某一点的位置。

设一个线段AB,其起始端点为A(x1,y1,z1),终止端点为B(x2,y2,z2),则该线段的向量为:AB = (x2-x1, y2-y1, z2-z1)如果需要求解线段AB上距离A点m倍长度的点P,则可以用以下公式计算P的坐标值:P = A + m(AB)其中,m为实数。

三、平面方程表示法平面是指在三维空间中,由无限多个点组成的一个二维图形。

在立体几何中,平面通常用方程表示。

设一个平面P,其方程为ax+by+cz+d=0。

其中a、b、c是平面法向量的三个分量,d是平面与原点的距离。

对于一个给定的点Q(x,y,z),如果Q在该平面上,则有:ax+by+cz+d=0如果需要求解过三个已知点A(x1,y1,z1)、B(x2,y2,z2)和C(x3,y3,z3)的平面方程,则可以用以下公式计算a、b、c和d:a = (y2-y1)(z3-z1)-(z2-z1)(y3-y1)b = (z2-z1)(x3-x1)-(x2-x1)(z3-z1)c = (x2-x1)(y3-y1)-(y2-y1)(x3-x1)d = -ax_0-by_0-cz_0其中,(x_0, y_0, z_0)为三个点的重心坐标。

高考数学中的空间立体几何问题解析

高考数学中的空间立体几何问题解析

高考数学中的空间立体几何问题解析在高考数学中,空间立体几何是考试中出现频率比较高的一类题型。

空间立体几何的基础是空间坐标系和三维图形的构造,主要包括点、线、面、体及其相互关系的研究,其中点之间的位置关系是空间立体几何的核心。

在考场上要想熟练地解决这些问题,需要掌握一定的思维方法和解题技巧。

一、空间立体几何的基础1. 空间直角坐标系:空间直角坐标系是立体坐标系的一种,它把三维空间分成了三个相互垂直的坐标轴:x轴、y轴和z轴。

在立体坐标系中,一个点的位置用三个有序实数来表示,这三个实数分别代表这个点到三条坐标轴的距离。

2. 点、线、面、体:点是空间最基本的要素,它是一个没有大小的点。

线是两个点间最短距离的轨迹,其长度可以用两点间的距离表示。

面是三个或三个以上不共线的点所决定的平面。

体是由若干个平面围成的空间几何图形,常见的体有球、立方体、棱锥等。

3. 空间几何图形的构造:空间几何图形的构造是解决空间立体几何问题的第一步,这需要我们根据题目所描述的条件,构造出相应的点、线、面、体。

二、重要的空间直线和平面1. 方向余弦:空间直线的方向可以用方向余弦来表示。

方向余弦是指由一条直线的方向向量在坐标轴上的投影所组成的数列。

如一条直线的方向向量为(a,b,c),则它在x轴、y轴、z轴上的方向余弦分别为a、b、c。

2. 平面的解析式:平面方程的解析式就是由平面上的一点和该平面的法向量所组成的方程。

常见的平面方程包括一般式、点法式、两点式和截距式。

3. 空间直线的位置关系:空间直线有共面、平行和相交等三种位置关系。

两条直线共面的条件是它们的方向向量能够表示出一个平面。

三、空间几何图形的计算1. 空间几何图形的面积和体积:空间几何图形的面积和体积是解决空间立体几何问题的关键。

求一些固定图形的面积和体积可以用公式解决,如正方体的面积和体积、正三角形的面积、球体的表面积和体积等等。

2. 点到线段的距离:点到线段的距离是解决空间立体几何问题的常见问题,它可以用勾股定理和向量相乘来求解。

解说立体几何中的“坐标法”

解说立体几何中的“坐标法”

解说立体几何中的“坐标法”江苏省姜堰中学张圣官(225500)空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。

利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。

用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。

下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。

一、如何确定空间点的坐标空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。

要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。

1.点的坐标的符号判断点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。

如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。

2.点的坐标的绝对值确定过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。

如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。

二、常见特殊点的坐标特点1.坐标轴上点的坐标的特点①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。

2.坐标平面上点的坐标的特点①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。

三、利用“坐标法”解(证)立体几何题的步骤第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度;第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键;第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标;第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等);第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。

用坐标系解立体几何常见方法

用坐标系解立体几何常见方法

建立空间直角坐标系,解立体几何高考题立体几何重点、热点:求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.常用公式:1、求线段的长度:AB AB x2y2z2x2x12y2y12z2z12|PM n|2、求P点到平面的距离:PN ,(N为垂足,M为斜足,n 为平面的法向量)|n||PM n|3、求直线 l 与平面所成的角:|sin |,(PM l , M , n 为的法向量)|PM| |n||AB CD|4、求两异面直线AB 与CD的夹角:cos|AB| |CD||n1 n2 |5、求二面角的平面角:|cos | ,(n1,n2为二面角的两个面的法向量)|n1| |n2 |S射影6、求二面角的平面角:cos ,(射影面积法)S7、求法向量:①找;②求:设a,b 为平面内的任意两个向量,n ( x, y,1)为的法向量,a n 0则由方程组,可求得法向量n .b n 0高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。

而用向量坐标运算的关键是建立一个适当的空间直角坐标系。

一﹑直接建系。

当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。

例1. (2002 年全国高考题)如图,正方形ABCD﹑ABEF的边长都是1,而且平面ABCD﹑ABEF互相垂直。

点M在AC上移动,点N在BF上移动,若CM=BN(=a0 a 2 )。

(1)求MN的长;(2)当a 为何值时,MN的长最小;(3)当MN最小时,求面MNA与面MNB所成二面角α的大小。

解:(1)以B为坐标原点,分别以BA﹑BE﹑BC为x﹑y﹑z 轴建立如图所示的空即M﹑N 分别移动到AC﹑BF的中点时,MN的长最小,最小值为2 (3)取MN的中点P,连结AP﹑BP,因为AM=A,N BM=B,N 所以AP⊥MN,BP⊥MN,∠ APB即为二面角α的平面角。

(完整版)立体几何坐标法教师版

(完整版)立体几何坐标法教师版

立体几何坐标法:一:一般的公式:1、空间角(1)(线线)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)(线面)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|. (3)(面面)求二面角的大小(ⅰ)如图①,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.2、距离(1)点面距的求法:设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距(3)两异面直线的距离求法:d =|AB →·n ||n |.(AB 是异面直线上任意两点)二:如何选择建系:8、在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (Ⅰ)求证:CM EM ⊥;(Ⅱ)求CM 与平面CDE 所成的角.11年重庆 19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB BC ⊥,AD CD =,CAD ∠=30︒.(Ⅰ)若AD =2,AB BC =2,求四面体ABCD 的体积;(Ⅱ)若二面角C AB D --为60︒,求异面直线AD 与BC 所成角的余弦值.28.【2012高考四川文19】(本小题满分12分)如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点PEDCM AB在平面ABC 内的射影O 在AB 上。

平面与立体几何的解析几何方法

平面与立体几何的解析几何方法

平面与立体几何的解析几何方法在数学中,平面几何和立体几何是解析几何的重要分支。

解析几何是运用代数和分析工具来研究几何问题的数学学科。

平面几何研究平面上的图形和性质,立体几何则研究三维空间中的图形和性质。

本文将介绍平面与立体几何中常用的解析几何方法。

一、平面几何中的解析几何方法1. 坐标系和坐标表示在平面几何中,我们通常会使用坐标系来描述平面上的点和图形。

一般来说,平面上的点可以用两个坐标值表示,通常以x轴和y轴为基准。

以直角坐标系为例,任意点P的坐标可以表示为P(x, y),其中x 表示距离x轴的水平距离,y表示距离y轴的垂直距离。

2. 距离和中点公式解析几何中,我们可以通过坐标计算两点之间的距离,并且可以得到线段的中点坐标。

对于平面上两点P(x1, y1)和Q(x2, y2),它们之间的距离可以用以下公式表示:d(P, Q) = √((x2 - x1)^2 + (y2 - y1)^2)同样地,线段PQ的中点坐标可以通过以下公式得到:M((x1 + x2)/2, (y1 + y2)/2)3. 直线的斜率和方程在平面几何中,直线是研究的重点之一。

解析几何中,我们可以通过直线上的两个点的坐标来求解直线的斜率。

对于两点P(x1, y1)和Q(x2, y2)所确定的直线,它的斜率可以通过以下公式得出:k = (y2 - y1)/(x2 - x1)另外,在解析几何中,我们还可以通过已知直线上的一点和它的斜率来确定直线的方程。

以点P(x, y)和斜率k为例,直线的方程可以表示为:y - y1 = k(x - x1)二、立体几何中的解析几何方法1. 坐标系和坐标表示与平面几何类似,立体几何中也可以使用坐标系来描述三维空间中的点和图形。

一个常用的坐标系是笛卡尔坐标系,其中三个坐标轴x、y、z相互垂直。

一个点P的坐标可以表示为P(x, y, z),其中x表示距离x轴的水平距离,y表示距离y轴的水平距离,z表示距离z轴的垂直距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建立空间直角坐标系,解立体几高考题立体几重点、热点:求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.常用公式: 1、求线段的长度:222z y x AB ++==()()()212212212z z y y x x -+-+-=2、求P 点到平面α的距离:PN =,(N 为垂足,M 为斜足,n 为平面α的法向量)3、求直线l 与平面α所成的角:|||||sin |n PM ⋅=θ(l PM ⊂,α∈M ,n 为α的法向量)4、求两异面直线AB 与CD 的夹角:cos =θ5、求二面角的平面角θ:|||||cos |21n n ⋅=θ,( 1n ,2n 为二面角的两个面的法向量)6、求二面角的平面角θ:SS 射影=θcos ,(射影面积法)7、求法向量:①找;②求:设b a , 为平面α的任意两个向量,)1,,(y x n =为α的法向量,则由程组⎪⎩⎪⎨⎧=⋅=⋅0n b n a ,可求得法向量n .高中新教材9(B)引入了空间向量坐标运算这一容,使得空间立体几的平行﹑垂直﹑角﹑距离等问题避免了传统法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。

而用向量坐标运算的关键是建立一个适当的空间直角坐标系。

一﹑直接建系。

当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。

例1. (2002年全国高考题)如图,正形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<<a )。

(1)求MN 的长; (2)当a 为值时,MN 的长最小; (3)当MN 最小时,求面MNA 与面MNB 所成二面角α的大小。

解:(1)以B 为坐标原点,分别以BA ﹑BE ﹑BC 为x ﹑y ﹑z 轴建立如图所示的空间直角坐标系B-xyz ,由CM=BN=a ,M(a 22,0,a 221-),N (a 22,a 22,0)∴ MN =(0,a 22,122-a ) ∴ MN =22)22()122(a a +- =21)22(2+-a (20<<a )(2)由(1)MN =21)22(2+-a所以,当a=22时,minMN =22, 即M ﹑N 分别移动到AC ﹑BF 的中点时,MN 的长最小,最小值为22。

(3)取MN 的中点P ,连结AP ﹑BP ,因为AM=AN ,BM=BN ,所以AP ⊥MN ,BP ⊥MN ,∠APB 即为二面角α的平面角。

MN 的长最小时M(21,0,21),N (21,21,0) 由中点坐标公式P(21,41,41),又A (1,0,0),B (0,0,0)∴ PA =(21,-41,-41),PB =(-21,-41,-41)∴ cos ∠=838316116141⋅++-=-31∴ 面MNA 与面MNB 所成二面角α的大小为π-arccos 31例2.(1991年全国高考题)如图,已知ABCD 是边长为4的正形,E ﹑F 分别是AB ﹑AD 的中点,GC ⊥面ABCD ,且GC=2,求点B 到平面EFG 的距离。

解:建立如图所示的空间直角坐标系C-xyz,由题意C(0,0,0),G(0,0,2),E(2,4,0),F(4,2,0),B(0,4,0)∴GE=(2,4,-2),GF=(4,2,-2),BE=(2,0,0)设平面EFG的法向量为n=(x,y,z),则n得{0242224=-+=-+zyxzyx,令z=1,得x=31,y=31,即n=(31,31,1),在向上的射影的长度为d =BE=1919132++=11例3. (2000年二省一市高考题) 在直三棱柱ABC- A1B1C1中CA=CB=1,∠BCA=900,棱A A1=2,M﹑N分别是A1B1﹑A1 A的中点。

(1)求BN的长;(2)求cos><11,CB;(3)求证:A1B⊥C1M 解:建立如图所示的空间直角坐标系C-xyz,则C(0,0,0),B(0,1,0),N(1,0,1),A1(1,0,2),B1(0,1,2),C1(0,0,2),M(21,21,2) (1)BN=(1,-1,1),3;(2)1CB=(0,1,2),1BA=(1,-1,2)∴ cos ><11,CB ==5641⋅+-=1030 (3)B A 1=(-1, 1,-2),C 1=(21,21,0)∴ B A 1•M C 1= -1×21+1×21+(-2)×0=0∴ A 1B ⊥C 1M二﹑利用图形中的对称关系建系。

有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如:正三棱锥﹑正四棱锥﹑正六棱锥等),我们可以利用图形的对称性建立空间直角坐标系来解题。

例4. (2001年二省一市高考题)如图,以底面边长为2a 的正四棱锥V-ABCD 底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,高OV 为h 。

(1)求cos ><DE BE ,; (2)记面角α-VC-β的平面角,求∠BED 。

解:(1)由题意B (a ,a ,0),D (-a ,-a ,0),E (-2a ,2a ,2h ) ∴ BE =(-23a ,-2a ,2h),DE =(2a ,23a ,2h ) cos ><DE BE ,==425425443432222222ha h a h a a +⋅++-- =2222106h a h a ++- (2) ∵ V (0,0,h ),C (-a ,a ,0)∴VC =(-a ,a ,- h )又 ∠BED 是二面角α-VC-β的平面角 ∴ BE ⊥VC ,DE ⊥VC即 BE ·VC =232a -22a -22h = a 2-22h =0, a 2=22h代入 cos ><DE BE ,=2222106h a h a ++-=-31即∠BED=π-arccos 31三﹑利用面面垂直的性质建系。

有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间直角坐标系。

例5. (2000年全国高考题) 如图,正三棱柱ABC- A 1B 1C 1的底面边长为a ,侧棱长为2a 。

(1) 建立适当的坐标系,并写出A ﹑B ﹑A 1﹑C 1的坐标; (2) 求 AC 1与侧面AB B 1A 1所成的角。

解:(1)如图,以点A 为坐标原点,以AB 所在直线为y 轴,以AA 1所在直线为z 轴,以经过原点且与ABB 1A 1垂直的直线为x 轴,建立如图所示的空间直角坐标系。

由已知得:A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-a 23,2a,2a )(2)取A 1B 1的中点M ,于是有M (0,2a,2a ),连AM ﹑MC 1有 1MC =(-a 23,0,0),且AB =(0,a ,0),1AA =(0,0,2a ) 由于1MC ·AB =0,1MC ·1AA =0,故MC 1⊥平面AB B 1A 1 。

∴ A C 1与AM 所成的角就是AC 1与侧面AB B 1A 1所成的角。

∵ 1AC =(-a 23,2a ,2a ),AM =(0,2a ,2a ), ∴ 1AC ·=0+42a +2a 2=492a ,1AC =2222443a a a ++=3a ,AM =2224a a +=23a∴ cos ><AM AC ,1=aa a 233492⋅=23 ∴ 1AC 与AM 所成的角,即AC 1与侧面AB B 1A 1所成的角为30o 。

例6. (2002年上海高考题) 如图,三棱柱OAB- O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB=600, ∠AOB=900,且OB= OO 1=2,OA=3。

求:(1)二面角O 1–AB –O 的大小;(2)异面直线A 1B 与A O 1所成角的大小。

(结果用反三角函数值表示) 解:(1)如图,取OB 的中点D ,连接O 1D ,则O 1D ⊥OB∵ 平面OBB 1O 1⊥平面OAB , ∴ O 1D ⊥面OAB ,过D 作AB 的垂线,垂足为E ,连结∠DEO 1为二面角O 1–AB-O 的平面角。

由题设得O 1D=3 sin ∠OBA=22OB OA OA +=721 ∴ DE=DBsin ∠OBA=721∵ 在Rt ΔO 1DE 中,tan ∠DE O 1=7∴ ∠DE O 1=arctan 7,即二面角O 1–AB –O 的大小为arctan 7。

(2)以O 为原点,分别以OA ﹑OB 所在直线为x ﹑y 轴,过点O 且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系。

则O (0,0,0),O 1(0,1,3), A (3,0,0), A 1(3,1,3), B (0,2,0),则B A 1=(-3,1,-3),A O 1=(3,-1,-3) cos 〈B A1,A O 1〉==77313+--=-71故异面直线A 1B 与A O 1所成角的大小arccos 71。

相关文档
最新文档