八年级数学下册分式知识点总结.doc
华师大版八年级下册数学知识点总结

八年级华师大版数学(下)第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA =0的条件是:A=0,B ≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式 单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式的整式,分式的值不变。
用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
分式数学知识点归纳总结

分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。
2. 分式可以表示有理数,有理数包括整数和分数。
3. 分式可以看作是代数式的特殊形式,其中分母不为零。
4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。
5. 分式可以相加、相减、相乘和相除,也可以化简和合并。
6. 分式的大小比较可以用分式的加减乘除性质进行比较。
二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。
2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。
三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。
2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。
3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。
4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。
四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。
对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。
2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。
五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。
2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。
六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。
2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。
八年级数学分式知识点

八年级数学分式知识点八年级数学分式知识点概述一、分式的定义分式(Fraction)是指一个表达式,其中包含一个分子(Numerator)和一个分母(Denominator),形式为 a/b,其中 a 是分子,b 是分母,b 不等于零。
二、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以一个非零的数或式子,分式的值不变。
2. 约分:通过找出分子和分母的公因数并约去,使分式化为最简分式。
3. 通分:将两个或多个分式,使其具有相同的分母,这样的操作称为通分。
三、分式的运算1. 分式的加减法:- 同分母分式相加减:分母不变,分子相加减。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 分式的乘法:- 分子乘分子,分母乘分母。
3. 分式的除法:- 除以一个分式等于乘以它的倒数。
4. 分式的混合运算:- 先乘方,再乘除,最后加减。
- 遇到括号,先计算括号内的运算。
四、分式的条件应用1. 分式方程:- 解分式方程时,通常需要去分母转化为整式方程求解。
2. 分式不等式:- 解分式不等式时,需要注意不等号的性质,通常也需要去分母处理。
3. 分式函数:- 分式可以作为函数的表达式,如 y = f(x) = (ax + b) / (cx + d),其中 a, b, c, d 为常数,且cx + d ≠ 0。
五、分式的化简与求值1. 化简:- 通过约分和通分,将复杂的分式化为最简形式。
2. 求值:- 在已知分式中某些字母的值的情况下,可以通过代入法求出分式的数值。
六、分式的实际应用1. 比例问题:- 分式常用于解决比例问题,如速度、时间和距离的关系。
2. 利率问题:- 分式在计算利息、本金和本息和等问题中有广泛应用。
七、分式的图形表示1. 函数图像:- 分式函数的图像可以通过描点法绘制,注意分母不能为零的点。
2. 几何应用:- 分式在计算几何图形的面积、周长等方面也有应用。
八、分式的综合练习1. 练习题:- 通过解决各种分式相关的数学问题,加深对分式知识点的理解和应用。
初中数学知识点总结:分式的运算

初中数学知识点总结:分式的运算知识点总结一、约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的依照是分式的差不多性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:依照分式的差不多性质,异分母的分式能够化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;(2)假如各分母差不多上多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母相同,通分后的各分式分别与原先的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:(1)分式的约分和通分差不多上依据分式的差不多性质;(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.3.求最简公分母的方法是:(1)将各个分母分解因式;(2)找各分母系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2) (3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起专门重要的作用)。
二、分式的运算:1.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行运算。
关于初二数学下册必备知识点归纳

关于初二数学下册必备知识点归纳初二数学下册必备知识点归纳第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。
第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
初二数学分式知识点

初二数学分式知识点一、引言分式是初中数学中的重要概念,它在代数运算、方程求解以及后续的高中数学学习中都扮演着关键角色。
本文旨在总结初二数学中分式的基本概念、性质、运算规则以及应用实例,帮助学生掌握分式相关知识点。
二、分式的定义1. 分式:形如 \(\frac{a}{b}\) 的代数式,其中 \(a\) 称为分子,\(b\) 称为分母,\(b \neq 0\)。
2. 条件:分母不能为零,因为除以零没有定义。
三、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。
2. 符号规则:分式的符号由分子和分母的符号决定,分子分母同号结果为正,异号结果为负。
3. 约分:通过找出分子和分母的最大公约数并约去,简化分式。
4. 通分:将多个分式转化为具有相同分母的分式,便于进行加减运算。
四、分式的运算规则1. 加减法:- 同分母分式相加减:分子相加减,分母不变。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 乘法:- 分式的乘法:分子乘分子,分母乘分母。
3. 除法:- 分式的除法:将除数的分式取倒数,然后进行乘法运算。
4. 乘方:- 分式的乘方:分子和分母分别取方。
五、分式的解方程1. 一元一次方程:通过移项和化简分式,求解未知数。
2. 一元二次方程:在解一元二次方程时,要注意分式的化简和检验根。
六、分式的应用题1. 比例问题:利用分式表示比例关系,解决实际问题。
2. 工作问题:通过分式方程解决工作效率和工作时间的问题。
3. 浓度问题:使用分式计算溶液的稀释和浓缩。
七、常见题型与解题技巧1. 化简求值:熟练掌握分式的化简方法,准确求出分式的值。
2. 分式方程:注意检验解的有效性,避免出现除以零的情况。
3. 应用题:理解题意,找出等量关系,建立分式方程求解。
八、总结分式是初中数学的重要内容,掌握分式的性质和运算规则对于提高数学成绩至关重要。
通过不断的练习和应用,可以加深对分式概念的理解,提高解题能力。
数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
北师大版八年级下册数学 第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式1.分式的定义:如果 A 、 B 表示两个整式,并且 B 中含有字母,那么式子A叫做分式。
B分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0 的整式,分式的值不变。
A A CA A CB B CB B (C 0)C3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
a c ac ; a c a d ad ( a )na nb dbd b d b cbcbb n分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减a b a b , a c ad bc ad bcc cc bd bdbdbd混合运算 :运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即 a1(a 0) ;当 n 为正整数时, a n1a n( a 0)6.正整数指数幂运算性质也可以推广到整数指数幂 .(m,n 是整数 )( 1)同底数的幂的乘法: a ma n a m n ;( 2)幂的乘方: ( a m )n a mn ;( 3)积的乘方: ( ) nn n;aba b( 4)同底数的幂的除法: a ma n a m n ( a ≠ 0) ;( 5)商的乘方: ( a)nnan ; (b ≠ 0)b b7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时, 方程两边同乘以最简公分母时, 最简公分母有可能为0, 这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1) 能化简的先化简 (2) 方程两边同乘以最简公分母, 化为整式方程; (3)解整式方程; (4) 验根. 增根应满足两个条件:一是其值应使最简公分母为 0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为 0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1) 审; (2) 设; (3) 列; (4) 解; (5) 答.应用题有几种类型;基本公式是什么?基本上有五种:(1) 行程问题:基本公式:路程 =速度×时间而行程问题中又分相遇问题、追及问题. (2) 数字问题 在数字问题中要掌握十进制数的表示法.(3) 工程问题基本公式:工作量=工时×工效.(4) 顺水逆水问题v 顺水 = v 静水 + v 水流 、 v 顺水= v 静水 - v 水流8.科学记数法:把一个数表示成 a 10n 的形式(其中 1 a 10 , n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于 10 的 n 位整数时,其中10 的指数是 n1用科学记数法表示绝对值小于 1 的正小数时 ,其中 10 的指数是第一个非0 数字前面 0 的个数(包括小数点前面的一个 0)一、选择题1.下列式子是分式的是()A .xB.2C .xD. x y2x22.下列各式计算正确的是()A .aa1 B . b b2 C . b b1 a ab3.下列各分式中,最简分式是()nna , a 0 D . nn ammamm aA . 3 x yB .m 2n 2 C . a 2 b 2 D .x 2 y 27 xymna 2b ab 2x 2 2xy y 24.化简 m23m的结果是()9 m 2mB. mC.mD.mA.m3m 33 mm 35.若把分式x y中的 x 和 y 都扩大 2 倍,那么分式的值()xyA .扩大 2 倍B .不变C .缩小 2倍D .缩小 4 倍6.若分式方程x 1 3a x有增根,则 a 的值是( )2a xA . 17.已知B. 0C .—1D .—2 ab c ,则 a b的值是()234cA .4B.7 C.1D.5 5448.一艘轮船在静水中的最大航速为 30 千米 / 时,它沿江以最大航速顺流航行100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?设江水的流速为 x 千米 / 时,则可列方程()A .C .100 60x 30 30 x 100 60B.D.100 60x 30 x 301006030 x 30 xx 30 x 309.某学校学生进行急行军训练, 预计行 60 千米的路程在下午 5 时到达, 后来由于把速度加 快 20% ,结果于下午 4 时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程()A .60x 601B.60 x 60 1x 20%x 20%C.60 601D.60 601xx (1x x (120%)20%)10. 已知a b c k ,则直线 ykx 2k 一定经过()c a ca bbA. 第一、二象限B. 第二、三象限C. 第三、四象限D. 第一、四象限二、填空题11.计算 a 2b 3 (a 2 b) 3 =.12.用科学记数法表示— 0.000 000 0314= .13.计算2 a1.24 a2a14.方程370 4 x 的解是.x9 ,16 ,25 ,36 ,15.瑞士中学教师巴尔末成功地从光谱数据中得到巴尔末公式,从5 12 21 32而打开了光谱奥秘的大门。
请你尝试用含你 n 的式子表示巴尔末公式. 16.如果记 yx 2 2=f(x) ,并且 f(1) 表示当 x=1 时 y 的值,即 f(1)=1 12 2 1 ;1 x12f(1) 表 示 当 x=1时 y的 值 , 即 f(1)= ( 1 ) 2 12 1 ;那 么2221( ) 252f(1)+f(2)+f(1)+f(3)+f(1)+ +f(n)+f(1)=(结果用含 n 的代数式表23 n示). 三、解答题17.计算:(1)3b 2 bc(2a) ; (2) a 26a 9 3 aa 2.16 a2a 2b4 b 22 b 3a918.解方程求 x :( 1)x 141 ;( 2)mn0( m ,0) .x 1 x 2 1x x 1n mn19.( 7 分)有一道题:“先化简,再求值:x2 4x)1 (2 x 2 42其中, x=— 3”.xx 4小玲做题时把“ x= — 3”错抄成了“ x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?20.( 8 分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
某校师生也活动起来捐款打井抗旱, 已知第一天捐款 4800 元,第二天捐款 6000 元,第二天捐款人数比第一天捐款人数多 50 人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?21.( 8 分)一辆汽车开往距离出发地180 千米的目的地,出发后第一小时内按原计划的速度匀速行驶, 一小时后以原来的 1.5 倍匀速行驶, 并比原计划提前 40 分钟到达目的地 . 求前一小时的行驶速度.22.(9 分)某市从今年 1 月 1 日起调整居民用天燃气价格, 每立方米天燃气价格上涨 25%.小颖家去年 12 月份的燃气费是 96 元.今年小颖家将天燃气热水器换成了太阳能热水器,5 月份的用气量比去年12 月份少 10m3, 5 月份的燃气费是 90 元.求该市今年居民用气的价格.参考答案一、选择题 BCABCDDADB二、填空题11、a 4b 612、 3.14 10 813、1 2 14、a30 15、( n 2)216、 n12) 242(n三、解答题17、(1)3a 2a 2;( 2).4c3(2 b)18、( 1) x 1 为增根,此题无解; ( 2) x m. 19、解:原式计算的结果等于x 2 4 ,所以不论 x 的值是 +3 还是— 3 结果都为 13 n m20、解:设第一天参加捐款的人数为 x 人,第二天参加捐款的人数为( x+6)人,则根据题意可得:4800 6000解得: x 20 ,经检验, x 20 是所列方程的根,所以第一天参加xx 5捐款的有 20 人,第二天有 26 人,两天合计 46 人.21 、解:设前一小时的速度为 xkm/小时,则一小时后的速度为 1.5xkm/ 小时,由题意得:180 (1 180 x ) 2 ,解这个方程为 x 182 ,经检验, x=182 是所列方程的根, 即前前 x 1.5x 3一小时的速度为 182.22、解:设该市去年居民用气的价格为 x 元 / m3 ,则今年的价格为 (1+25%) x 元 / m3 根据题意,得969010 解这个方程,得x = 2.4 .经检验, x = 2.4是所列方程的x (125%) x根. 2.4 ×(1+25%)= 3 ( 元 ) 。
所以,该市今年居民用气的价格为 3 元/ m3 .。