新高考数学一轮复习检测:四十直线平面平行的判定与性质77

合集下载

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。

高考数学第一轮知识点总复习 第四节 直线、平面平行的判定及其性质

高考数学第一轮知识点总复习 第四节    直线、平面平行的判定及其性质
第四节 直线、平面平行的判定及其性质
基础梳理
1. 平行直线 (1)定义:同一平面内不相交的两条直线叫做平行线. (2)公理4:平行于同一条直线的两条直线互相平行. (3)线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线 的平面和这个平面相交,那么这条直线就和两平面的交线平行. (4)面面平行的性质定理:如果两个平行平面同时与第三个平面相交,那 么它们的交线平行. (5)线面垂直的性质定理:如果两条直线垂直于同一平面,那么这两条直 线平行.
错解 如图,连接C1E,并延长至G点,使GE= C1E,, 连接在 C1D1G 中,F是 D1C1 的中点,E是 C1G 的中点,
所以EF∥ ,D1而G EF 平面 BB1D1D,
D1G 平面 BB1D1D, 故EF∥平面 BB1D1D.
错解 分析上述证明中,“D1G 平面BB1D1D ”这一结论没有根据,只是主
平面A1C1 / /平面AC
A1C1 / / AC A1C1 / /平面AB1C
A1C1 平面AB1C 同理A1D//平面AB1C
AC 平面AB1C
A1C1 A1D A1
平面AB1C//平面A1C1D
学后反思 证明平面与平面相互平行,一般利用面面平行的判定定理或其 推论,将面面平行转化为线面平行或线线平行来证明.具体方法有: (1)面面平行的定义; (2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另 一个平面,那么这两个平面平行; (3)利用垂直于同一条直线的两个平面平行; (4)两个平面同时平行于第三个平面,那么这两个平面平行; (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
又∵c β,b β,∴b∥β.(线面平行的判定定理)……………..8′

第一轮复习导学稿:直线、平面平行垂直判定与性质

第一轮复习导学稿:直线、平面平行垂直判定与性质

立体几何复习综合卷1.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α=,//a α.aαaα2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 推理模式:,,////a b a b a ααα⊄⊂⇒.3. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 推理模式://,,//a a b a b αβαβ⊂=⇒.4 定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直l 叫做平面的垂线,平面α叫做直线l 的垂面交点叫做垂足直线l 与平面α垂直记作:l ⊥α5直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面abβα6.直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行7.点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.8.直线和平面的距离的定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.9 三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直10.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭.注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内⑵要考虑a 的位置,并注意两定理交替使用 4.已知圆锥的母线长为2,高为3,则该圆锥的侧面积是__________.5.(2012辽宁高考)一个几何体的三视图如图所示,则该几何体的体积为__________.6.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,A 1D 1的中点,则A 1B 与EF 所成角的大小为__________.6.π3 解析:连接B 1D 1,D 1C ,B 1C . (三)内切、外接问题10.三棱锥P ABC -中,,PA PB PC 两两垂直,且3,4,5PA PB PC ===,则三棱锥P ABC -的外接球的表面积为________.11.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为________.12.已知三棱锥O -ABC 中,∠BOC =90°,OA ⊥平面BOC ,其中AB =AC =7,BC =11,O ,A ,B ,C 四点均在球S 的表面上,则球S 的表面积为________. 13.若一个正四面体的棱长为2,则其外接球的体积为________.9 1∶2∶3 10 50π 11 125π6 12 R =524,表面积S =4πR 2=25π2.π(四):线线、线面、面面的平行及垂直关系例1. 如图,ABCD 是正方形,O PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)PA ∥平面BDE ;(Ⅱ)平面PAC ⊥平面BDE .例2 已知四棱锥P —ABCD ,底面ABCD 是∠A=60°的 菱形,又PD⊥底面ABCD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN∥平面PMB ;(2)证明:平面PMB⊥平面PAD.例3: 在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP∥平面A 1BD.例4:如图,在四棱锥P -ABCD 中,平面PAD⊥平面ABCD ,AB =AD ,∠BAD=60°,E ,F 分别是AP ,AD 的中点. 求证:(1)直线EF∥平面PCD ;(2)平面BEF⊥平面PAD.例5如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =BB 1,D 为AC 的中点. (1)求证:B 1C ∥平面A 1BD ;(2)若AC 1⊥平面A 1BD ,求证:B 1C 1⊥平面ABB 1A 1; (3)在(2)的条件下,设AB =1,求三棱锥B -A 1C 1D 的体积. 又∵AB =BC =1,∴BD =22,∴AC =A 1C 1= 2.∴三棱锥B -A 1C 1D 的体积V =13·BD ·S △A 1C 1D =13×22×12A 1C 1·AA 1=212×2×1=16.例6、如图,四棱锥错误!未找到引用源。

河北省衡水市高考数学一轮复习:40 直线、平面平行的判定及其性质

河北省衡水市高考数学一轮复习:40 直线、平面平行的判定及其性质

河北省衡水市高考数学一轮复习:40 直线、平面平行的判定及其性质姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2018 高一上·湘东月考) 设 的是( )是两条不同的直线, 是两个不同的平面,则下列说法正确A.若,,则B.若,,则C.若,,则D.若,,则3. (2 分) 如果直线 m∥直线 n,且 m∥平面 α,那么 n 与 α 的位置关系是( )A . 相交B . n∥αC . n⊂ αD . n∥α 或 n⊂ α5. (2 分) (2020·丽江模拟) 设 四个命题:, 是两条不同的直线, , , 是三个不同的平面,给出下列①若,,则 , 为异面直线;②若,,,则;③若,,则;④若,,,则.则上述命题中真命题的序号为( ) A . ①② B . ③④ C . ②③第 1 页 共 18 页D . ②④ 6. (2 分) 已知是两两不重合的三个平面,下列命题中错误的是( )A.若 B.若,则 ,则C.若,则D.若,则7. (2 分) (2020 高一下·大庆期中) 在空间中,已知 l,m,n 为不同的直线, , , 为不同的平面, 则下列判断正确的是( )A.若,,则B.若且,则C.若,,,,则D.若,,则8. (2 分) 已知三条不重合的直线 m,n,l 和两个不重合的平面 α、β,下列命题中正确命题个数为( )①若,则②若且则③若,则④若,则A.1B.2C.3D.49. (2 分) 如图,四棱锥 S—ABCD 的底面为正方形,SD 底面 ABCD,则下列结论中不正确的是第 2 页 共 18 页A . AC⊥SB B . AB∥平面 SCD C . SA 与平面 SBD 所成的角等于 SC 与平面 SBD 所成的角 D . AB 与 SC 所成的角等于 DC 与 SA 所成的角 10. (2 分) (2019 高三上·湖南月考) 已知 , , 是三个不同的平面, , 是两条不同的直线, 下列判断正确的是A.若,,则B.若,,则C.若,,,则D.若,,,则11. (2 分) 设 是两条直线, 是两个平面,则 的一个充分条件是( )A.B.C.D.12. (2 分) (2017 高一下·鸡西期末) 关于直线与平面,有以下四个命题:( )①若,,且,则;②若,,且,则;③若,,且,则;④若,,且,则.第 3 页 共 18 页A . 1个 B . 2个 C . 3个 D . 4个二、 填空题 (共 4 题;共 4 分)13. (1 分) 空间四边形 PABC 的各边及对角线长度都相等,D、E、F、G 分别是 AB、BC、CA、AP 的中点,下 列四个结论中成立的是________①BC∥平面 PDF ②DF⊥平面 PAE ③平面 GDF∥平面 PBC ④平面 PAE⊥平面 ABC.14. (1 分) (2019 高一上·柳州月考) 如图是正方体的平面展开图.在这个正方体中, ①BM∥平面 DE;②CN∥平面 AF;③平面 BDM∥平面 AFN;④平面 BDE∥平面 NCF. 以上四个命题中,正确命题的序号是________.16. (1 分) 如图,在直角梯形 ABCD 中,BC⊥DC,AE⊥DC,M,N 分别是 AD,BE 的中点,将三角形 ADE 沿 AE 折起,则下列说法正确的是________(填序号).第 4 页 共 18 页①不论 D 折至何位置(不在平面 ABC 内),都有 MN∥平面 DEC;②不论 D 折至何位置,都有 MN⊥AE;③不论 D 折至何位置(不在平面 ABC 内),都有 MN∥AB;④在折起过程中,一定存在某个位置,使 EC⊥AD.三、 解答题 (共 5 题;共 45 分)17. (10 分) (2017 高二上·汕头月考) 一个正方体的平面展开图及该正方体的直观图的示意图如图所示, 在正方体中,设 BC 的中点为 M,GH 的中点为 N(1) 请将字母 F,G,H 标记在正方体相应的顶点处(不需说明理由);(2) 证明:直线 MN∥平面 BDH(3) 求异面直线 MN 与 AG 所成角的余弦值18. (10 分) (2019 高一下·扬州期末) 如图,三棱柱面.中,,平面平证明:第 5 页 共 18 页(1)平面;(2) 平面平面.19. (10 分) (2019 高一下·苏州月考) 直四棱柱中,,,E、F 分别为棱 AB、上的点,,.求证:(1)平面;(2) 线段 AC 上是否存在一点 G,使面面.若存在,求出 AG 的长;若不存在,请说明理由.20. (5 分) 图,在四棱锥 P﹣ABCD 中,PD⊥平面 ABCD,底面 ABCD 为菱形,.点分 E,F,G,H 别是棱 AB,CD, PC,PB 上共面的四点,且 BC∥EF.证明:GH∥EF.21. (10 分) (2017·厦门模拟) 如图,在以 A、B、C、D、E 为顶点的五面体中,AD⊥平面 ABC,AD∥BE,AC⊥CB, AB=2BE=4AD=4.(1) O 为 AB 的中点,F 是线段 BE 上的一点,BE=4BF,证明:OF∥平面 CDE;(2) 当直线 DE 与平面 CBE 所成角的正切值为时,求平面 CDE 与平面 ABC 所成锐二面角的余弦值.第 6 页 共 18 页一、 单选题 (共 12 题;共 24 分)答案:1-1、 考点:参考答案解析: 答案:3-1、 考点:解析: 答案:5-1、 考点: 解析:第 7 页 共 18 页答案:6-1、 考点: 解析:答案:7-1、 考点: 解析:答案:8-1、 考点: 解析:第 8 页 共 18 页答案:9-1、 考点: 解析:答案:10-1、 考点:解析: 答案:11-1、 考点:解析:第 9 页 共 18 页答案:12-1、 考点: 解析:二、 填空题 (共 4 题;共 4 分)答案:13-1、 考点: 解析:第 10 页 共 18 页答案:14-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共5题;共45分)答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:。

直线、平面平行垂直的判定及其性质一轮复习讲练测

直线、平面平行垂直的判定及其性质一轮复习讲练测

【考纲解读】内容要求备注A点、线、面之间的位置关系直线与平面垂直的判定及性质1.以立体几何的定义、公理、定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.【直击考点】题组一常识题1.已知直线a,b和平面α,且a⊥α,b∥α,则a与b的位置关系为________.[解析] 因为a⊥α,所以a垂直于α内的任意直线.因为b∥α,所以b可以平移至α内,所以a⊥b.2.给出下列条件:①l与平面α内的两条直线垂直;②l与平面α内的无数条直线垂直;③l与平面α内的某一条直线垂直;④l与平面α内的任意一条直线垂直.其中能判定直线l⊥平面α的有________(填序号).[解析] 只有④能满足直线l与平面α内的两条相交直线垂直,故④满足题意.3.若PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则所形成的平面中一定互相垂直的平面有________对.[解析] 如图所示,由于PD⊥平面ABCD,所以平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC.故一定互相垂直的平面有7对.题组二常错题4.“直线a与平面α内的无数条直线都垂直”是“直线a与平面α垂直”的____________条件.5.如图所示,O为正方体ABCD­ A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是________(填序号).①A1D;②AA1;③A1D1;④A1C1.[解析] 连接B1D1,由题易知,A1C1⊥平面BB1D1D,又OB1⊂平面DD1B1B,∴A1C1⊥B1O.6.已知直线a,b,c,若a⊥b,b⊥c,则a与c的位置关系为________________________.[解析] 在同一个平面内,由题设条件可得a∥c;在空间中,直线a与c的位置关系不确定,平行、相交、异面都有可能.题组三常考题7.已知平面α,β交于直线l,若直线n⊥β,则n与l的位置关系为________.[解析] 由平面α,β交于直线l,得到l⊂β,又n⊥β,所以n⊥l.8.在如图所示的四棱锥P­ ABCD中,底面ABCD为矩形,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,则DE与平面PBC的位置关系为________.[解析] 因为PD⊥底面ABCD,所以PD⊥BC.由底面ABCD为矩形,得BC⊥CD,又PD∩CD=D,所以BC⊥平面PCD.又DE⊂平面PCD,所以BC⊥DE.因为PD=CD,点E是PC的中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥平面PBC.9.如图,在四棱锥P­ ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC,则平面PAB与平面PAC的位置关系为________.【知识清单】考点1 直线与平面垂直的判定与性质直线与平面垂直定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.定理:⎭⎪⎬⎪⎫a αb αl ⊥a l ⊥b a ∩b =A ⇒l ⊥α考点2 平面与平面垂直的判定与性质1平面与平面垂直定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MN AB βAB ⊥MN⇒AB ⊥α考点3 线面、面面垂直的综合应用1.直线与平面垂直(1)判定直线和平面垂直的方法 ①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质。

2021版新高考数学一轮集训40 直线、平面平行的判定及其性质

2021版新高考数学一轮集训40 直线、平面平行的判定及其性质

直线、平面平行的判定及其性质建议用时:45分钟一、选择题1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交B[∵l⊄α,且l与α不平行,∴l∩α=P,故α内不存在与l平行的直线.故选B.]2.如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能B[由面面平行的性质可得DE∥A1B1,又A1B1∥AB,故DE∥AB.所以选B.]3.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥nD[选项A中,两直线可能平行,相交或异面,故选项A错误;选项B中,两平面可能平行或相交,故选项B错误;选项C中,两平面可能平行或相交,故选项C错误;选项D中,由线面垂直的性质定理可知结论正确.故选D.]4.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()A .65B .75C .85D .95C [由AB ∥α∥β,易证AC CE =BD DF ,即AC AE =BD BF ,所以BD =AC ·BF AE =2×45=85.]5.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A .0条B .1条C .2条D .0条或2条C [如图,设平面α截三棱锥所得的四边形EFGH 是平行四边形,则EF ∥GH ,EF ⊄平面BCD ,GH ⊂平面BCD ,所以EF ∥平面BCD ,又EF ⊂平面ACD ,平面ACD ∩平面BCD =CD ,则EF ∥CD ,EF ⊂平面EFGH ,CD ⊄平面EFGH ,则CD ∥平面EFGH ,同理AB ∥平面EFGH ,所以该三棱锥与平面α平行的棱有2条,故选C.]二、填空题6.设α,β,γ是三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.可以填入的条件有________.①和③ [由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.]7.如图所示,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2 [在正方体ABCD -A 1B 1C 1D 1中,AB =2,∴AC=2 2.又E为AD中点,EF∥平面AB1C,EF⊂平面ADC,平面ADC∩平面AB1C=AC,∴EF∥AC,∴F为DC中点,∴EF=12AC= 2.]8.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)点M在线段FH上(或点M与点H重合)[连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.]三、解答题9.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF⊥平面ABCD,DE=3AF=3.证明:平面ABF∥平面DCE.[证明]法一:(应用面面平行的判定定理证明)因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF,因为AF⊄平面DCE,DE⊂平面DCE,所以AF∥平面DCE,因为四边形ABCD是正方形,所以AB∥CD,因为AB⊄平面DCE,所以AB∥平面DCE,因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,所以平面ABF∥平面DCE.法二:(利用两个平面内的两条相交直线分别平行证明):因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF,因为四边形ABCD为正方形,所以AB∥CD.又AF∩AB=A,DE∩DC=D,所以平面ABF∥平面DCE.法三:(利用垂直于同一条直线的两个平面平行证明)因为DE⊥平面ABCD,所以DE⊥AD,在正方形ABCD中,AD⊥DC,又DE∩DC=D,所以AD⊥平面DEC.同理AD⊥平面ABF.所以平面ABF∥平面DCE.10.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E、F分别是P A、PC的中点.记平面BEF与平面ABC的交线为l,试判断直线l与平面P AC的位置关系,并加以证明.[解]直线l∥平面P AC,证明如下:因为E、F分别是P A、PC的中点,所以EF∥AC.又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面P AC,EF⊂平面P AC,所以l∥平面P AC.1.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,则能得出AB∥平面MNP的图形的序号是()①②③④A.①③B.②③C.①④D.②④C[对于图形①,易得平面MNP与AB所在的对角面平行,所以AB∥平面MNP;对于图形④,易得AB∥PN,又AB⊄平面MNP,PN⊂平面MNP,所以AB∥平面MNP;图形②③无论用定义还是判定定理都无法证明线面平行.故选C.]2.(2019·安徽蚌埠模拟)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为AA1,AB的中点,M点是正方形ABB1A1内的动点,若C1M∥平面CD1EF,则M点的轨迹长度为________.2[如图所示,取A1B1的中点H,B1B的中点G,连接GH,C1H,C1G,EG,HF,可得四边形EGC1D1是平行四边形,所以C1G∥D1E.同理可得C1H∥CF.因为C1H∩C1G=C1,所以平面C1GH∥平面CD1EF.由M点是正方形ABB1A1内的动点可知,若C1M∥平面CD1EF,则点M在线段GH上,所以M点的轨迹长度GH=12+12= 2.]3.已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是________四边形.平行[∵AB∥α,平面ABD∩α=FH,平面ABC∩α=EG,∴AB∥FH,AB∥EG,∴FH∥EG,同理EF∥GH,∴四边形EFHG是平行四边形.]4.如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.[解](1)证明:∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF ∥平面ABD . 又∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB ,∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH ,∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH .(2)设EF =x (0<x <4),∵EF ∥AB ,FG ∥CD ,∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4.∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.[多选]如图所示,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值;③棱A 1D 1始终与水面所在平面平行;④当容器倾斜如图所示时,BE ·BF 是定值.其中正确命题的序号有( )A .①B .②C.③D.④ACD[由题图,显然①正确,②错误;对于③,∵A1D1∥BC,BC∥FG,∴A1D1∥FG且A1D1⊄平面EFGH,FG⊂平面EFGH,∴A1D1∥平面EFGH(水面).∴③正确;对于④,∵水是定量的(定体积V),∴S△BEF ·BC=V,即12BE·BF·BC=V.∴BE·BF=2VBC(定值),即④正确,故选ACD.]2.如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面P AD.(2)在线段AB上是否存在一点F,使得平面P AD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.[解](1)证明:取P A的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=12AB,又AB∥CD,CD=12AB,所以EH∥CD,EH=CD,因此四边形DCEH为平行四边形,所以CE∥DH,又DH⊂平面P AD,CE⊄平面P AD,因此CE∥平面P AD.(2)存在点F为AB的中点,使平面P AD∥平面CEF,证明如下:取AB的中点F,连接CF,EF,则AF=12AB,因为CD=12AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,因此CF∥AD.又AD⊂平面P AD,CF⊄平面P AD,所以CF∥平面P AD,由(1)可知CE∥平面P AD,又CE∩CF=C,故平面CEF∥平面P AD,故存在AB的中点F满足要求.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

直线、平面平行的判定与性质-高考数学复习

直线、平面平行的判定与性质-高考数学复习

所以 AM∥OE. 又因为 OE⊂平面 BDE,AM⊄平面 BDE, 所以 AM∥平面 BDE.
(2)l∥m,证明如下: 由(1)知 AM∥平面 BDE, 又 AM⊂平面 ADM,平面 ADM∩平面 BDE=l, 所以 l∥AM, AM∥平面 BDE, 又 AM⊂平面 ABM,平面 ABM∩平面 BDE=m,所以 m∥AM,所以 l∥m.
第三节 直线、平面平行的判定与性质
1.能以立体几何中的定义、公理和定理为出发点,认识和理解空 间中线、面平行的有关性质与判定定理.
2.能运用公理、定理和已获得的结论证明一些空间图形中平行关 系的简单命题.
1.直线与平面平行的判定定理和性质定理
文字语言 判定 平面外一条直线与_此__平__面__内___的一
2.平面与平面平行的判定定理和性质定理
文字语言
图形语言
一个平面内的两条_相__交__直__线___与另 一个平面平行,则这两个平面平行 (简记为“线面平行⇒面面平行”)
符号语言
因为_a_∥__β_,__b_∥__β_,___ __a_∩__b_=__P__,__a_⊂_α_,____ _b_⊂_α_,所以α∥β
层级二/ 重难点——逐一精研(补欠缺)
重难点(一) 直线与平面平行的判定与性质 考法 1 直线与平面平行的判定 [例 1] 如图,正方形 ABCD 与正方形 ABEF 所在的平面
相交于 AB,在 AE,BD 上各有一点 P,Q,且 AP=DQ.求证: PQ∥平面 BCE.
[证明] 如图所示,作 PM∥AB 交 BE 于 M,作 QN∥ AB 交 BC 于 N,连接 MN.∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴A+E=BD.又 A4PDQ,∴PE=QB.∵PM∥ AB∥QN,∴PAMB=APEE=QBDB=QDNC,∴PAMB=QDNC,又 AB=DC, ∴PM 綊 QN,∴四边形 PMNQ 为平行四边形,∴PQ∥MN.又 MN⊂平面 BCE,

新高考一轮复习人教版 直线、平面平行的判定和性质 作业

新高考一轮复习人教版 直线、平面平行的判定和性质 作业

8.3直线、平面平行的判定和性质基础篇固本夯基考点一直线与平面平行的判定和性质1.(2021江苏扬州大学附中2月检测,5)已知直三棱柱ABC-A1B1C1中,M,N分别是A1B1,AB的中点,P点在线段B1C上,则NP与平面AMC1的位置关系是()A.垂直B.平行C.相交但不垂直D.要依P点的位置而定答案B2.(2021济南二模,7)已知正四面体ABCD的棱长为2,平面α与棱AB、CD均平行,则α截此正四面体所得截面面积的最大值为()A.1B.√2C.√3D.2答案A3.(多选)(2021山东青岛胶州调研,10)在三棱柱ABC-A1B1C1中,E,F,G分别为线段AB,A1B1,AA1的中点,下列说法正确的是()A.平面AC1F∥平面B1CEB.直线FG∥平面B1CEC.直线CG与BF异面D.直线C1F与平面CGE相交答案AC4.(2020福建漳州适应性测试,16)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在正方形D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q的轨迹的长为.答案√105.(2022届山东潍坊10月过程性测试,18)如图,平面ABCD⊥平面AEBF,四边形ABCD为矩形,△ABE和△ABF 均为等腰直角三角形,且∠BAF=∠AEB=90°.(1)求证:平面BCE⊥平面ADE;(2)若点G为线段FC上任意一点,求证:BG∥平面ADE.证明(1)因为四边形ABCD为矩形,所以BC⊥AB,又因为平面ABCD⊥平面AEBF,BC⊂平面ABCD,平面ABCD∩平面AEBF=AB,所以BC⊥平面AEBF,又因为AE⊂平面AEBF,所以BC⊥AE.因为∠AEB=90°,即AE⊥BE,且BC、BE⊂平面BCE,BC∩BE=B,所以AE⊥平面BCE,又因为AE⊂平面ADE,所以平面ADE⊥平面BCE.(2)因为BC∥AD,AD⊂平面ADE,BC⊄平面ADE,所以BC∥平面ADE.因为△ABF和△ABE均为等腰直角三角形,且∠BAF=∠AEB=90°,所以∠EAB=∠ABF=45°,所以AE∥BF,又AE⊂平面ADE,BF⊄平面ADE,所以BF∥平面ADE,又BC∩BF=B,所以平面BCF∥平面ADE.又BG⊂平面FBC,所以BG∥平面ADE.6.(2022届广东佛山一中10月月考,20)如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD=√2,四边形ABCD为等腰梯形,BC∥AD,BC=CD=1AD=1,E为PA的中点.2(1)证明:EB∥平面PCD;(2)求平面PAD与平面PCD所成的二面角θ的正弦值.解析(1)证明:取AD的中点O,连接EO,OB,∵E为PA的中点,O为AD的中点,∴OE∥PD,又OE⊄平面PCD,PD⊂平面PCD,∴OE∥平面PCD,又∵BC ∥AD,BC=12AD,∴四边形BCDO 为平行四边形,∴BO ∥CD, 又OB ⊄平面PCD,CD ⊂平面PCD,∴BO ∥平面PCD,又OE ∩BO=O,∴平面EBO ∥平面PCD, 又∵BE ⊂平面EBO,∴BE ∥平面PCD.(2)连接PO,∵PA=PD,O 为AD 的中点,∴PO ⊥AD, 又平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD, 所以PO ⊥平面ABCD,取BC 的中点M,连接OM, ∵四边形ABCD 是等腰梯形,∴OM ⊥AD, 建立如图所示的空间直角坐标系,则P(0,0,1),A(0,-1,0),D(0,1,0),C (√32,12,0),∴PD⃗⃗⃗⃗ =(0,1,-1),CD ⃗⃗⃗⃗ =(−√32,12,0),设平面PCD 的法向量为n=(x,y,z),则{n ·PD ⃗⃗⃗⃗ =y −z =0,n ·CD⃗⃗⃗⃗ =−√32x +12y =0,令x=1,则y=z=√3,则n=(1,√3,√3), 易知平面PAD 的一个法向量为m=(1,0,0), ∴|cos θ|=|cos<m,n>|=|m·n||m||n|=√7,则sin θ=√427. 7.(2019江苏,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为BC,AC 的中点,AB=BC.求证: (1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E.证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE ⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E ⊂平面A1ACC1,所以BE⊥C1E.8.(2020江苏,15,14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.证明(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C,又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.9.(2020北京,16,13分)如图,在正方体ABCD-A1B1C1D1中,E为BB1的中点.(1)求证:BC1∥平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.解析 (1)证明:∵ABCD-A 1B 1C 1D 1为正方体,∴D 1C 1∥A 1B 1,D 1C 1=A 1B 1.又AB ∥A 1B 1,AB=A 1B 1,∴D 1C 1∥AB,D 1C 1=AB,∴四边形ABC 1D 1为平行四边形,∴AD 1∥BC 1,又AD 1⊂平面AD 1E,BC 1⊄平面AD 1E,∴BC 1∥平面AD 1E.(2)不妨设正方体的棱长为2,如图,以{AD ⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗ }为正交基底建立空间直角坐标系A-xyz,则A(0,0,0),A 1(0,0,2),D 1(2,0,2),E(0,2,1),∴AA 1⃗⃗⃗⃗⃗⃗ =(0,0,2),AD 1⃗⃗⃗⃗⃗⃗ =(2,0,2),AE ⃗⃗⃗⃗ =(0,2,1),设平面AD 1E 的法向量为n=(x,y,z),直线AA 1与平面AD 1E 所成的角为θ, 则{n ·AD 1⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗ =0,即{2x +2z =0,2y +z =0,令z=-2,则{x =2,y =1,此时n=(2,1,-2),∴sin θ=|cos<n,AA 1⃗⃗⃗⃗⃗⃗ >|=|n·AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√4+1+4×2=23, ∴直线AA 1与平面AD 1E 所成角的正弦值为23.考点二 平面与平面平行的判定和性质1.(2022届重庆巴蜀中学11月月考,8)在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点E,F,G,H 分别为棱AB,BC,C 1D 1,A 1D 1的中点,若平面α∥平面EFGH,且平面α与棱A 1B 1,B 1C 1,B 1B 分别交于点P,Q,S,其中点Q 是棱B 1C 1的中点,则三棱锥B 1-PQS 的体积为( ) A.1 B.12C.13D.16答案 D2.(2019课标Ⅱ文,7,5分)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面 答案 B3.(2021河北邢台月考,19)在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB=4,M,N,P 分别是AD,DD 1,CC 1的中点.(1)证明:平面MNC ∥平面AD 1P;(2)求直线DP 与平面MNC 所成角的正弦值.解析 (1)证明:因为M,N,P 分别是AD,DD 1,CC 1的中点,所以MN ∥AD 1,CN ∥PD 1.又AD 1⊄平面MNC,MN ⊂平面MNC,所以AD 1∥平面MNC,同理PD 1∥平面MNC, 又AD 1∩PD 1=D 1,所以平面MNC ∥平面AD 1P.(2)以D 为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),P(0,2,2),M(1,0,0),N(0,0,2),C(0,2,0),则DP ⃗⃗⃗⃗ =(0,2,2),MN ⃗⃗⃗⃗⃗ =(-1,0,2),MC⃗⃗⃗⃗⃗ =(-1,2,0). 设平面MNC 的法向量为n=(x,y,z),则{MN⃗⃗⃗⃗⃗ ·n =−x +2z =0,MC ⃗⃗⃗⃗ ·n =−x +2y =0,令z=1,得n=(2,1,1). 设直线DP 与平面MNC 所成角为θ,则sin θ=|cos<DP⃗⃗⃗⃗ ,n>|=|DP⃗⃗⃗⃗⃗ ·n||DP ⃗⃗⃗⃗⃗ ||n|=√33, 所以直线DP 与平面MNC 所成角的正弦值为√33.综合篇 知能转换A 组考法一 判断或证明线面平行的方法1.(2022届T8联考,7)如图,已知四棱柱ABCD-A 1B 1C 1D 1的底面为平行四边形,E,F,G 分别为棱AA 1,CC 1,C 1D 1的中点,则( )A.直线BC 1与平面EFG 平行,直线BD 1与平面EFG 相交B.直线BC 1与平面EFG 相交,直线BD 1与平面EFG 平行C.直线BC 1、BD 1都与平面EFG 平行D.直线BC 1、BD 1都与平面EFG 相交 答案 A2.(2022届湖南岳阳一中入学考试,18)如图,在三棱柱ABC-A 1B 1C 1中,侧面ABB 1A 1是菱形,∠BAA 1=60°,E 是棱BB 1的中点,CA=CB,F 在线段AC 上,且AF=2FC. (1)证明:CB 1∥平面A 1EF;(2)若CA ⊥CB,平面CAB ⊥平面ABB 1A 1,求二面角F-A 1E-A 的余弦值.解析 (1)证明:连接AB 1交A 1E 于点G,连接FG, 易得△AGA 1∽△B 1GE,所以AG GB 1=AA 1EB 1=2,又因为AF FC =2,所以AF FC =AGGB 1,所以FG ∥CB 1,又CB 1⊄平面A 1EF,FG ⊂平面A 1EF,所以CB 1∥平面A 1EF.(2)过C 作CO ⊥AB 于点O,因为CA=CB,所以O 是线段AB 的中点.因为平面CAB ⊥平面ABB 1A 1,平面CAB ∩平面ABB 1A 1=AB,所以CO ⊥平面ABB 1A 1.连接A 1B,OA 1,由题意易知△ABA 1是等边三角形,又O 是线段AB 的中点,所以OA 1⊥AB.以O 为坐标原点,OA ⃗⃗⃗⃗ ,OA 1⃗⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设AB=2,则A(1,0,0),A 1(0,√3,0),C(0,0,1),B(-1,0,0),F (13,0,23),B 1(-2,√3,0),E (−32,√32,0),则A 1E ⃗⃗⃗⃗⃗⃗ =(−32,−√32,0),A 1F ⃗⃗⃗⃗⃗ =13,-√3,23.设平面A 1FE 的法向量为n 1=(x 1,y 1,z 1), 则{A 1F ⃗⃗⃗⃗⃗ ·n 1=0,A 1E ⃗⃗⃗⃗⃗⃗ ·n 1=0,即{x 13−√3y 1+23z 1=0,−32x 1−√32y 1=0,令x 1=1,则n 1=(1,-√3,-5).易知平面ABB 1A 1的一个法向量为n 2=(0,0,1), 则cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-5√2929,由题图可知,二面角F-A 1E-A 的平面角为锐角,所以二面角F-A 1E-A 的余弦值为5√2929. 3.(2022届南京二十九中10月月考,20)如图,在四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AD ∥BC,AB ⊥AD,AB=2BC=4,E 是棱PD 上的动点(除端点外),F,M 分别为AB,CE 的中点. (1)证明:FM ∥平面PAD;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.解析 (1)证明:取CD 的中点N,连接FN,MN,因为F,N 分别为AB,CD 的中点,所以FN ∥AD,又FN ⊄平面PAD,AD ⊂平面PAD,所以FN ∥平面PAD,因为M,N 分别是CE,CD 的中点,所以MN ∥PD,又MN ⊄平面PAD,PD ⊂平面PAD,所以MN ∥平面PAD,又FN ∩MN=N,所以平面MFN ∥平面PAD,又因为FM ⊂平面MFN,所以FM ∥平面PAD.(2)连接AE,因为平面PAD ⊥平面ABCD,且平面PAD ∩平面ABCD=AD,AB ⊥AD,AB ⊂平面ABCD,所以AB ⊥平面PAD,所以∠AEF 即为直线EF 与平面PAD 所成的角,且tan ∠AEF=AF AE =2AE, 当AE 最小,即AE ⊥PD,亦即E 为PD 中点时,∠AEF 最大,为30°,又因为AF=2,所以AE=2√3,所以AD=4. 取AD 的中点O,连接PO,OC,易知PO ⊥平面ABCD,因为AO ∥BC 且AO=12AD=BC,所以四边形ABCO 为平行四边形,所以AB ∥CO,又AB ⊥AD,所以AO ⊥OC,以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.则O(0,0,0),C(4,0,0),D(0,2,0),P(0,0,2√3),E(0,1,√3),F(2,-2,0),则CE ⃗⃗⃗⃗ =(-4,1,√3),FC ⃗⃗⃗⃗ =(2,2,0),设平面CEF 的法向量为n 1=(x,y,z),则{n 1·FC⃗⃗⃗ =0,n 1·CE ⃗⃗⃗ =0,即{2x +2y =0,−4x +y +√3z =0,可取n 1=(√3,-√3,5).易知平面PAD 的一个法向量为n 2=(1,0,0), 所以cos<n 1,n 2>=n 1·n 2|n 1|·|n 2|=√3√31=√9331,所以平面CEF 与平面PAD 所成锐二面角的余弦值为√9331.4.(2019课标Ⅰ理,18,12分)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE; (2)求二面角A-MA 1-N 的正弦值.解析 (1)证明:连接B 1C,ME.因为M,E 分别为BB 1,BC 的中点,所以ME ∥B 1C,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC,可得B 1C A 1D,故ME ND,因此四边形MNDE 为平行四边形,则MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz, A(2,0,0),A 1(2,0,4),M(1,√3,2),N(1,0,2),A 1A ⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗ =(0,-√3,0).设m=(x,y,z)为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗ =0.所以{−x +√3y −2z =0,−4z =0.可取m=(√3,1,0).设n=(p,q,r)为平面A 1MN 的法向量,则{n ·MN⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗ =0.所以{−√3q =0,−p −2r =0.可取n=(2,0,-1).于是cos<m,n>=m·n |m||n|=√32×√5=√155, 所以二面角A-MA 1-N 的正弦值为√105.5.(2021广东珠海一模,19)如图,三棱锥P-ABC 中,PA ⊥AB,AB ⊥AC,AB=AC=√2,PB=PC=√6,点M 是PA 的中点,点D 是AC 的中点,点N 在PB 上,且PN=2NB. (1)证明:BD ∥平面CMN;(2)求直线CN 与平面ABC 所成角的正切值.解析 (1)证明:如图,连接PD 交CM 于O,则O 为△PAC 的重心,PO=2OD,连接ON,因为PN=2NB,所以ON ∥BD,因为ON ⊂平面CMN,BD ⊄平面CMN,所以BD ∥平面CMN.(2)因为PB=PC,AB=AC,PA=PA,所以△PAB ≌△PAC,所以∠PAC=∠PAB=90°,所以PA=√PC 2−AC 2=√6−2=2,又因为PA ⊥AB,AB ∩AC=A,所以PA ⊥平面ABC,过N 作NH ⊥AB 于H,连接HC,因为NH ∥PA,所以NH ⊥平面ABC,所以NH ⊥HC,且AH=23AB,直线CN 与平面ABC 所成角为∠NCH,所以直线CN 与平面ABC 所成角的正切值tan ∠NCH=NH HC=13PA √AC 2+(23AB )2=13×2√(√2)2+(23×√2)2=√2613.6.(2017课标Ⅱ理,19,12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.解析 (1)证明:取PA 的中点F,连接EF,BF.因为E 是PD 的中点,所以EF ∥AD,EF=12AD.由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,所以四边形BCEF 是平行四边形,所以CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB.(2)由已知得BA ⊥AD,以A 为坐标原点,AB ⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,√3),则PC⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗ =(1,0,0). 设M(x,y,z)(0<x<1),则BM ⃗⃗⃗⃗⃗ =(x-1,y,z),PM⃗⃗⃗⃗⃗ =(x,y-1,z-√3).因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的一个法向量,所以|cos<BM⃗⃗⃗⃗⃗ ,n>|=sin45°,即√(x−1)+y 2+z 2=√22,即(x-1)2+y 2-z 2=0.①又M 在棱PC 上,设PM⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗ ,则 x=λ,y=1,z=√3-√3λ.②由①,②解得{ x =1+√22,y =1,z =−√62(舍去),或{ x =1−√22,y =1,z =√62,所以M (1−√22,1,√62),从而AM⃗⃗⃗⃗⃗ =(1−√22,1,√62).设m=(x 0,y 0,z 0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗ =0,即{(2−√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m=(0,-√6,2). 于是cos<m,n>=m·n |m||n|=√105. 易知所求二面角为锐二面角. 因此二面角M-AB-D 的余弦值为√105.考法二 判断或证明面面平行的方法(2021太原一模,19)如图,在三棱锥P-ABC 中,△PAB 是正三角形,G 是△PAB 的重心,D,E,H 分别是PA,BC,PC 的中点,点F 在BC 上,且BF=3FC. (1)求证:平面DFH ∥平面PGE;(2)若PB ⊥AC,AB=AC=2,BC=2√2,求二面角A-PC-B 的余弦值.解析 (1)证明:连接BG,GD,由题意得BG 与GD 共线,且BG=2GD, ∵E 是BC 的中点,BF=3FC,∴F 是CE 的中点, ∴BGGD =BEEF=2,∴GE ∥DF,∵GE ⊂平面PGE,DF ⊄平面PGE,∴DF ∥平面PGE, ∵H 是PC 的中点,∴FH ∥PE,∵HF ⊄平面PGE,PE ⊂平面PGE,∴FH ∥平面PGE, ∵DF ∩FH=F,∴平面DFH ∥平面PGE.(2)∵AB=AC=2,BC=2√2,∴AB 2+AC 2=8=BC 2,∴AB ⊥AC,又∵PB ⊥AC,AB ∩PB=B,∴AC ⊥平面PAB,以A 为坐标原点,向量AB ⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗ 的方向为x 轴,y 轴的正方向建立如图所示的空间直角坐标系A-xyz,由题意得A(0,0,0),B(2,0,0),C(0,2,0),P(1,0,√3),则AC⃗⃗⃗⃗ =(0,2,0),AP ⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗ =(-1,2,-√3),BC ⃗⃗⃗⃗ =(-2,2,0),设平面PAC 的法向量是m=(x 1,y 1,z 1),则{m ·AC⃗⃗⃗⃗ =0,m ·AP⃗⃗⃗⃗ =0,∴{2y 1=0,x 1+√3z 1=0,则y 1=0,令z 1=-1,则x 1=√3,∴m=(√3,0,-1), 设平面PBC 的法向量是n=(x 2,y 2,z 2),则{n ·PC⃗⃗⃗ =0,n ·BC⃗⃗⃗⃗ =0,∴{−x 2+2y 2−√3z 2=0,−2x 2+2y 2=0,令z 2=1,则{x 2=√3,y 2=√3,∴n=(√3,√3,1), ∴cos<m,n>=m·n |m||n|=√77,又知二面角A-PC-B 是锐二面角,∴二面角A-PC-B 的余弦值为√77. B 组1.(多选)(2021南京航空航天大学附中期中,10)已知棱长为1的正方体ABCD-A 1B 1C 1D 1,过对角线BD 1作平面α交棱AA 1于点E,交棱CC 1于点F,以下结论正确的是( ) A.四边形BFD 1E 不一定是平行四边形 B.平面α分正方体所得两部分的体积相等 C.平面α与平面DBB 1不可能垂直 D.四边形BFD 1E 面积的最大值为√2答案 BD2.(多选)(2021广东肇庆二模,12)在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,P 是线段BC 1上的一动点,则下列说法中正确的是( ) A.A 1P ∥平面AD 1CB.A 1P 与平面BCC 1B 1所成角的正切值的最大值是2√55C.A 1P+PC 的最小值为√1705D.以A 为球心,√2为半径的球面与侧面DCC 1D 1的交线长是π2答案 ACD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(四十) 直线、平面平行的判定与性质1.(2019·西安模拟)设α,β是两个平面,直线a ⊂α,则“a ∥β”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 依题意,由a ⊂α,a ∥β不能推出α∥β,此时平面α与β可能相交;反过来,由α∥β,a ⊂α,可得a ∥β.综上所述,“a ∥β”是“α∥β”的必要不充分条件,选B.2.(2019·四川名校联考)如图,正方体ABCD ­A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 由题可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,B Q =23BB 1,连接M Q ,NP ,P Q ,则M Q 綊23B 1A 1,NP 綊23AB ,又B 1A 1綊AB ,故M Q 綊NP ,所以四边形M Q PN 是平行四边形,则MN ∥Q P ,Q P ⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C ,则MN ∥平面BB 1C 1C ,故选B.3.(2019·枣庄诊断)如图,直三棱柱ABC ­A ′B ′C ′中,△ABC 是边长为2的等边三角形,AA ′=4,点E ,F ,G ,H ,M 分别是边AA ′,AB ,BB ′,A ′B ′,BC 的中点,动点P 在四边形EFGH 内部运动,并且始终有MP ∥平面ACC ′A ′,则动点P 的轨迹长度为( )A .2B .2πC .2 3D .4解析:选D 连接MF ,FH ,MH ,因为M ,F ,H 分别为BC ,AB ,A ′B ′的中点,所以MF ∥平面AA ′C ′C ,FH ∥平面AA ′C ′C ,所以平面MFH ∥平面AA ′C ′C ,所以M 与线段FH 上任意一点的连线都平行于平面AA ′C ′C ,所以点P 的运动轨迹是线段FH ,其长度为4,故选D.4.(2019·成都模拟)已知直线a ,b 和平面α,下列说法中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ⊥α,b ⊂α,则a ⊥bC .若a ,b 与α所成的角相等,则a ∥bD.若a∥α,b∥α,则a∥b解析:选B 对于A,若a∥α,b⊂α,则a∥b或a与b异面,故A错;对于B,利用线面垂直的性质,可知若a⊥α,b⊂α,则a⊥b,故B正确;对于C,若a,b与α所成的角相等,则a与b相交、平行或异面,故C错;对于D,由a∥α,b∥α,则a,b之间的位置关系可以是相交、平行或异面,故D错.5.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MN Q不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以M Q∥CD,所以AB∥M Q .又AB⊄平面MN Q,M Q⊂平面MN Q,所以AB∥平面MN Q.同理可证选项C、D中均有AB∥平面MN Q.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接O Q,则O Q∥AB.因为O Q与平面MN Q有交点,所以AB与平面MN Q有交点,即AB与平面MN Q不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MN Q.故选A.6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C 对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.7.如图所示,三棱柱ABC­A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:设BC 1∩B 1C =O ,连接OD .∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD ,∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形,∴O 为BC 1的中点,∴D 为A 1C 1的中点,则A 1D ∶DC 1=1.答案:18.已知正方体ABCD ­A 1B 1C 1D 1,下列结论中,正确的是________(只填序号). ①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1;③AD 1∥DC 1;④AD 1∥平面BDC 1.解析:连接AD 1,BC 1,AB 1,B 1D 1,C 1D ,BD ,因为AB 綊C 1D 1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确.答案:①②④9.在三棱锥P ­ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8. 答案:810.(2019·南宁毕业班摸底)如图,△ABC 中,AC =BC =22AB ,四边形ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥底面ABC ;(2)求几何体ADEBC 的体积.解:(1)证明:如图,取BC 的中点M ,AB 的中点N ,连接GM ,FN ,MN .∵G ,F 分别是EC ,BD 的中点,∴GM ∥BE ,且GM =12BE ,NF ∥DA ,且NF =12DA .又四边形ABED 为正方形,∴BE ∥AD ,BE =AD ,∴GM ∥NF 且GM =NF .∴四边形MNFG 为平行四边形.∴GF ∥MN ,又MN ⊂平面ABC ,GF ⊄平面ABC ,∴GF ∥平面ABC .(2)连接CN ,∵AC =BC ,∴CN ⊥AB ,又平面ABED ⊥平面ABC ,CN ⊂平面ABC ,∴CN ⊥平面ABED .易知△ABC 是等腰直角三角形,∴CN =12AB =12, ∵C ­ABED 是四棱锥,∴V C ­ABED =13S 四边形ABED ·CN =13×1×12=16. 11.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,设DF 与GN 的交点为O ,则AE 必过DF 与GN 的交点O .连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN .又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG ,所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .12.(2019·河南八市联考)如图,在矩形ABCD 中,AB =1,AD=2,PA ⊥平面ABCD ,E ,F 分别为AD ,PA 的中点,点Q 是BC 上一个动点.(1)当Q 是BC 的中点时,求证:平面BEF ∥平面PD Q ;(2)当BD ⊥F Q 时,求B Q Q C的值. 解:(1)证明:∵E ,Q 分别是AD ,BC 的中点,∴ED =B Q ,ED ∥B Q ,∴四边形BED Q 是平行四边形,∴BE ∥D Q.又BE ⊄平面PD Q ,D Q ⊂平面PD Q ,∴BE ∥平面PD Q ,又F 是PA 的中点,∴EF ∥PD ,∵EF ⊄平面PD Q ,PD ⊂平面PD Q ,∴EF ∥平面PD Q ,∵BE ∩EF =E ,BE ⊂平面BEF ,EF ⊂平面BEF ,∴平面BEF ∥平面PD Q.(2)如图,连接A Q ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD .∵BD ⊥F Q ,PA ∩F Q =F ,PA ⊂平面PA Q ,F Q ⊂平面PA Q , ∴BD ⊥平面PA Q ,∵A Q ⊂平面PA Q ,∴A Q ⊥BD ,在矩形ABCD 中,由A Q ⊥BD 得△A Q B 与△DBA 相似,∴AB 2=AD ×B Q ,又AB =1,AD =2,∴B Q =12,Q C =32,∴B Q Q C =13.。

相关文档
最新文档