混凝土的开裂有限元分析-XinzhengLu
混凝土结构裂缝原因分析及治理方法

混凝土结构裂缝原因分析及治理方法一、前言混凝土结构中出现裂缝问题一直是工程界所关注的话题。
裂缝的产生可能会导致混凝土结构的强度和稳定性下降,进而危及整个工程的安全。
因此,对混凝土结构裂缝的原因进行分析,寻找有效的治理方法,具有非常重要的现实意义。
二、混凝土结构裂缝的分类混凝土结构裂缝可分为以下几种类型:1. 建筑裂缝:建筑物的裂缝主要是由于建筑物自身的重量和变形引起的。
2. 技术裂缝:技术裂缝主要是由于混凝土本身的收缩和膨胀引起的。
3. 力学裂缝:力学裂缝主要是由于外部力的作用引起的。
三、混凝土结构裂缝的原因分析1. 混凝土本身的缺陷混凝土本身存在空洞、孔隙、气泡等缺陷,这些缺陷在混凝土结构的使用过程中会逐渐扩大,形成裂缝。
2. 温度变化当混凝土遭受到温度变化时,会发生热胀冷缩的现象,这种现象会导致混凝土结构的收缩和膨胀,从而引起裂缝。
3. 湿度变化当混凝土受到湿度变化的影响时,混凝土会膨胀和收缩,从而引起裂缝。
4. 荷载变化当混凝土承受荷载变化时,会产生应力,当应力超过混凝土的承受能力时,就会产生裂缝。
5. 不良施工质量混凝土结构的施工质量不良,如振捣不均匀、养护不当等,也会引起混凝土结构裂缝。
四、混凝土结构裂缝的治理方法1. 补强法补强法是一种常见的治理混凝土结构裂缝的方法。
其主要原理是在混凝土结构的裂缝处加固,提高混凝土结构的强度和稳定性。
2. 密封法密封法是一种将混凝土结构的裂缝处进行填充,以防止混凝土结构裂缝的扩大和进一步损坏。
3. 基础加固法基础加固法主要是针对混凝土结构的基础进行加固,提高混凝土结构的整体稳定性和承重能力。
4. 增强法增强法是一种在混凝土结构表面覆盖一层增强材料,以提高混凝土结构的强度和稳定性。
五、混凝土结构裂缝治理的注意事项1. 治理混凝土结构裂缝时,一定要找到裂缝产生的原因,针对原因进行治理。
2. 在进行混凝土结构裂缝治理前,要对混凝土结构进行全面的检测和评估,确定治理方案。
混凝土裂缝的原因分析及控制措施

混凝土裂缝的原因分析及控制措施混凝土裂缝是指混凝土结构中出现的不连续、开口的裂痕,主要发生在混凝土干燥收缩、负荷变化或温度变化等因素的作用下。
混凝土裂缝对结构的稳定性和使用寿命产生不良影响,因此需要对其原因进行分析,并采取相应的控制措施。
一、混凝土裂缝的原因分析:1. 混凝土干燥收缩:混凝土在初凝后会经历水分蒸发的过程,而且水分蒸发还会受到湿度和温度的影响。
当混凝土内部水分蒸发速度大于外部补充水分的速度时,就会引起干燥收缩,从而产生裂缝。
2. 负荷变化:混凝土结构在使用过程中会受到负荷的作用,如荷载的增加或减少会使混凝土结构发生变形,如果变形超过混凝土的承载能力,就会产生裂缝。
3. 温度变化:混凝土的收缩系数较大,温度变化会导致混凝土的体积发生变化,从而产生裂缝。
4. 施工不当:施工过程中如果混凝土的浇筑、振捣、维护等环节操作不当,就会导致混凝土内部存在空洞、质量不均匀等问题,从而引起裂缝的出现。
二、混凝土裂缝的控制措施:1. 控制混凝土配合比:在设计混凝土配合比时,可以根据具体工程要求,在有效保证混凝土强度的前提下,适当增加水灰比,以减小混凝土的干燥收缩。
2. 加强混凝土养护:混凝土浇筑后应及时进行养护,包括保湿、防止太阳直射和增加覆盖物等措施,能够降低混凝土的干燥速度,减小干燥收缩的发生。
3. 采用合理的防裂措施:可以在混凝土结构中设置防裂缝带或者施加内部拉伸钢筋来抑制裂缝的出现,有效地提高结构的抗裂能力。
4. 控制混凝土温度:在混凝土施工过程中要注意控制混凝土的温度,可以采取降低混凝土温度的措施,如在混凝土中添加掺合料或使用低热水泥等。
5. 加强施工过程的质量控制:要加强对混凝土施工过程的质量控制,确保混凝土的浇筑、振捣等操作按照规范要求进行,杜绝施工不当导致的裂缝。
混凝土裂缝的产生与干燥收缩、负荷变化、温度变化以及施工不当等因素密切相关。
通过合理控制混凝土配合比、加强混凝土养护、采用防裂措施、控制混凝土温度以及加强施工质量控制等措施,可以有效减少混凝土裂缝的产生,提高混凝土结构的稳定性和使用寿命。
建筑混凝土结构出现裂缝原因及解决对策

建筑混凝土结构出现裂缝原因及解决对策建筑混凝土结构出现裂缝的原因可以有多种,包括以下几个方面:材料的问题、施工过程的问题、设计问题、加载问题和环境因素等。
材料的问题是导致混凝土结构裂缝的一个重要原因。
混凝土强度不达标或者使用的混凝土材料质量不佳,都会导致结构强度不足,容易出现裂缝。
混凝土配合比设计不合理,也会引发结构的裂缝问题。
施工过程中的问题也是导致混凝土结构裂缝的原因之一。
施工质量不良、施工操作不规范、振捣不当等都会导致混凝土结构的质量不佳,进而出现裂缝问题。
设计问题也可能导致混凝土结构裂缝。
设计时未考虑到不同材料的收缩和膨胀系数不同,会导致结构的裂缝。
设计时未考虑到应力集中的问题,也容易引发结构的裂缝。
加载问题也可能导致混凝土结构的裂缝。
如果结构的荷载超过了设计荷载,或者在使用过程中承受了过大的荷载,都可能引发结构的裂缝。
环境因素也是导致混凝土结构出现裂缝的一个重要原因。
气候变化、温差过大、湿度过高等环境因素都会使混凝土结构受到影响,进而引发裂缝。
针对以上问题,可以采取以下解决对策:要加强材料的质量控制。
选择质量合格的混凝土材料,确保混凝土强度和配合比设计符合要求。
加强施工过程的质量控制。
加强工人的技术培训,确保施工操作规范,振捣均匀,保证混凝土结构的质量。
要加强设计力量,合理设计混凝土结构的配合比和构造形式,避免应力集中,减少结构裂缝的发生。
要合理控制结构的荷载,确保结构不会超过设计荷载,避免超载引发裂缝。
要加强对环境因素的考虑,做好防水、防潮、隔热等工作,减少环境因素对混凝土结构的影响。
对于建筑混凝土结构出现裂缝的问题,需要综合考虑材料、施工、设计、加载和环境等因素,制定相应的解决对策,确保混凝土结构的质量和安全。
混凝土裂缝数值分析新方法

扩展有限元法(XFEM)
由于引入了非连续位移模式,在扩展有限元法中不 连续位移场的描述不再依赖于单元边界。
流形元方法
数值流形方法以两套覆盖——数学覆盖与物理覆盖为基础,位 移函数建立在物理覆盖上。在采用有限覆盖体系时可直接借用有 限元网格建立数学覆盖。此时数学覆盖定义为对有限元网格中的 任一节点与该点相关联的单元区域的集合。物理覆盖为数学覆盖 的细分,数学覆盖与材料的重叠部分形成一物理区域,如该物理区 域内有介质分界线,节理或裂隙等将其分割为独立的两个或多个 子区域时,则该物理区域内有两个或多个物理覆盖,否则只是一个 物理覆盖。
无网格方法
无网格法是在建立问题域的系统代数方程时,不需要利 用预定义的单元信息,只利用更容易生成的更灵活、更 自由的结点进行域离散的方法。
(a) (a) 有限元法求解域离散
(b) (b) 无单元法求解域离散
无网格方法
总结
A
嵌入式模型
B
扩展有限元 方法
裂缝
C
流行元法
D
无网格法
扩展有限元法(XFEM)
离散式
嵌入不连续方法形成的刚度矩阵是非 对称的,且其对不连续位移场的描述在单 元间互不协调。分离式裂纹模型的网格敏 感性主要源于裂纹路径对单元边界的依赖, 特别是在开裂路径难以预知的情形。
有限 元法
内嵌式
扩展有限元法
分布式
扩展有限元法(XFEM)
由于引入了非连续位移模式,在扩展有限元法中不 连续位移场的描述不再依赖于单元边界。
突变函数,来模拟裂缝引起的应变非连续性。
如果叠加的是阶跃函数,则又被成为强非连 续模型,如果叠加的是一个突变函数,则被成为 是弱非连续模型。
内嵌裂缝单元模型
混凝土裂缝原因的分析及处理方法

混凝土裂缝原因的分析及处理方法混凝土是一种常用的建筑材料,广泛应用于各种工程中,如房屋建筑、桥梁、道路等。
然而,在长时间的使用过程中,我们有时会发现混凝土出现裂缝的情况。
这些裂缝不仅会影响建筑物的美观,更重要的是可能会对结构的稳定性产生影响,了解混凝土裂缝的原因以及相应的处理方法是非常重要的。
一、混凝土裂缝的原因:1. 鸡蛋壳效应:混凝土在干燥过程中会发生体积收缩,类似于鸡蛋壳收缩而出现细小的裂缝。
这种收缩主要是由于水分的蒸发引起的,当混凝土受到干燥空气的作用时,内部水分会逐渐蒸发,导致体积缩小。
2. 温差应力:混凝土在遭受温度变化时,会产生热胀冷缩的现象,而这种温度变化可能导致混凝土产生应力,从而引发裂缝的形成。
夏季阳光直射下的高温能够使得混凝土表面迅速升温,而内部温度变化相对较慢,这种温度差异会导致混凝土内部产生应力,最终产生裂缝。
3. 荷载作用:混凝土在承受荷载时,如果超过其承载能力范围,就会产生应力集中,从而引发裂缝。
当车辆通过道路时,道路的混凝土可能会受到较大的荷载作用,如果道路的设计不合理或者材料质量不过关,就会导致混凝土出现裂缝。
4. 基础沉降:建筑物的基础沉降不均匀也是混凝土裂缝的常见原因之一。
基础沉降不均匀会导致建筑物在不同位置上受力不一致,从而造成混凝土出现裂缝。
这种情况通常需要通过加固基础或重新设计来解决。
二、混凝土裂缝的处理方法:1. 裂缝修补:对于小裂缝,可以采用裂缝修补的方法进行处理。
常用的修补材料有修补砂浆、聚合物修补材料等。
在进行修补之前,需要先将裂缝清理干净,并确保表面干燥、无油污和松散物质,以保证修补材料的粘结性能。
2. 加固处理:对于较大的裂缝或者是由于荷载作用导致的裂缝,可能需要进行加固处理。
可以采用添加钢筋增强、注浆加固等方法来增加混凝土的承载能力和抗裂性能。
3. 温度控制:针对温差应力引起的裂缝,可以采取温度控制的措施。
在施工过程中,可以采用降温措施,如喷水降温、覆盖遮阳网等,来控制混凝土的温度变化,减少温差应力引起的裂缝。
混凝土裂缝成因分析及处理方法

混凝土裂缝成因分析及处理方法一、混凝土裂缝成因分析1.1 温度变化混凝土中的水分会随着温度的变化而膨胀或收缩,从而导致混凝土的体积变化,引起裂缝的产生。
1.2 混凝土干缩混凝土在硬化过程中会失去部分水分,从而导致收缩,这种收缩称为干缩。
干缩过程中混凝土内部的应力会增大,当应力达到一定程度时,就会引起裂缝的产生。
1.3 荷载变化混凝土结构在使用过程中会承受不同的荷载,当荷载过大或荷载变化过快时,会导致混凝土内部的应力超过其承受能力,从而引起裂缝的产生。
1.4 施工不当混凝土施工过程中,如果振捣不均匀、水泥浆配比不合理、混凝土振捣时间过长等因素会导致混凝土内部的应力不均匀,从而引起裂缝的产生。
1.5 基础沉降基础沉降是指建筑物基础在使用过程中出现下沉现象,这种下沉会导致混凝土结构的应力发生变化,从而引起裂缝的产生。
二、混凝土裂缝处理方法2.1 预防措施为了避免混凝土裂缝的产生,可以采取以下措施:(1)控制混凝土施工过程中的水泥浆配比,确保混凝土的质量;(2)在混凝土施工过程中注入适量的膨胀剂,以增加混凝土的柔性;(3)在混凝土施工过程中控制施工速度,避免振捣时间过长;(4)合理设计建筑物的基础,避免基础沉降;(5)在混凝土施工过程中,注入适量的膨胀剂,以增加混凝土的柔性。
2.2 处理方法当混凝土裂缝已经产生时,需要采取相应的处理方法:(1)小裂缝处理:对于宽度小于0.2mm的裂缝,可以采用填充材料进行处理,填充材料可以选择加强型环氧树脂、聚氨酯等材料。
(2)中等裂缝处理:对于宽度在0.2mm-2mm之间的裂缝,可以采用注浆技术进行处理,注浆材料可以选择环氧树脂、聚氨酯等。
(3)大裂缝处理:对于宽度大于2mm的裂缝,需要采用更为复杂的处理方法,如局部重建、切割、再铺混凝土等。
2.3 注意事项在进行混凝土裂缝处理时,需要注意以下事项:(1)对于大面积的裂缝,需要进行全面的检查和分析,找出裂缝产生的原因,以避免再次出现裂缝。
大体积混凝土裂缝产生原因及措施分析

大体积混凝土裂缝产生原因及措施分析大体积混凝土结构裂缝是指混凝土结构中长度大于0.3mm的开裂现象。
裂缝的产生原因较为复杂,主要包括以下几个方面:1. 强度不足:混凝土的强度不足是造成裂缝的常见原因之一。
当混凝土受到较大的外部或内部力作用时,其强度不足以承受这些力,就会产生裂缝。
在混凝土初凝前施加大荷载、负温度和湿度效应等,都可能引起强度不足造成裂缝。
2. 温度变化:温度变化是混凝土裂缝的一个重要原因。
混凝土具有较大的体积收缩和膨胀系数,当环境温度发生变化时,混凝土会出现收缩或膨胀,从而产生应力,导致混凝土裂缝的产生。
3. 干缩变形:在混凝土固化过程中,由于水分的蒸发和水泥水合反应,会导致混凝土体积收缩,从而产生应力和裂缝。
尤其是在高温和低湿度环境下,混凝土的干燥收缩会更为明显。
4. 沉降和变形不均匀:混凝土结构在建筑物使用过程中,由于荷载的作用,地基沉降的不均匀等原因,会导致混凝土结构产生变形不均匀,从而产生应力和裂缝。
为了减少大体积混凝土裂缝的发生,可以采取以下措施:1. 设计合理:在混凝土结构设计中,要根据结构的受力情况和使用环境,合理选择混凝土的配合比和材料,确保混凝土强度满足要求,并结合开裂控制的要求进行设计。
2. 施工管理:在混凝土施工过程中,要加强对材料的质量控制,确保混凝土的配合比、施工工艺等满足设计要求。
严格控制浇筑和养护过程中的温度和湿度,减少温度应力和干缩变形。
3. 使用温度控制措施:可以采取降低混凝土温度的方法,如使用冷却剂、冷却水等进行降温处理。
对于大块混凝土结构,可以通过分段浇筑、分段养护等方式控制温度应力。
4. 控制荷载:在设计和施工过程中,要合理布置和安排荷载,避免过载或集中荷载对混凝土结构造成过大的应力,引起裂缝的产生。
5. 增加控制缝:在混凝土结构中设置合适的控制缝,可以使混凝土在收缩和变形过程中产生的应力集中在控制缝上,减少裂缝的产生。
对于大体积混凝土结构,要从设计、施工和养护等方面综合考虑,采取合理的措施,减少裂缝的产生,保证结构的稳定和耐久性。
混凝土裂缝成因分析及处理技术

混凝土裂缝成因分析及处理技术混凝土作为一种广泛应用于建筑结构中的材料,其特点是强度高、耐久性好。
然而,混凝土在使用过程中,往往会出现一些裂缝。
这些裂缝不仅影响美观,还可能导致结构的稳定性问题。
因此,混凝土裂缝的成因分析及处理技术成为了建筑领域中一个非常重要的课题。
一、成因分析1. 浇筑施工造成的裂缝在混凝土浇筑施工过程中,由于一些不可忽视的因素,会导致混凝土出现裂缝。
比如,水泥混凝土的初凝时进行组装操作,如果水泥浆砂浆的凝集体积过高,或者水泥浆砂浆的凝聚度变差,都会导致混凝土表面出现微小的裂纹。
此外,浇注的时候,如果混凝土的流动性不足,或者搅拌不均匀,也会导致浇注的混凝土表面形成较为明显的裂缝。
2. 温度变化引起的裂缝混凝土在硬化过程中,会释放出大量的热量。
如果没有采取适当的措施控制混凝土的温度,就会出现温度变化引起的裂缝。
比如,在施工时,如果未采用预应力策略,就会导致混凝土的温度差异较大,引起裂缝。
此外,在季节交替时,尤其是冬季,由于温度的快速下降,混凝土容易因为收缩而引起裂缝。
3. 荷载产生的应力引起的裂缝建筑结构承受着来自外界的各种荷载作用,这些荷载会引起混凝土内部的应力。
如果这些应力超过了混凝土本身的承载能力,就会导致混凝土的裂缝。
比如,当建筑结构遭受到地震或者风力的荷载时,混凝土很容易受到应力的影响,形成裂缝。
二、处理技术1. 填充修补对于表面的细小裂缝,可以采用填充修补的方法进行处理。
首先需要清理裂缝表面的杂物,然后采用专用的填充材料将裂缝充填,使其密封。
填充材料可以选择聚合物修补剂等,具有较好的粘着力和耐久性。
2. 混凝土补强对于较大的裂缝,特别是那些冲击和荷载承受性较差的地方,需要采取混凝土补强的措施。
一种常见的补强方法是使用纤维增强材料,将其与混凝土混合,增加混凝土的抗张强度和韧性。
此外,也可以使用钢筋等进行增强。
3. 控制温度变化为了避免温度变化引起的裂缝,可以采用控制温度变化的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 (1 + ν ) K III E
!
求θ 使得(σθ)max
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
计算方法
∂σ θ =0 ∂θ r = r0
裂缝扩展判断标准
∂ 2σ θ ∂θ 2 <0 r =r0
受弯破坏
!
裂缝使得混凝土的抗弯刚度损失超过1/3 斜裂缝是构件破坏的重要原因 裂面抗剪贡献占整个构件承载力的30%以上
!
受剪受扭破坏
! !
!
局部承压破坏、受拉破坏都和裂缝行为 关系密切
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
K I cos
θ0
2
(3 cos θ 0 − 1) − K II sin
θ0
2
K θ > K IC
!
(9 cos θ 0 + 5) > 0
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
有限元法求KI, KII
u= 1 4G 1 4G r [K I f1 (θ ) + K II g1 (θ )] 2π r [K I f 2 (θ ) + K II g 2 (θ )] 2π
! ! !
最大周向应力理论
σr =
σθ = τ rθ =
裂缝扩展单位长度时所需要的能量 G 弹性情况下,能量判据可以与应力强度因子判 据互换
2 K II E G II = 2 2 (1 − ν ) K II E
最大周向应力理论 能量释放率理论 应变能密度理论
θ θ 1 K I (3 − cosθ ) cos + K II (3 cosθ − 1) sin 2 2 2 2πr
清华大学研究生课程——《钢筋混凝土有限元》
断裂力学的起因
!
断裂力学的基本理论
!
裂纹尖端应力场
!
!
传统工程设计中所谓的“容许应力设计准 则”,其实是“平均应力”设计准则 平均应力很多时候无法保证安全
基本开裂形式
! ! !
弹性理论得到的裂纹尖端应力
KI 2πr KI 2πr KI 2πr 3θ θ θ cos (1 − sin sin ) 2 2 2 3θ θ θ cos (1 + sin sin ) 2 2 2 3θ θ θ cos (sin cos ) 2 2 2
张开型(I) 滑开型(II) 撕开型(III)
σx = σy = τ xy =
!
复合裂缝
σ = F/A
r->0,应力->无穷
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
应力强度因子
! ! !
应力强度因子计算
!
裂缝发展判据
应力强度因子计算方法
!
Kθ =
θ 1 cos 0 [K I (1 + cosθ 0 ) − 3K II sin θ 0 ] 2 2
弹性力学方法 手册法 有限元法
θ 0 = arctan
0
2 − 3K I ± K I2 + 8K II
!
8 K II
( K II ≠ 0) ( K II = 0)
! !
裂纹尖端的应力趋向于无穷大 应力强度理论已经不再适合 引入断裂强度因子等概念来描述裂纹尖 端附近的应力场
无限大平板
K I = lim[ 2πr (σ y )θ =0 ] = σ πa
r →0
K II = τ πa
!
材料的断裂韧度 K 当应力强度因子大于材料的断裂韧度时, 裂缝将扩展 用途
! ! !
脆性材料与半脆性材料
! !
混凝土开裂分析方法
!
区分
!
脆性材料 (brittle) 半脆性材料 (Quasi-brittle)
半脆性断裂
经典断裂力学方法
! !
经典断裂力学方法
!
优点:理论严格 缺点:比较适用于金属和均匀材料,不能分析大量 裂缝 优点:简单实用,部分模型可以分析大量裂缝 缺点:经验成分多,参数理论依据不足
1 θ cos [K I (1 + cos θ ) − 3K II sin θ ] 2 2 2πr 1 2 2πr cos
σ
θ
τr σ
θ
K I2 E GI = 2 2 (1 − ν ) K I E
θ
2
[K I sin θ + K II (3 cos θ − 1)]
r
G III =
v=
θ θ 3θ cos (1 − sin sin ) 2 2 2 θ θ 3θ cos (1 + sin sin ) 2 2 2 θ θ 3θ cos (sin cos ) 2 2 2
!
!
半经验半理论方法
! !
!
引入断裂韧度、断裂能等概念,用以此判断 破坏 K<Kc 或 G<Gc 或 J<Jc 采用传统的强度分析理论,但是部分考虑混 凝土的断裂力学指标(断裂能) σ<σcr
脆性断裂
半经验半理论方法
!
!
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
非线性断裂力学
K
! ! !
小范围屈服
!
材料不再是理想弹性,而是弹塑性材料 不再有应力趋于无穷大的情况 仍然是目前研究的热点问题
Von Mises 屈服条件
(σ 1 − σ 2 )2 + (σ 2)2 = 2σ s
σx = σy = τ xy =
KI 2πr KI 2πr KI 2πr
K III = τ l πa
!
其他情况:解析解、数值解
已知裂缝尺寸,判断裂缝是否会扩展 材料和应力,判断最大允许裂缝尺寸 已知应力状态和裂缝尺寸,选择材料
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
能量判据
! !
裂纹的扩展方向
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
清华大学研究生课程——《钢筋混凝土有限元》
混凝土的开裂与裂缝处理
举例
!
混凝土的开裂有限元分析
江见鲸 陆新征 清华大学土木工程系
2005
!
!
!
混凝土的一个重要特点是它在较低的应力水平 下就会开裂,且很多混凝土结构都是带裂缝工 作的 开裂后的混凝土其力学行为与未开裂混凝土有 很大不同,能否正确模拟开裂后的混凝土是混 凝土有限元分析中的关键问题 混凝土中大量的裂缝是对基于连续体力学的有 限元方法的一个重要挑战