钢筋混凝土与素混凝土有限元模拟对比分析
有限元实验报告

有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。
二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。
它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。
本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。
三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。
本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。
2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。
本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。
3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。
本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。
4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。
本实验将采用商业软件ANSYS进行有限元分析。
5、结果后处理:对求解结果进行可视化处理和分析。
本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。
四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。
如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。
同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。
2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。
如图2所示,桥梁的最大变形发生在桥面中央部位。
与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。
通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。
3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。
钢筋混凝土结构的有限元

l
K
2
l
N
T
k
N
dx
2
积分后展开,可得单元刚度矩阵的表达式如下:
K l
62k x0Fra bibliotek2k y
对称
k x 0
0 2k x
k y
0 2k y
N
Nx
N
y
kh
0
0 kv
u v
D w
(3-73)
其中N x与N y分别为沿x与沿 y方向弹簧中的内
力。利用虚功原理可以建立节点力与内力之间
的关系 F BT N
式中:节点力 F X i Yi X j Yj T。
将式(3-72)和式(3-73)代入,可得
F BT Dw BTDB K
因为钢筋混凝土结构由钢筋和混凝土两种材 料组成。如何将这类结构离散化,这一问题 与一般均匀连续的由一种或几种材料组成的 结构有类似之处,但也有不同之点。由于钢 筋混凝土结构中的钢筋一般被包裹于混凝土 之中,而且相对体积较小,因之,在建立钢 筋混凝土的有限元模型时,必须考虑到这一 特点。通常构成钢筋混凝土结构的有限元模 型主要有三种方式:分离式、组合式和整体 式。现在分别介绍如下。
)u3
(1 2
x l
)u
4
v
( 1 2
x l
)v1
(1 2
x l
)v2
(1 2
x l
)v3
(1 2
x l
)v4
用矩阵形式表示,可简写为
w
u v
N
式中: —节点位移列阵 u1 v1 u2 v2 u3 v3 u4 v4 T
N —形函数矩阵;
N
(
ANSYS钢筋混凝土建模方法概述

利用大型通用有限元软件ANSYS进行钢筋混凝土结构的建模、计算分析、结果处理是目前针对钢筋混凝土进行数值模拟的重要步骤。
如何采用ANSYS进行钢筋混凝土建模,能否把握有限元模型的可行性、合理性是将有限元理论应用到实际工程中较为关键的一环。
按照目前在建模中对钢筋的处理方式,ANSYS钢筋混凝土建模方法主要分为三种:整体式、分离式以及组合式,每种方法都具有不同的建模特点,现略做总结如下。
一、整体式建模ANSYS采用Solid65单元来模拟混凝土,所谓整体式建模也即是在建模过程中,通过对65单元进行实常数的设置来考虑钢筋对混凝土结构的作用。
这种方法将钢筋弥散于整个单元中,并视单元为连续均匀材料。
与其他方法比较,整体式建模的单元刚度矩阵综合了钢筋和混凝土单元的刚度矩阵,并且是一次性求得综合的刚度矩阵。
因此,在采用整体建模方法时,在建模之前,应首先求得单元各个方向的配筋率,并设置实常数,一般适用于体量较大,配筋比较规整的钢筋混凝土结构。
整体式建模所得计算结果对比实验来讲,其计算的开裂荷载误差较小,但开裂荷载后的整体荷载位移曲线与实验相比误差较大。
但采用整体建模方法的主要好处是能有效避免因为单元细分导致的应力奇异问题,有利于提高整体计算的收敛性性能。
二、分离式建模与整体式建模方法不同,分离式建模是指在建模过程中,考虑钢筋与混凝土的相互作用,分别选用不同的单元来模拟钢筋和混凝土。
一般而言,钢筋采用线单元link8模拟,混凝土选用配筋率为0的素混凝土Solid65单元模拟。
由于采用不同单元建模,如果认为结构在受外部荷载作用时,钢筋与混凝土在相互约束情况下会产生相对滑移,这时可以在钢筋与混凝土之间添加粘结单元来模拟钢筋与混凝土之间的粘结与滑移,一般采用非线性弹簧conbin39。
如果认为两者之间连接紧密,不会出现滑移,可视为刚性连接,只需通过合并节点即可,也即是相当于两者节点耦合。
从上述表述可见,分离式模型可以揭示钢筋与混凝土之间相互作用的微观机理,而这也是整体式模型无法做到的。
钢筋混凝土结构的本构关系及有限元模式共3篇

钢筋混凝土结构的本构关系及有限元模式共3篇钢筋混凝土结构的本构关系及有限元模式1钢筋混凝土结构的本构关系及有限元模式钢筋混凝土是建筑结构中广泛使用的材料之一。
在结构设计与分析过程中,了解钢筋混凝土的本构关系和有限元模式是十分重要的。
本文将从理论和实践两个层面介绍钢筋混凝土结构的本构关系及有限元模式。
一、理论基础1.1 本构关系本构关系是描述材料应力和应变之间关系的数学模型。
对于钢筋混凝土结构来说,其本构关系可以分为弹性和塑性两个阶段。
如图1所示,该曲线表现了材料的应变和应力之间的关系。
在开始阶段,钢筋混凝土材料表现出弹性行为,即在一定范围内,应变和应力呈线性关系,在这个范围内,应力的变化只取决于外力的变化。
当荷载增加时,材料进入塑性阶段,即出现残余变形,弹性不再适用。
此时,应变和应力的关系呈现非线性态势,应力会逐渐增大,直至材料失效。
图1 钢筋混凝土的本构关系曲线1.2 有限元分析有限元分析是一种近似解微分方程的数值分析方法。
该方法将问题分解成一个有限数量的小区域,在每个小区域内建立数学模型,通过连接小区域,组成总体的数学模型。
对于钢筋混凝土结构的有限元分析,可以采用三维有限元模型或二维\轴对称有限元模型等。
二、实践操作2.1 有限元模型的建立在进行有限元分析前,需要建立合适的有限元模型。
在钢筋混凝土结构的有限元分析中,通常采用ABAQUS、ANSYS软件进行模拟。
有限元模型的建立需要考虑结构的几何形状、材料特性、加载条件等,在模型建立的过程中需要进行模型分析和后处理,如应力监测、应变监测、变形量分析等。
2.2 本构关系的采用在建立有限元模型时需要设置材料弹性模量、泊松比、破坏应力等本构关系参数,这些参数可以通过试验数据和经验公式进行估算。
同时,基于实际结构的材料本身的特性和结构内力状态等影响因素,还需要考虑材料的非线性效应,包括弹塑性分析和的动力分析等。
三、应用现状在实际的建筑结构设计和分析中,钢筋混凝土结构的有限元分析被广泛采用,可以帮助工程师更加准确地预测材料的行为,并定位结构的破坏点及应急防御措施。
ANSYS分析钢筋混凝土结构技巧及实例详解

0 前言利用ANSYS分析钢筋混凝土结构时,其有限元模型主要有分离式和整体式两种模型。
这里结合钢筋混凝土材料的工作特性,从模型建立到非线性计算再到结果分析的全过程讲述了利用ANSYS进行钢筋混凝土结构分析的方法与技巧,并以钢筋混凝土简支梁为例,采用分离式有限元模型,说明其具体应用。
1 单元选取与材料性质1. 1 混凝土单元ANSYS中提供了上百种计算单元类型,其中Solid65单元是专门用于模拟混凝土材料的三维实体单元。
该单元是八节点六面体单元,每个节点具有三个方向的自由度( UX , UY , UZ) 。
在普通八节点线弹性单元Solid45 的基础上,该单元增加了针对于混凝土的材性参数和组合式钢筋模型,可以综合考虑包括塑性和徐变引起的材料非线性、大位移引起的几何非线性、混凝土开裂和压碎引起的非线性等多种混凝土的材料特性。
使用Solid65 单元时,一般需要为其提供如下数据:1)、实常数(Real Constants) :定义弥散在混凝土中的最多三种钢筋的材料属性,配筋率和配筋角度。
对于墙板等配筋较密集且均匀的构件,一般使用这种整体式钢筋混凝土模型。
如果采用分离式配筋,那么此处则不需要填写钢筋实常数。
2)、材料模型(Material Model) :在输入钢筋和混凝土的非线性材料属性之前,首先必须定义钢筋和混凝土材料在线弹性阶段分析所需的基本材料信息,如:弹性模量,泊松比和密度。
3)、数据表(Data Table) :利用数据表进一步定义钢筋和混凝土的本构关系。
对于钢筋材料,一般只需要给定一个应力应变关系的数据表就可以了,譬如双折线等强硬化(bilinear isotropic hardening)或随动硬化模型( kinematic hardening plasticity)等。
而对于混凝土模型,除需要定义混凝土的本构关系外,还需要定义混凝土材料的破坏准则。
在ANSYS中,常用于定义混凝土本构关系的模型有:1)多线性等效强化模型(Multilinear isotropic hardening plas2ticity ,MISO模型),MISO模型可包括20条不同温度曲线,每条曲线可以有最多100个不同的应力-应变点;2)多线性随动强化模型(Multilinear kinematic hardening plas2ticity ,MKIN 模型),MKIN 模型最多允许5个应力-应变数据点;3)Drucker2Prager plasticity(DP)模型。
钢筋混凝土有限元分析

钢筋混凝土有限元分析(1)首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。
(2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。
(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。
进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。
(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。
(5) 下面输入混凝土的材料属性。
混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。
下面分别介绍如下。
(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在DefineMaterial Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。
在Define Material Model Behavior 窗口中选择Structural-> Nonlinear->Inelastic-> Rate Independent-> Isotropic Hardening Plasticity-> Mises Plasticity-> Multilinear,输入混凝土的等效应力应变曲线如下图所示。
CFRP加固钢筋混凝土柱承载力模拟分析

d o i :10.3963/j .i s s n .1674-6066.2024.01.022C F R P 加固钢筋混凝土柱承载力模拟分析李路彬(中国建筑设计研究院有限公司,北京100032)摘 要: 为探究碳纤维复合材料(c a r b o n f i b e r r e i n f o r c e d p o l ym e r ,C F R P )加固混凝土柱的承载能力,通过测量混凝土抗压强度㊁钢筋应力-应变关系及加固混凝土的黏结应力,得到了加固混凝土柱的轴压承载力计算值和模拟值㊂C F R P 布加固的钢筋混凝土柱的荷载-位移曲线趋势与非加固柱相近,C F R P 布加固柱的承载力较非加固柱的承载力提高了112.8%,加固试件的黏结强度增大了108.9%㊂关键词: C F R P ; 应力-应变关系; 耐久性D e s i g na n dA n a l y s i sM e t h o do f S t r e n g t h e n i n g R e i n f o r c e d C o n c r e t e S t r u c t u r e sL IL u -b i n(C h i n aA r c h i t e c t u r eD e s i g n &R e s e a r c hG r o u p ,B e i j i n g 100032,C h i n a )A b s t r a c t : T o i n v e s t i g a t e t h eb e a r i n g c a p a c i t y o f c a r b o nf i b e r r e i n f o r c e d p o l y m e r (C F R P )r e i n f o r c e dc o n c r e t ec o l -u m n s ,t h e c a l c u l a t e d a n d s i m u l a t e d v a l u e s o f a x i a l c o m p r e s s i v e c a p a c i t y o f r e i n f o r c e d c o n c r e t e c o l u m n sw e r e o b t a i n e d b y m e a s u r i n g t h e c o m p r e s s i v e s t r e n g t ho f c o n c r e t e ,t h e s t r e s s -s t r a i nr e l a t i o n s h i p o f r e b a r a n d t h eb o n d i n g s t r e s so f r e i n -f o r c e d c o n c r e t e .T h e l o a d -d i s p l a c e m e n t c u r v e t r e n d o f t h e r e i n f o r c e d c o n c r e t e c o l u m n r e i n f o r c e db y C F R Ps h e e t i s s i m i -l a r t o t h a t o f t h en o n -r e i n f o r c e dc o l u m n .T h eb e a r i n g c a p a c i t y o f t h er e i n f o r c e dc o n c r e t ec o l u m nr e i n f o r c e db y C F R P s h e e t i s 112.8%h i g h e r t h a n t h a t o f t h en o n -r e i n f o r c e d c o l u m n ,a n d t h e b o n d s t r e n g t ho f t h e r e i n f o r c e d c o n c r e t e s p e c i -m e n i s 108.9%h i g h e r .K e y w o r d s : c a r b o n f i b e r r e i n f o r c e d p o l y m e r ; s t r e s s -s t r a i n r e l a t i o n s h i p ; d u r a b i l i t y 收稿日期:2023-09-13.作者简介:李路彬(1981-),高级工程师.E -m a i l :l l b 753@163.c o m混凝土结构在现代建筑中应用广泛而普遍,结构在服役过程中随时间推移和外界影响因素的侵蚀,结构会出现开裂㊁变形和强度损失等问题㊂为保证结构服役期内的使用安全性,混凝土加固设计成为一项重要任务㊂长期荷载和外部侵蚀对结构的材料性能影响显著,混凝土结构可能出现裂缝㊁变形和强度下降等问题,这些问题对结构的稳定性和安全性构成威胁㊂通过加固设计,可以修复和强化受损的混凝土结构,延长其使用寿命,降低维护成本,并确保人们的生命财产安全㊂李鹏鹏[1]进行了C F R P 布加固砌体结构的抗压强度试验,同时分析了粘贴2层和3层C F R P 布对砌体抗压承载力的增强效果,并对加固结构的裂缝形态㊁破坏模式和加固原理进行总结,研究发现粘贴C F R P 布的加固方式可提高混凝土结构的承载能力和抗震性能㊂通过不同的加固材料和加固技术可提高结构的承载能力及刚度,抗震性能显著提升,从而减少地震荷载激励对结构的危害[2-4]㊂加固设计可以修复和加固老化和受损的混凝土结构,避免结构失效和意外事故的发生㊂程东辉等[5]对3组翼缘与腹板转角处C F R P 布锚固的钢筋混凝土柱进行轴心受压试验,得到了试件的极限荷载㊁轴向变形及破坏模式,提出了C F R P 约束下钢筋混凝土柱极限承载力的计算公式㊂在混凝土加固设计的研究方法方面,需要对混凝土结构进行全面的检测和评估,包括结构的承载能力㊁裂缝情况㊁变形程度等[6]㊂其次,根据结构的具体情况和问题,选择合适的加固材料和技术,如碳纤维增强聚建材世界 2024年 第45卷 第1期合物(C F R P )片材加固㊁钢板加固等[7]㊂最后进行加固设计计算和分析,确定加固材料的数量和布置方式,进行施工过程的监控和质量控制,确保加固效果符合设计要求[8]㊂混凝土加固设计对于保障混凝土结构的安全性和使用寿命具有重要意义㊂论文主要分析粘贴碳纤维布的加固方法,阐述了加固前后的措施及效果㊂1 模型建立以钢筋混凝土加固柱为实例进行建模分析,所取厂房主体结构形式为混凝土框架结构,对易损混凝土柱进行粘贴C F R P 的方式进行加固,加固柱后改造部位设计使用年限为30年㊂加固改造部位为框架结构,基本风压为0.60k N /m 2,基本雪压为0.20k N /m 2,抗震设防烈度为6ʎ,地震分组为第一组,基本地震加速度为0.05g ㊂对承载力不足的混凝土框架柱进行粘贴C F R P 布进行加固;新增梁板与原有梁板柱采用化学植筋法连接㊂需加固混凝土柱在平面布置图中位置示意如图1(a )所示,采用C F R P 布加固的混凝土柱建模流程如图1(b )所示㊂混凝土和钢筋均采用C 3D 8R 模型单元,钢筋的受拉本构关系采用弹塑性的双直线模型,钢筋的受压本构关系采用完全理想弹塑性的双折线模型,混凝土本构关系采用塑性损伤模型㊂C F R P 的本构关系采用应力-应变关系表达式㊂共模拟了两种尺寸的混凝土柱,其中8根C F R P 加固柱和4根普通混凝土柱㊂2 项目检测与承载力计算2.1 混凝土抗压强度通过对实际混凝土柱的抗压强度进行钻孔取样,然后分别进行重新养护后再进行混凝土抗压强度试验,混凝土取芯示意如图2(a )所示,结构材料强度检测结构见表1㊂为准确对比粘贴C F R P 对混凝土抗压强度的影响,采用混凝土碳化深度测量仪分别对粘贴C F R P 和不粘贴C F R P 的抗压强度试件进行碳化深度测量,混凝土碳化深度测量完毕后,应选择测区内部平均测量碳化深度值对混凝土材料强度进行修正㊂最后对两组圆柱体试件进行抗压强度试验,测得的粘贴C F R P 和不粘贴C F R P 的试件抗压强度变化趋势如图2(b)所示㊂不同养护时间对应的混凝土抗压强度值可由式(1)计算得到㊂f c u (t )=f c u (28)㊃t 2.21+0.91æèçöø÷t (1)式中,t 为试件养护时间(d );f c u (t )和f c u (28)分别为养护t d 和28d 时的混凝土抗压强度值(M P a )㊂建材世界 2024年 第45卷 第1期表1 结构材料强度检测构件位置混凝土抗压强度/M P a 碳化深度/mm 垂直度判定结果普通柱3/G 柱30.71.1满足规范要求加固柱3/L 柱31.41.0满足规范要求普通柱4/B 柱29.51.2满足规范要求加固柱6/B 柱33.80.9满足规范要求采用浓度为1%的酚酞酒精溶液测试该结构混凝土构件的碳化深度,结果表明C F R P 加固混凝土柱的碳化深度小于普通混凝土柱的碳化深度㊂普通混凝土柱的碳化深度大于1.0mm ,而C F R P 加固柱的碳化深度小于1.0mm ㊂钢筋混凝土柱应力集中显著的区域位于柱中区域,在加固混凝土柱的同时增设混凝土梁和板,新增梁板与原有梁板柱采用化学植筋法连接㊂对混凝土强度不足且碳化深度较大的混凝土框架柱进行加大截面法加固㊁对混凝土强度不足且配筋与设计不符的柱进行粘贴碳纤维布法加固㊂2.2 结构钢筋应力分析为分析内部结构钢筋在荷载作用下的应力-应变关系,对C F R P 加固柱和普通柱的内部钢筋进行检测,同时采用A B A Q U S 模拟荷载激励作用下的应力分布㊂钢筋外形系数取0.14,锈蚀程度对钢筋应力-应变的关系忽略不计,混凝土表面的蜂窝㊁麻面等现象因对极限荷载影响较小,模拟时不予考虑㊂加固柱的内部钢筋应力检测示意图如图3(a )所示㊂通过结构钢筋尺寸㊁间距㊁外形和锈蚀情况的检测可粗略估计结构的质量状况,上部承重混凝土柱的钢筋应力水平较低㊂钢筋内部应力模拟如图3(b )所示,钢筋采用T R U S S 单元模拟,纵向钢筋和横向箍筋装配形成钢筋笼,并采用桁架T 3D 2单元模块㊂经模拟发现:加固柱内部钢筋应力水平大于普通柱的内部钢筋最大应力,钢筋最大应力为250.8M P a ,以此可看出C F R P 加固措施对结构质量的评估有利㊂2.3 黏结强度与受拉损伤关系评估C F R P 加固柱的黏结性能有利于结构承载力的准确预测,因此采用黏结强度仪对梁构件的碳纤维建材世界 2024年 第45卷 第1期片材粘结质量进行现场检验㊂随机选取10%混凝土加固柱,以每根受检构件为一检验组,每组3个检验点㊂碳纤维加固柱的损伤模拟示意图如图4(a )所示,柱内黏结应力计算如式(2)所示,钢筋内部拉力由式(3)计算得到㊂黏结应力在柱中分布与柱中受拉损伤分布相近,黏结强度最大值位于柱中位置处㊂同时采用拉拔测试仪对加固前后的混凝土柱进行粘结质量检测,对各楼层的承重部位进行拉拔粘结推定,发现拉拔强度推定值稳定在2.1M P a 左右㊂加固柱的正粘结强度提升约10%,模拟结果显示柱中损伤程度降低12%㊂加固柱的荷载挠度曲线如图4(b )所示,可以看出C F R P 加固柱的挠度显著小于普通混凝土柱和素混凝土柱的柱中挠度㊂τ=F πd l a (2)F =E s επd 24(3)式中,F 为柱内钢筋拉力(k N );τ为计算黏结应力(M P a );E s 为钢筋弹性模量(M P a );ε为钢筋应变;d 为钢筋直径(mm )㊂2.4 位移及应力模拟分析根据结构静载荷试验区间的选取原则,选取直径600mm 的混凝土加固柱进行位移模拟和应力模拟试验㊂模拟试验结果表明,柱的挠度限值为15.3mm ,现场实测加固柱的挠度最大值0.06mm ,说明粘贴C F R P 布的挠度符合承载力要求,卸载后加固柱最大残余应变约为3.8ˑ10-6,此时粘贴C F R P 布的加固柱在正常使用极限状态下结构处于弹性变形阶段㊂粘贴C F R P 布加固柱的位移模拟试验结果如图5(a )所示,可以看出顶端荷载激励处的位移处于最大值,最大位移为15.3mm ,位移沿柱顶向柱底逐渐降低㊂位移模拟图网格尺寸选用20mm 和40mm 两种规格,网格尺寸小的模拟结果更准确㊂C F R P 加固柱应力模拟结果如图5(b )所示,应力模拟结果为钢筋混凝土共同作用下的结果㊂结果表明:柱顶和柱底的应力大于柱中应力,应力分布与位移分布存在微小差异,距离柱顶400mm 处存在应力集中现象㊂裂缝的出现与结构承载力发展水平密切相关,因此对加固后的混凝土构件进行裂缝测量十分必要㊂应力集中斑点处产生最大宽度裂缝,损伤程度随裂缝宽度增大而增大㊂加载过程中,出现最大裂缝宽度为0.18mm ,最大裂缝宽度限值为建材世界 2024年 第45卷 第1期0.3mm ,裂缝宽度没有超限,而卸载后,裂缝恢复,应力水平小幅回升㊂2.5 应变测量每根混凝土柱的跨中布置5个应变测点,应变模拟见图6(a )㊂可以看出应变分布与受拉损伤区域的分布相近,将模拟数据进行后处理,得到C F R P 加固柱和普通柱的荷载挠度曲线,如图6(b )所示㊂由图6(b )可以看出:C F R P 加固钢筋混凝土柱的荷载挠度曲线较普通柱的荷载挠度曲线更高,极限承载力提升了12.8%㊂荷载挠度曲线显示C F R P 加固柱的残余挠度小于普通柱的残余挠度,加固柱的刚度比普通钢筋混凝土柱的刚度要大,且加固的钢筋混凝土柱延性更低,脆性更大㊂C F R P 保护层的应用改变了钢筋混凝土柱的极限承载力㊁耗能能力㊁刚度㊁延性和变形能力,出现这一情况的原因是粘贴C F R P 相当于增大了试件截面,极限承载力等因素也随之相应改变,从而显著改变了钢筋混凝土柱的承载能力㊂3 结 论通过有限元模拟C F R P 加固混凝土柱的轴压性能,进行了混凝土抗压强度㊁钢筋应力-应变分析及荷载挠度测定,确定了C F R P 加固柱的性能评估方法,得到了以下结论:a .C F R P 加固的钢筋混凝土柱使承载能力提升了112.8%,且加固柱承载能力随损伤程度增大而不断降低,C F R P 加固也可降低混凝土的碳化程度,提高柱内钢筋应力水平㊂b .根据有限元模拟C F R P 加固柱的位移㊁应力㊁应变及损伤程度,分析发现加固柱的破坏发生在柱中位置处,损伤程度沿着应力降低水平而降低㊂C F R P 加固混凝土柱的应力-应变分布规律与位移分布规律相近㊂c .粘贴C F R P 纤维布的加固方式大大提高了结构的承载力及耐久性,可快速满足灾后结构加固承载力要求㊂参考文献[1] 李鹏鹏.碳纤维(C F R P )布加固砌体的破坏和机理分析[J ].国外建材科技,2008,29(5):48-50,54.[2] 杜志鹏.高层建筑混凝土剪力墙构件加固施工技术[J ].砖瓦,2023(6):149-151.[3] 沈守全.混凝土结构加固设计[J ].建材世界,2011,32(4):83-85.[4] 常 亮.高层建筑工程项目混凝土加固施工技术研究[J ].中国建筑金属结构,2023,22(5):19-21.[5] 程东辉,姚宇航,王 丽.C F R P 布对不同截面混凝土柱加固性能分析[J ].建筑科学与工程学报,2023,40(3):40-49.[6] 朱 章.某工程地下室混凝土结构裂缝加固处理分析[J ].安徽建筑,2023,30(5):58-60.[7] 张东伟,冯尔云,谢 文.钢结构数字化工厂研究及应用[J ].建材世界,2017,38(6):57-60.[8] 张 丽.钢筋混凝土梁粘贴钢板加固的试验研究[J ].交通世界,2023(14):168-170.建材世界 2024年 第45卷 第1期。
基于ANSYS的钢筋混凝土结构非线性有限元分析

2、应力-应变曲线:描述了混凝土和钢筋的在往复荷载作用下的变形和能量吸收能力,显示 了结构的塑性变形和损伤演化过程。
参考内容
引言
钢筋混凝土结构在建筑工程中具有重要地位,其非线性行为对结构性能影响 显著。因此,进行钢筋混凝土结构的非线性有限元分析对于预测结构响应、优化 结构设计具有实际意义。本次演示将根据输入的关键词和内容,建立钢筋混凝土 结构非线性有限元分析模型,并详细描述分析过程、结果及结论。
基于ANSYS的钢筋混凝土结构 非线性有限元分析
基本内容
引言:
钢筋混凝土结构是一种广泛应用于建筑工程的重要材料,其非线性力学行为 对结构设计的安全性和稳定性具有重要影响。为了精确模拟钢筋混凝土结构的真 实行为,需要借助先进的数值计算方法,如非线性有限元分析。ANSYS作为一种 广泛使用的有限元分析软件,为钢筋混凝土结构的非线性分析提供了强大的支持。
对于钢筋混凝土,其非线性行为主要来自两个方面:混凝土的本构关系和钢 筋与混凝土之间的相互作用。在非线性有限元分析中,需要建立合适的模型来描 述这些行为。例如,可以采用各向异性本构模型来描述钢筋混凝土的力学行为, 该模型可以捕捉到材料在不同主应力方向上的不同响应。
二、ANSYS中混凝土本构关系研 究
在进行荷载试验时,通过施加不同大小和方向的荷载,检测结构的变形和破 坏过程。采用静力荷载试验和动力荷载试验两种方式,分别模拟实际结构在不同 荷载条件下的响应。在试验过程中,记录各阶段的位移、应变和荷载数据。
在进行有限元分析时,采用ANSYS软件对试验数据进行模拟分析。首先进行 模态分解,了解结构的基本振动特性。随后进行屈曲分析,预测结构的失稳趋势。 通过调整模型参数和网格划分,对比分析不同方案下的有限元计算结果,为结构 的优化设计提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢筋混凝土与素混凝土有限元模拟对比分析 Comparison and analysis of finite element simulation of reinforced concrete and plain concrete 李君 Li Jun (广西大学 土木建筑工程学院,广西 南宁 530004)
(College of Civil and Architectural Engineering, Guangxi University, Nanning 530004, China) 摘要:钢砼内钢筋与砼弹性模量相差很大,但钢筋用量少,截面积所占比例少,忽略钢筋进行计算,可以减少很多繁琐的计算。
本文利用abaqus 进行模拟,计算钢筋砼与素砼在相同受荷条件下的应力和挠度,同时假定钢筋和砼均在弹性范围内。
Abstract: the steel in reinforced concrete and concrete elastic modulus vary widely, but the steel consumption, less proportion of sectional area, ignore reinforced calculation, can reduce a lot of tedious calculation. In this paper, using abaqus simulation, calculation of reinforced concrete and plain concrete in the same load conditions of the deflection and stress, at the same time assume that steel and concrete are within the elastic range. 通过摸拟计算如图的钢砼简支梁与不计钢筋的该梁,求出跨中应力和挠度及比值。
为了避免出现梁局部受压破坏,在支座和集中力作用处设置0.2m*0.1m*0.05m 的钢板,取材料特性如下:
1、混凝土:弹性模量2c 3e10N/m =E ,密度32400kg/m =c ρ,2.0=μ
2、钢筋:弹性模量22.1e11N/m =Es ,密度300kg/m 87=s ρ,3.0=μ
3、垫块:弹性模量22.1e12N/m =E ,密度300kg/m 87=ρ,3.0=μ
一、建立模型
1、创建部件,选择进入部件模块
创建混凝土梁:点击创建部件图标,进入创建部件对话框,部件名称liang ,选择三维实体拉伸类型,大致尺寸取0.6,点击继续,进入二维绘图界面,绘制梁截面0.2m*0.3m ,完成后输入梁长度2m ,所创建的梁部件如下图。
创建垫块:点击创建部件图标,进入创建部件对话框,部件名称dian,选择三维实体拉伸类型,大致尺寸取0.2,点击继续,进入二维绘图界面,绘制垫块截面0.05m*0.1m,完成后输入垫块长度0.2m。
创建受力筋:点击创建部件图标,进入创建部件对话框,部件名称shou,选择三维线性拉伸类型,大致尺寸取2,点击继续,进入二维绘图界面,选择绘制线性工具,输入坐标(-0.975,0)、(0.975,0),所创建的受力筋部件如下图。
创建架力筋:点击创建部件图标,进入创建部件对话框,部件名称jia,选择三维线性拉伸类型,大致尺寸取2,点击继续,进入二维绘图界面,选择绘制线性工具,输入坐标(-0.975,0)、(0.975,0),。
创建箍筋:点击创建部件图标,进入创建部件对话框,部件名称gu,选择三维线性拉伸类型,大致尺寸取0.5,点击继续,进入二维绘图界面,选择绘制矩形工具,输入坐标(0,0)、(0.14,0.24),所创建的箍筋部件如下图。
2、定义材料和截面属性
在菜单栏模块列表中选择特性模块,在此模块中定义砼、垫块和钢筋的本构关系和截面属性,并将截面属性赋予到相应的部件上。
1) 定义材料
定义砼本构关系:在对话框中输入材料名称hun,常规特性选项下输入密度2400,力学特性选项下设定弹性模量3e10,泊松比0.2。
定义钢筋本构关系:在对话框中输入材料名称gang,常规特性选项下输入密度7800,力学特性选项下设定弹性模量2.0e11,泊松比0.3。
2)定义截面属性
定义砼梁截面属性:在对话框中输入截面名称liang,种类设为实体均质,材料选择hun,其它参数保特不变,点击完成。
定义垫块截面属性:在对话框中输入截面名称dian,种类设为实体均质,材料选择dian,其它参数保特不变,点击完成。
定义受力筋截面属性:在对话框中输入截面名称shou,种类设为梁,类型选择桁架,其它参数不变,点击继续,在对话框中材料选择gang,输入截面面积201e-6,点击确定。
利用同样的方法建立架立筋和箍筋截面,名称为jia和gu的截图属性,截面面积分别为113e-6和50.3e-6。
3)给部件赋予截面属性
在环保栏部件选项中选择liang,点击左侧工具栏的截面赋予图标,选中liang部件,在编辑截面赋予对话框中选中截面liang,点击确定,部件变为青色。
利用同样的方法对垫块、受拉筋、架立筋和箍筋赋予相应的截面属性。
3、定义装配件
在环境栏模块列表中选择装配功能模块,点击工具栏的创建实体图标,在对话框中选择liang部件,实体类型设为独立,勾选自动偏离其他实体,生成梁部件的三维图。
利用同样的方法生成垫块、受力筋、架立筋和箍筋的三维图。
利用移动、旋转和阵列工具,形成砼梁、钢筋笼,利用合并工具将钢筋笼合并为一个实体part1,最后将其移至砼梁中,结果如下图。
4、定义分析步
在环境栏模块列表中选择分析步功能模块,点击创建分析步图标,在对话框中选择静力一般类型,分析步时间10秒,最大增量步数1000,初始增量步0.1,最小增量步0.0001,最大增量步10。
5、定义约束
在环境栏模块列表中选择相互作用功能模块来定义模型间的相互约束关系。
点击工具区的定义相互作用图标,定义垫块与梁的绑定关系和钢筋笼与砼梁的內置区域关系。
通过定义基准、参考点,然后定义集中力作用点的藕合关系。
6、定义荷载和边界条件
在环境栏模块列表中选择荷载功能模块,进行荷载和边界条件的定义。
定义边界条件:点击工具栏的定义边界条件图标,在对话框中选择位移和转角类型,选择支座垫块底面,设置U1、U2、UR2、UR3为0。
定义荷载:点击工具栏的定义荷载图标,在对话框中选择集中力类型,选择跨中垫块参考点,在CF2栏中输入-10000。
7、划分网络
在环境栏模块列表中选择划分网络功能模块。
为使网络整齐,在划分网络前,对梁进行分区。
点击布置种子图标,在对话框中输入种子大致尺寸0.1,点击完成。
点击划分网络图标,选择全部模型,点击完成,结果如图。
8、提交分析作业
在环境栏模块列表中选择作业功能模块,建立作业,提交。
在计算素混凝土时,将part1和钢筋笼的内置区域禁用,重新建立作业即可。
二、结果分析
钢筋混凝土梁计算结果:跨中最大挠度9.649e-5m,跨中混凝土最大拉应力7.21e5N/m2
钢筋混凝土梁挠度图
钢筋混凝土梁应力图
素混凝土梁计算结果:跨中最大挠度11.28e-5m,跨中混凝土最大拉应力9.829e5N/m2
两种情况对比:跨中挠度比9.649e-5/11.28e-5=0.8554,应力比7.21/9.829=0.7335。
三、结论
忽略钢筋对简支梁进行计算,跨中挠度比较接近,而跨中应力相差较大。
原因:由于钢筋截面积较小,对整个梁的截面刚度提升不大,故挠度变化不大;而因为钢筋存在,梁的受压高度发生改变,这时忽略钢筋计算应力是没有意义的。
参考文献
[1]王玉镯,傅传国. ABAQUS结构工程分析及实例详解[M].北京:中国建筑工业出版社,
2010
[2] 王勖成. 有限单元法[M],北京,清华大学出版社,2003.7。