血清清蛋白、γ-球蛋白的分离、纯化与鉴定实验报告
血清蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯于鉴定一、实验目的:1、掌握盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法分离蛋白质的原理和基本方法3、掌握离子交换层析法分离蛋白质的原理和基本方法4、掌握醋酸纤维素薄膜电泳法的原理和基本方法5、了解柱层析技术二、实验原理:蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。
对于不同的蛋白质,其分子量、溶解度及等电点等都有所不同。
利用不同蛋白质在这些性质上的差别,利用相应的物理方法可分离纯化不同蛋白质。
A.盐析法:在蛋白质溶液中加入大量中性无机盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。
同时,加盐后由于离子强度发生改变,蛋白质表面的电荷大量被中和,从而破坏了蛋白质的胶体性质,导致蛋白质溶解度降低,蛋白质分子之间易于聚集沉淀,进而使蛋白质从水溶液中沉淀析出。
B.凝胶层析:利用蛋白质与无机盐类之间分子量的差异。
当溶液通过SephadeG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒网孔,而分子量小的无机盐能进入凝胶颗粒的网孔中,因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而达到去盐的目的。
C.离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。
D.纯度鉴定(醋酸纤维素薄膜电泳):血清中各种蛋白质的等电点不同,一般都低于pH7.4。
它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。
由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。
因此电泳时可将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。
三、材料与方法A材料样品:人混合血清试剂:葡聚糖凝胶(G-25)层析柱、DEAE纤维离子交换层析柱、饱和硫酸铵溶液、醋酸铵缓冲溶液、20%磺基水杨酸、1%BaCl溶液、氨基黑染色液、漂洗液、pH8.6巴比妥缓2冲溶液、电泳仪、电泳槽B实验步骤盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定)具体操作流程示意:(一)盐析+凝胶柱层析除盐:(二)离子交换层析(纯化):(三)醋酸纤维素薄膜电泳:1、点样(如下图):-点样线尽量点得细窄而均匀,宁少勿多2、电泳:①薄膜粗面向下②点样端置阴极端③两端紧贴在滤纸盐桥上,膜应轻轻拉平电压:110V时间:50min3、染色和漂洗:电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。
实验三血清γ-球蛋白的分离、纯化及鉴定七年制

的结构分析提供了基础。
序列和结构分析结果解读
根据氨基酸序列,对血清γ-球蛋白的一级结构进 行了深入分析,确定了其基本组成。
利用计算机模拟技术,对血清γ-球蛋白的高级结构进 行了预测,揭示了其可能的折叠方式和空间构象。
一级结构分析 高级结构预测
实验态度培养
实验过程中需严谨细致,实事求是记录数据,培养了我们 的科学态度和实验精神。
团队合作意识
实验操作需要小组成员密切配合,增强了我们的团队协作 意识和沟通能力。
实验不足与改进
在实验过程中,我们也发现了一些不足之处,如样品处理 过程中可能存在的误差、层析柱的平衡问题等,需要在今 后的实验中加以改进和完善。
结果讨论与展望
实验意义
输标02入题
本实验成功分离、纯化了血清γ-球蛋白,为进一步研 究其功能和作用机制提供了材料。
01
未来可以深入研究血清γ-球蛋白与其他蛋白质的相互 作用,以及其在生理和病理过程中的作用,以期为相
关疾病的诊断和治疗提供新思路。
04
03
未来研究方向
05
结论
实验总结
实验原理
本实验基于蛋白质分离纯化的基本原理,通过离子交换层 析和凝胶过滤层析技术,实现了血清γ-球蛋白的分离和纯 化。
03
通过比较肽段的序列信息与数据库中的蛋白质序列, 可以鉴定出蛋白质的身份。
序列分析和结构预测的方法
01
序列分析通过测定蛋白质中每个氨基酸的排列顺序,确定蛋白 质的一级结构。
02
结构预测则基于已知的氨基酸序列,利用计算机模拟技术预测
蛋白质的三维结构。
这些方法对于理解蛋白质的功能和作用机制具有重要意义。
血清γ-球蛋白分离、纯度鉴定与浓度检测

生物化学实验报告班级:学号:姓名:实验室:评分━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━日期:实验一:血清γ-球蛋白分离、纯度鉴定与浓度检测实验目的:1、熟悉盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法脱盐分离蛋白质的原理和基本方法3、掌握醋酸纤维素薄膜电泳法进行纯度鉴定的原理和基本方法4、掌握分光光度计检测蛋白质含量的原理和基本方法实验原理:1.盐析法:盐析法是在蛋白质溶液中,加入无机盐至一定浓度或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。
蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。
此外,中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。
2.凝胶层析法脱盐:在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。
分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。
3.醋酸纤维素薄膜电泳:血清中各种蛋白质的等电点不同,一般都低于pH7.4。
它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。
由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。
因此可以将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。
4.分光光度计是应用分光光度法(即比色法)测定物质含量的装置。
通常需要加入某种显色剂,以产生有色化合物,其颜色深浅与待测化学成分的含量成正比,据此对待测物浓度进行测定。
分光光度计的工作原理及分光光度法的计算根据Lambert-Beer定律导衍而得Abs(吸光度)=KCL K:摩尔吸收系数 C:吸光物质浓度 L-溶液厚度实验操作:1.硫酸铵分段盐析:血清2.0 ml,加入PBS2.0ml,一边摇一边缓慢加入饱和硫酸铵2.0 ml,混匀后室温下静置10分钟,3000rpm离心10分钟。
实验三 血清γ球蛋白的分离纯化与鉴定

实验三血清γ球蛋白的分离纯化与鉴定【实验目的】一.掌握层析技术的基本原理及应用二.了解层析技术的分类三.掌握凝胶层析和离子交换层析的原理【实验原理】一、层析技术1.层析法层析法也称色谱法,是一种广泛运用的物质分离纯化、分析鉴定技术,是1903年俄国植物学家Michael Tswett发现并命名的。
将植物色素溶液通过装有CaCO3 吸附剂的柱子,然后用石油醚淋洗,各种色素以不同的速率流动后形成不同的色带而被分开。
2.依据混合物中各组分理化性质的差异—分子大小、酸碱性、吸附力、分子形状、分子极性、分子亲和力以及分配系数等。
3.基本原理固定相—固定不动。
流动相—对固定相作单向相对运动,推动样品中各组分通过固定相向前移动。
分离原理:待分离混合物中各组分理化性质不同,对流动相和固定相具有不同的作用力,因此在流动相推动样品通过固定相的过程中,通过不断地吸附、解吸、再吸附、再解吸作用,造成混合物中各组分在固定相中的迁移距离不等,达到分离。
4.凝胶层析(凝胶过滤、凝胶色谱、分子筛层析、分子排阻层析)①定义:指混合物随流动相流经固定相的层析柱时,混合物中各组分按其分子大小不同而被分离的技术。
②基本原理:固定相:凝胶,不带电荷的具有三维空间的多孔网状结构的物质,凝胶的每个颗粒内部都具有很多细微的小孔,如同筛子一样,故称分子筛。
包括琼脂糖、交联葡聚糖、聚丙烯酰胺、琼脂糖-葡聚糖复合凝胶。
流动相:洗脱液。
样品加于柱上,样品随洗脱液的流动而向下移动,小分子能进入凝胶孔内部,做不定性扩散运动,流程长,速度慢,后流出;大分子不能进入凝胶孔内部,只能在颗粒间移动,作垂直向下运动,流程短,先流出→大小分子彼此分开。
③影响因素*层析柱的选择及装填:柱大小—分离样品量凝胶型号—分辨率:各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。
凝胶分离范围之外的分子,难以分离。
如大小不同的两种全排阻分子/完全渗透分子。
*洗脱液:溶解待分离物质,不变性*加样量:1%~5%*凝胶的再生5. 离子交换层析离子交换层析是利用离子交换剂对各种离子的亲和力不同,借以分离混合物中各种离子的一种层析技术。
血清清蛋白及γ-球蛋白的分离

血清清蛋白及γ-球蛋白的分离、纯化与鉴定目的要求1.1.熟悉蛋白质分离纯化的总体思路。
2.2.掌握盐析、离心、层析、浓缩、电泳等技术在蛋白质分离纯化中的综合作用。
3.3.学会设计和制定分离纯化蛋白质的方法。
实验原理血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g左右。
首先利用清蛋白和球蛋白在高浓度硫酸铵溶液溶解度的差异而进行沉淀分离,此为盐析法。
半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。
用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。
常用的方法有透析法、凝胶层析法等。
本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。
当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。
脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。
清蛋白、α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。
因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。
经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。
因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。
其反应式如下:用上述方法分离得到γ-球蛋白是否纯净,单一。
可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。
提高醋酸铵溶液的浓度到0.06 mol/L,DEAE纤维素层析柱上的ß-球蛋白及部分a-球蛋白可被洗脱下来。
07 生物化学实验--血清γ-球蛋白的分离、纯化与鉴定

血清γ- 球蛋白的分离、纯化与鉴定【目的】1 .掌握盐析 - 层析法提纯血清γ- 球蛋白的原理和技术。
2 .熟悉电泳比较法定性γ- 球蛋白的方法。
3 .了解扫描定量γ- 球蛋白的方法。
【原理】蛋白质的分离、纯化是研究蛋白质化学性质及生物学功能的重要手段。
根据不同蛋白质的分子量、溶解度以及在一定条件下带电荷性状的差异来分离、纯化各种蛋白质。
1 .γ- 球蛋白的分离、纯化( 1 )盐析:清蛋白与球蛋白的稳定性不同,故可用盐析法对血清蛋白质初步分离。
在半饱和硫酸铵溶液中,清蛋白不沉淀,球蛋白沉淀,离心所得的沉淀即是球蛋白混合物。
( 2 )脱盐:球蛋白混合物中的硫酸铵会妨碍进一步分离纯化,应除去。
脱盐的方法有多种,本试验采用凝胶过滤。
在凝胶过滤中,柱中的填充料是高度水化的惰性多聚物,最常用的有葡聚糖凝胶( Sephadex Gel )和琼脂糖凝胶 (Agarose Gel) 等颗粒。
葡聚糖凝胶是具有不同交联度的网状结构物,它的“ 网眼” 大小可以通过交联剂与葡聚糖的配比来达到。
不同型号的葡聚糖凝胶可用来分离和纯化不同分子大小的物质。
把葡聚糖凝胶装在层析柱中,不同分子大小的蛋白质混合液借助重力通过层析柱时,比“ 网眼” 大的蛋白质分子不能进入网格中,而被排阻在凝胶颗粒之外,随着洗脱剂在凝胶颗粒的外围而流出。
比‘ 网眼 ' 小的分子则进入凝胶颗粒内部。
这样,由于不同大小的分子所经路程距离不同而得到分离。
大分子物质先被洗脱出来,小分子物质后被洗脱出来。
所以含硫酸铵的蛋白值溶液通过层析柱时,先被洗脱出层析柱的是球蛋白,小分子硫酸铵由此法分离除去(参见第 2 篇第 2 章图 2-3 )。
( 3 )纯化:γ- 球蛋白与α 、β- 球蛋白(以及微量的清蛋白),等电点不同,所以采用离子交换层析,从球蛋白混合物中分离、提纯出γ- 球蛋白。
用于蛋白质分离的层析材料多是离子交换纤维素,它们的优点是对蛋白质的交换容量较一般的离子交换树脂大,而且品种较多,可以适用于各种分离目的。
血清清蛋白、γ-球蛋白的分离、提纯与鉴定-实验报告

生物化学实验报告姓名:学号:专业年级:组别:生物化学与分子生物学实验教学中心【实验报告第一部分(预习报告内容):①实验原理、②实验材料(包括实验样品、主要试剂、主要仪器与器材)、③实验步骤(包括实验流程、操作步骤和注意事项);评分(满分30分):XX】实验目的:1、掌握盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法分离蛋白质的原理和基本方法3、掌握离子交换层析法分离蛋白质的原理和基本方法4、掌握醋酸纤维素薄膜电泳法的原理和基本方法5、了解柱层析技术实验原理:1、蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。
2、不同蛋白质的分子量、溶解度及等电点等都有所不同。
利用这些性质的差别,可分离纯化各种蛋白质。
3、盐析法:盐析法是在蛋白质溶液中,加入无机盐至一定浓度或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。
蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。
中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。
4、离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。
5、醋酸纤维素薄膜电泳原理:血清中各种蛋白质的等电点不同,一般都低于pH7.4。
它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。
由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。
因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。
实验材料:人混合血清葡聚糖凝胶(G-25)层析柱DEAE纤维离子交换层析柱饱和硫酸铵溶液醋酸铵缓冲溶液 20%磺基水杨酸1%BaCl溶液氨基黑染色液2漂洗液 pH8.6巴比妥缓冲溶液电泳仪、电泳槽实验流程:盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定)实验步骤:(一)盐析+凝胶柱层析除盐:(二)离子交换层析(纯化):(三)醋酸纤维素薄膜电泳:1、点样(如下图):-点样线尽量点得细窄而均匀,宁少勿多2、电泳:①薄膜粗面向下②点样端置阴极端③两端紧贴在滤纸盐桥上,膜应轻轻拉平电压:110V时间:50min3、染色和漂洗:电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。
血清Alb、γ-G测定实验报告

生物化学实验报告姓名:学号:专业年级:组别:生物化学与分子生物学实验教学中心实验名称血清清蛋白、γ-球蛋白分离、纯化与纯度鉴定实验日期2014-11-20 实验地点第4实验室合作者指导老师评分教师签名批改日期一、实验目的1.掌握盐析法分离蛋白质的原理和基本方法2.掌握凝胶层析法分离蛋白质的原理和基本方法3.掌握离子交换层析法分离蛋白质的原理和基本方法4.掌握醋酸纤维素薄膜电泳法的原理和基本方法5.了解柱层析技术二、实验原理蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。
不同蛋白质的分子量、溶解度及等电点等都有所不同。
利用这些性质的差别,可分离纯化各种蛋白质。
清蛋白A球蛋白α1α2βγ等电点相对分子量(×104)含量(%)4.886.957~675.06202~55.06304~95.129~156.2~126.85~7.315.6~3012~20(一)粗提(盐析法)盐析法是在蛋白质溶液中,加入无机盐至一定浓度,或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。
蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。
同时,中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。
由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不一样。
所以调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。
(二)脱盐盐析分离的蛋白质溶液中含有大量无机盐,必须先脱盐后才能进一步纯化。
脱盐有多种方法,本实验采用凝胶层析法。
凝胶层析法主要是根据混合物中各种物质分子大小的不同而将其分离的技术。
(三)纯化(离子交换层析)离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离(四)纯度鉴定血清中各种蛋白质的等电点不同,一般都低于pH7.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用醋酸纤维素薄膜电泳对分离得到的清蛋白和γ-球蛋白进行纯度鉴定,以正常血清样品作对照。比较两者电泳图谱可定性判断纯化的清蛋白和γ-球蛋白的纯度。
三、材料与方法:以流程图示意
材料:
1、样品:健康人血清(新鲜、无溶血、无沉淀物或细菌滋生)
2、试剂:0.3mol/L的PH6.5醋酸铵缓冲液、0.06mol/L的PH6.5醋酸铵缓冲液、0.02mol/L的PH6.5醋酸铵缓冲液、1.5mol/L的NaCl-0.3mol/NH4Ac溶液、饱和硫酸铵溶液、0.92mol/L(20%)磺基水杨酸、0.05mol/L(1%)BaCl2溶液、氨基黑染色液、巴比妥缓冲液、漂洗液。
3、仪器及器材:层析柱、烧杯、移液枪、加样枪、试管、滤纸、醋酸纤维素薄膜、黑色反应板、铁固定架、螺旋夹、离心管和离心机、培养皿、载玻片、滤纸、平头镊子、电泳槽、直流稳压电泳仪。
粗提
脱盐
纯化
纯度鉴定
(盐析法)
(凝胶层析法)
(离子交换层析法)
(电泳)
方法:四、结果与讨论:源自结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。
3、纯化(离子交换层析法)
离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的离子则不能,这样便可达到分离纯化的目的。
脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们的等电点的不同可进行分离。血清中各种蛋白质的pI各不相同,因此,在同一醋酸铵缓冲液中,各蛋白质所带的电荷不同,可以通过DEAE离子交换层析将血清清蛋白和γ-球蛋白分离出来。
生物化学实验报告
姓 名:
学 号:
专业年级:
组 别:
生物化学与分子生物学实验教学中心
实验名称
血清清蛋白、γ-球蛋白的分离、纯化与鉴定
实验日期
实验地点
合作者
指导老师
评分
XX
教师签名
李某某
批改日期
2013-06-03
格式要求:正文请统一用:小四号,宋体,1.5倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出现多行、多页空白现象。
2)使用层析柱时,注意不要让液面低于凝胶床/纤维素床表面,以免空气进入凝胶床/纤维素床。
3)往层析柱加液体时,注意不要将凝胶粒/纤维素粒冲起,破坏凝胶床/纤维素床表面的平整。
4)往层析柱加不同液体时,应先让上一种液体进入柱床后再添加另一种液体,否则样品会被稀释,缓冲液等液体会失去其该有的作用。
5)流出一定量液体时,要及时用磺基水杨酸和BaCl2检验流出液是否含有蛋白质,以免蛋白质流失过多。
3、讨论题:
1)硫酸铵盐析一步,为什么是0.8ml血清加0.8ml饱和硫酸铵?
结果:
1、粗提(盐析法):如图1所示,往血清中缓慢滴加饱和硫酸铵溶液后,溶液变浑浊,呈乳白色。离心后,溶液分为上层的上清液和下层沉淀,上清液呈浅黄色(见图3),沉淀为白色。如图2所示,使用移液枪吸取上清液,从而分离上清液和沉淀。沉淀加水后溶解,为无色溶液(见图4)。
图1血清加饱和硫酸铵溶液 图2分离上清液和沉淀
图5DEAE-纤维素层析柱 图6磺基水杨酸和BaCl2检测蛋白质呈阳性
(红色圆圈为磺基水杨酸,蓝色圆圈为BaCl2溶液)
4、纯度鉴定(电泳):如图7所示将醋酸纤维素薄膜架于电泳槽上,进行电泳。如图8所示,染色后,薄膜上可见5条深蓝色横纹。
图7直流稳压电泳仪
图8 血清清蛋白、γ-球蛋白纯度鉴定的电泳图谱
图3上清液 图4沉淀加水后溶解
2、脱盐(凝胶层析法)和纯化(离子交换柱层析鉴定):如图5所示,往层析柱中加样前,应先将层析柱中的上层液放出,用小烧杯接废液,直至下液面离柱床约0.5cm。与葡聚糖凝胶G-25层析柱相对比,DEAE-纤维素层析柱的液体流出速度更缓慢。如图6所示,往磺基水杨酸和BaCl2溶液中分别滴入流出液,生成白色沉淀,说明流出液中含有蛋白质。白色沉淀越多,说明液体所含的蛋白质越多,以此选取浓度最高的1管球蛋白进行醋酸纤维素薄膜电泳。
讨论:
1、操作失误:
1)在进行球蛋白的除盐时,我们倒入球蛋白溶液后没有打开夹子让其进入凝胶柱,而是接着倒入了1ml 0.02mol/L NH4Ac缓冲液,导致球蛋白被稀释。
2)血清中各组分分离结果不佳,可能是点样过多。
3)电泳图谱不整齐,可能是点样不均匀,或电泳时薄膜未放正。
2、注意事项:
1)使用移液枪吸取上清液时,应注意从大往小调节吸取体积,小心吸取,避免吸取沉淀物。
一、实验目的
1、掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法。
2、掌握醋酸纤维素薄膜电泳法的原理和基本方法。
3、了解柱层析技术。
二、实验原理
1、粗提(盐析法):
蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出。盐在水溶液中电离所形成的正负离子可吸引水分子,从而夺取蛋白质分子上的水化膜,还可中和部分电荷使蛋白质分子聚集而沉淀,从而达到盐析沉淀蛋白质的目的。由于血清中各种蛋白质颗粒大小、所带电荷多少及亲水程度不同,因此,利用不同浓度的硫酸铵溶液分段盐析,便可将血清中清蛋白和球蛋白从溶液中沉淀出来,达到初步分离清蛋白、球蛋白的目的。
6)点样线应窄于薄膜宽度,以免发生边缘效应。
7)点样时,应将薄膜表面多余的缓冲液用滤纸吸去,以免缓冲液太多引起样品扩散。但也不能太干,否则样品不易进入薄膜的网孔,导致电泳起始点参差不齐,影响分离效果。
8)点样线应窄而均匀,否则电泳图谱会不整齐。
9)点样时应做好标记,以免弄混。标记要明显,以免染色漂洗后标记模糊消失。
2、脱盐(凝胶层析法)
凝胶层析法利用蛋白质与无机盐类之间分子量的差异。当溶液通过凝胶柱时,溶液中分子量较大的蛋白质因为不能通过网孔进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱。而盐的分子量较小,可通过网孔进入凝胶颗粒,所以流程长,向前移动速度较慢,较晚流出层析柱。从而可达到去盐的目的。