混凝土非线性有限元分析-毛小勇-第四讲
钢筋混凝土非线性分析讲解

参考教材: 1、钢筋混凝土结构非线性有限元理论与应用(同济,1995)
(吕西林、金国芳、吴晓涵) 2、钢筋混凝土非线性分析(同济,1984)
(朱伯龙、董振祥)
3、钢筋混凝土非结构线性分析(哈工大,2007) (何政、欧进萍)
学习要求: 1、认识混凝土材料的非线性性能 2、学习非线性分析基本方法 3、学习科学研究的方法和思路
(可作为:研究工具、计算工具、模拟现场过程)
三、钢筋混凝土结构有限元数值分析的特点 (与其它固体材料有限元分析的不同)
1、模拟混凝土的开裂和裂缝发展(包括裂缝闭合)过程 2、模型中反映钢筋与混凝土间的粘结、滑移 3、模拟混凝土材料应力峰值后和钢筋屈服后的性能 4、材料非线性和几何非线性并存 5、分析结果强烈依赖于钢筋、混凝土材料的本构关系和
拔出试验:假定s1→τ1→σs2、σc2→εs2、εc2→s2→τ2→
σs3、σc3→εs3、εc3→······→sn→τn→σsn=σs0(?)
3、拔出试验和拉伸试验的粘结-滑移全过程分析方法 2)反复加载下的粘结-滑移全过程分析 •用反复荷载下的τ-s关系 •裂缝或构件边缘处局部τ-s关系过渡区域处理
4、反复加载:周期性静力荷载作用下交替产生拉、压应力 重复加载:周期性静力荷载作用下仅产生单向应力
第二章:钢筋混凝土材料的本构关系
一、本构关系的理论模型 1、线弹性模型 2、非线性弹性模型 3、弹塑性模型(理想弹塑性、线性强化弹塑性、刚塑性) 4、粘弹性和粘塑性的流变模型
1)流变学的三个简单流变元件:
曲线形状基本不变 峰值应变基本不变。
4)设备刚度的影响:(下降段的影响)
5)加载时间的影响:徐变问题
基本概念:【朱】Page17 基本徐变(εbc):内部水分不变时 干徐变(εdc):总徐变-基本徐变 徐变度(εsp):单位应力下的徐变 徐变系数(φc ):徐变值/弹性变形
混凝土结构的非线性分析与设计

混凝土结构的非线性分析与设计一、绪论混凝土结构是现代建筑中应用最广泛的结构形式之一,其具有强度高、耐久性好、施工方便等优点。
但在实际工程中,混凝土结构受到外力作用而产生的非线性响应问题已经成为一个研究热点。
本文旨在介绍混凝土结构的非线性分析与设计方法。
二、混凝土材料力学性质的分析混凝土材料的力学性质是非线性的,其应力-应变关系不符合胡克定律。
因此,在进行混凝土结构的非线性分析与设计时,需要对混凝土材料的力学性质进行分析。
1.混凝土材料的本构模型混凝土材料的本构模型是描述混凝土材料应力-应变关系的数学模型。
目前常用的混凝土材料本构模型有双曲线模型、抛物线模型、三次多项式模型等。
2.混凝土的损伤力学混凝土在受到外力作用时,会产生裂缝和微观损伤。
混凝土的损伤力学是研究混凝土在受力作用下的损伤演化规律和损伤对力学性质的影响。
三、混凝土结构的非线性分析方法混凝土结构在受到外力作用时,由于混凝土材料的非线性特性,其响应也是非线性的。
因此,需要采用一些特殊的非线性分析方法来进行分析。
1.有限元法有限元法是目前最常用的混凝土结构非线性分析方法。
有限元法的基本思想是将整个结构分割成许多小的单元,通过计算每个单元的应力-应变关系来得到整个结构的响应。
2.离散元法离散元法是一种适用于研究颗粒材料行为的方法。
它将问题离散化为许多小的颗粒,并通过计算颗粒间的相互作用来得到整个结构的响应。
3.模型试验法模型试验法是通过建立一个与实际结构尺寸相似的模型进行试验,得到结构的力学性质。
这种方法具有试验结果可靠、直观等优点,但是需要注意模型与实际结构的相似性。
四、混凝土结构的非线性设计方法混凝土结构的非线性设计是指在考虑混凝土材料非线性特性的基础上,进行混凝土结构的设计。
1.承载力设计法承载力设计法是指在混凝土结构达到破坏状态之前,其承载力必须满足规定的要求。
这种设计方法适用于规范中没有明确规定非线性分析方法的情况。
2.变形控制设计法变形控制设计法是指在混凝土结构达到一定变形或裂缝宽度之前,其承载力必须满足规定的要求。
钢筋混凝土杆系结构非线性分析-毛小勇

ab
1 1 L 2 1 1 2 2 3 2 2 3 EI EI 12 EI 0 A EI B B EI 0
1 GA L
w
ab ba
bb
A 框架A B 框架-剪力墙B C 框架C 1 2 3 4 (b)结构计算简图
框架A+框架C
框架-剪力墙B
(a)结构平面图
对静力分析,每一个节点均具有水平位移、竖向位移和结 点的转动位移三个未知量(静力自由度),整个结构共有 3n个静力自由度(n为节点总数)。
对动力分析,假定全部质量分别 集中在各平面结构的节点处,在 每个节点处形成一个质点,如图 所示。若忽略转动惯量的影响, 每一楼层仅需考虑一个“侧移” 动力自由度,每个质点考虑一个 竖向动力自由度,质点不存在转 动的动力自由度,因此结构的动
A
/ /
θ BB
/
B
B
A
/
' M A M A R ' M B M B
' A T A ' R B B
则杆端弯矩和转角的关系为
M A A K M B B
1 1 L 4 1 1 3 1 6 4 2 3 EI 12 EI 0 EI B EI 0 A EI 0 GAw L
由柔度矩阵可求得单元刚度矩阵
k aa k ba k ab aa k bb ba
为转换矩阵
V A 和 V B分别为单元杆端的剪力
钢筋混凝土非线性分析分解

第二讲
三、混凝土的本构关系
2、混凝土应力应变曲线的理想化
1)单调加载σ-ε曲线: 单向受压:Saenz模式 朱伯龙模式 【朱】Page 13 单向受拉:二直线模式 三直线模式 曲线模式(朱伯龙模式) 2)重复加载σ-ε曲线: 直线模式:Blakeley模式 曲线模式:朱伯龙模式 卸载:【吕】式2.23 再加载: 式2.24-2.26 (与卸载点位置有关)
a)应力不变,且σ<0.5fc (线性徐变或有限徐变): 幂表达式 指数表达式 双曲线表达式 对数表达式
其中各常数可以调整,用以考虑 时间和不同因素的影响
在此基础上,另加调整参数,对表达式进行修正 【朱】Page24 式1.37 考虑自由收缩、水泥水化程度 式1.38、1.39 考虑湿度、尺寸、龄期 式1.40 考虑湿度、尺寸、龄期、配合比、其它
(直线模型只是对反复加载曲线的一种近似简化!)
三、混凝土的本构关系 1、混凝土的应力应变曲线 1)加载方向的影响:受压:(弹性极限、临界应力) 受拉:(弹性极限) 2)加载制度的影响:单调加载: 重复加载:等应力、等应变、渐增应变 反复加载:混凝土开裂影响 骨料咬合裂面效应 3)加载速率的影响: 特点:强度提高、弹性模量提高
2)粘弹性流变模型:广义凯尔文模型 3)粘塑性流变模型:宾哈姆模型 4)粘弹粘塑性流变模型(混凝土徐变和钢筋应力松驰) 5、断裂力学模型:张开型、剪切型、扭转型
二、钢筋的本构关系 1、钢筋的应力应变曲线 1)材料品种的影响:软钢、硬钢 2)加载速率的影响:冲击荷载(爆炸、打桩)、地震作用
特点:随加载速率提高:强度提高 曲线形状基本不变 弹性模量基本不变
二、钢筋混凝土非线性分析方法 ——有限元数值分析 有限元数值分析方法的优点: (能解决混凝土结构不能解决的问题) 1、计算模型中反映钢筋、混凝土材料的非线性特性 2、考虑钢筋和混凝土之间的粘结 3、一定程度上模拟节点和边界条件 4、提供大量信息:应力、应变的全过程分析,开裂后状况 5、部分代替试验,进行参数分析 (可作为:研究工具、计算工具、模拟现场过程)
混凝土结构的非线性分析及其应用

混凝土结构的非线性分析及其应用一、引言混凝土结构非线性分析是结构工程领域的重点研究之一。
非线性分析的主要目的是确定结构在极限状态下的行为,以确保结构的安全可靠性。
本文将全面介绍混凝土结构的非线性分析及其应用。
二、混凝土结构的非线性分析理论1. 混凝土材料的本构关系混凝土材料的本构关系是非线性分析的基础,它描述了混凝土材料在不同应力状态下的应变关系。
常见的混凝土本构关系有弹性-塑性本构关系、本构关系、本构关系、本构关系等。
2. 非线性分析的基本理论混凝土结构的非线性分析是以有限元方法为基础,通过数值计算来模拟结构在不同荷载作用下的变形和破坏过程。
非线性分析的基本理论包括材料非线性理论、几何非线性理论和边界条件非线性理论。
三、混凝土结构的非线性分析应用1. 极限荷载分析混凝土结构的极限荷载分析是非线性分析的主要应用之一。
该分析可以确定结构在极限状态下的承载能力,以便进行结构优化设计。
在实际工程中,通常采用弹性-塑性本构关系,结合荷载组合和极限荷载的确定方法来进行分析。
2. 抗震分析混凝土结构的抗震分析是非线性分析的另一个重要应用。
随着抗震设计的发展,非线性分析已经成为抗震设计的重要工具。
通过抗震分析,可以确定结构在地震荷载作用下的变形和破坏过程,以便进行结构的抗震设计和优化。
3. 桥梁结构分析混凝土桥梁结构的分析是非线性分析的典型应用之一。
在桥梁结构中,荷载作用下的变形和破坏过程往往非常复杂,需要采用非线性分析方法来进行分析。
通过桥梁结构分析,可以确定结构在不同荷载作用下的变形和破坏过程,以便进行结构的设计和优化。
四、混凝土结构的非线性分析工具1. 有限元软件目前,有限元软件是进行混凝土结构非线性分析的主要工具之一。
常见的有限元软件有ABAQUS、ANSYS、LS-DYNA、MSC.Marc等。
2. 实验测试设备实验测试设备是进行混凝土结构非线性分析的另一个重要工具。
常见的实验测试设备有万能试验机、振动台、拉压试验机等。
混凝土结构中的非线性分析方法研究

混凝土结构中的非线性分析方法研究一、引言混凝土结构是现代建筑中常用的结构形式之一,其特点是具有较好的强度和耐久性。
随着建筑设计和建造技术的不断发展,建筑结构也越来越复杂,因此需要更加精确的分析方法来对结构进行评估和优化。
非线性分析方法就是一种能够模拟混凝土结构在高负荷下的行为的方法,本文将对混凝土结构中的非线性分析方法进行详细研究。
二、混凝土结构的非线性行为混凝土结构在高负荷下会出现非线性行为,主要表现为以下几个方面:1. 材料非线性混凝土材料的本构关系是非线性的,其强度随着应力增加而不断增加,但增长速度逐渐减缓。
此外,混凝土还存在着裂缝和损伤等问题,这些都会影响其力学性能。
2. 几何非线性混凝土结构的变形过程中,结构的几何形状也会发生变化,这种变化会引起应力的变化,从而导致结构的非线性行为。
3. 边界条件非线性混凝土结构的边界条件也会影响其力学性能,例如支座的变形和约束条件的变化等都会引起结构的非线性行为。
三、混凝土结构的非线性分析方法混凝土结构的非线性分析方法主要包括以下几种:1. 静力分析静力分析是一种利用力学理论和数值计算方法对结构进行力学分析的方法。
静力分析中通常假设结构的变形是线性的,因此只能用于分析一些较为简单的结构。
2. 动力分析动力分析是一种利用结构在地震或其他动力载荷下的响应来评估结构稳定性的方法。
动力分析通常使用有限元法或其他数值计算方法来模拟结构的响应。
3. 非线性分析非线性分析是一种能够模拟结构在高负荷下的行为的方法,它能够考虑结构的材料非线性、几何非线性和边界条件非线性等因素。
非线性分析通常包括弹塑性分析、弹性-完全塑性分析和弹性-损伤分析等方法。
四、非线性分析方法的应用非线性分析方法在混凝土结构中的应用主要包括以下几个方面:1. 结构设计非线性分析方法能够模拟结构在高负荷下的行为,因此能够更加精确地评估结构的稳定性和安全性,从而为结构设计提供更加可靠的依据。
2. 结构检测非线性分析方法能够对结构的变形、裂缝和损伤等问题进行评估,从而为结构检测和维修提供依据。
混凝土桥梁结构的非线性分析

混凝土桥梁结构的非线性分析I. 概述混凝土桥梁结构的非线性分析是研究桥梁在承受外力作用下,产生的非线性变形和应力分布规律的一种分析方法。
在桥梁结构设计中,非线性分析是必不可少的一环,它可以更准确地预测桥梁的行为和性能,为工程设计提供更加可靠的依据。
II. 混凝土桥梁结构的非线性分析方法混凝土桥梁结构的非线性分析方法可以分为两种:弹塑性分析和非线性有限元分析。
1. 弹塑性分析弹塑性分析方法是一种经验性的方法,它假设材料在一定范围内具有线性弹性行为,当应力达到一定值时,开始出现塑性变形。
这种方法主要用于简单的结构和静态荷载作用下的分析,比如梁和柱等。
2. 非线性有限元分析非线性有限元分析是目前应用最广泛的混凝土桥梁结构非线性分析方法。
该方法通过对桥梁结构进行离散化,将结构分割成许多小单元,在每个小单元内求解结构的应力、应变等参数,最终得出整个结构的应力、应变分布和变形情况。
III. 非线性分析中的影响因素混凝土桥梁结构的非线性分析中,影响因素主要有材料非线性、几何非线性和边界条件非线性。
1. 材料非线性材料非线性是指混凝土在承受外力作用下产生的非线性变形和应力分布规律。
混凝土的本构关系会随着应力大小和应变历史的变化而发生改变,因此在非线性分析中需要考虑其非线性特性。
2. 几何非线性几何非线性是指桥梁结构在变形过程中,由于几何形状的变化而产生的非线性效应。
这种非线性效应主要表现为结构的刚度和应力分布的变化。
3. 边界条件非线性边界条件非线性是指桥梁结构受到荷载作用时,支座约束条件的变化所引起的非线性效应。
这种效应的主要表现为支座刚度的变化和支座接触状态的变化。
IV. 非线性分析的应用实例非线性分析在桥梁结构设计和评估中的应用越来越广泛。
下面介绍一个实际工程中的应用实例。
某高速公路上的一座大型钢筋混凝土拱桥,在设计时采用非线性有限元分析方法进行了计算和验证。
通过对桥梁结构的受力情况进行模拟,得出了桥梁在各种荷载作用下的应力、应变分布和变形情况。
钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇钢筋混凝土结构非线性有限元分析1钢筋混凝土结构是现代建筑结构中常用的一种结构形式。
由于钢筋混凝土结构自身的复杂性,非线性有限元分析在该结构的设计和施工过程中扮演着重要的角色。
非线性有限元分析是建立在解析的基础之上的,它可以更真实地模拟结构在实际载荷下的变形和破坏特性。
本文对钢筋混凝土结构的非线性有限元分析进行细致的介绍。
首先需要了解的是,钢筋混凝土结构存在多种非线性问题,如材料非线性、几何非线性和边界非线性等。
这些非线性问题极大地影响了结构的受力性能。
在结构的设计阶段,要对这些非线性因素进行充分分析。
钢筋混凝土结构在材料方面存在很多非线性问题,例如,混凝土的拉应力-应变曲线存在非线性变形,钢筋的本构关系存在弹塑性和损伤等等。
这些材料的非线性特性是钢筋混凝土结构变形和破坏的重要因素。
钢筋混凝土结构材料的非线性特性需要通过相关试验来获得,例如混凝土的轴向拉伸试验和抗压试验,钢筋的拉伸试验等,试验数据可以被用来建立预测结构非线性响应的有限元模型。
钢筋混凝土结构在几何方面存在很多非线性问题,例如,结构的非线性变形、结构的大变形效应、结构的初始应力状态等等。
钢筋混凝土结构几何的非线性效应可通过有限元分析明确地描述。
要对几何非线性进行分析,通常使用非线性有限元分析程序,其中包括基于条件梯度最优化技术的材料和几何非线性分析以及有限元法分析中使用的高级非线性模拟技术。
钢筋混凝土结构的边界条件也可能导致结构的非线性响应,例如基础的扰动、结构的支承和约束条件等。
所有这些条件都会导致模型在分析中出现非线性行为。
最后,非线性有限元分析可以简化结构设计的过程,并且可以更准确地分析结构的性能。
另外,分析过程中还可以考虑更多因素,例如局部的材料变形、应力浓度等等,让设计人员了解到结构的真实状态。
总之,钢筋混凝土结构非线性有限元分析是现代建筑结构中常用的一种结构分析方式,对于设计和施工都有着重要的意义。