精密半波整流电路proteus仿真

合集下载

Proteus的虚拟仿真工具

Proteus的虚拟仿真工具

作业
将以上仿真数据,波形图等用word文档上交,
格式可参考“仿真结果.doc”,每位同学以姓 名和学号命名建文件夹,同时将仿真电路图 和word文档一并放在文件夹中上交。
图4-2 二极管元件拾取对话框
(3) 电阻 电阻的分类为“Resistors”,子类有0.6W和2W金属 膜电阻、3W、7W和10W绕线电阻、通用电阻、热电 阻(NTC)、排阻(Resistor Packs)、可变电阻 (Variables)及家用高压系列加热电阻丝。 常用电阻可直接输入通用电阻“RES”拾取即可,然 后再修改参数。这里我们主要说一下比较常用的可变 电阻。直接输入“POT”或“POT-”可找到四个或三个 相关元件。 “POT”为一般滑动变阻器,触头不能拉动,需选中 后打开元件属性对话框,修改“STATE”来改变触头 的位置,“STATE”的初始值为5,触头位于中间,改 为10后,触头位于最上,如图4-3所示。由于调整不 方便,一般不使用此元件,而使用下面的几个滑动变 阻器。

图4-1 三极管元件拾取对话框
(2) 二极管 二极管的种类很多,包括整流桥、整流二极管、肖 特基二极管、开关二极管、隧道二极管、变容二极 管和稳压二极管。打开Proteus的元件拾取对话框, 选中“Category”中的“Diodes”,出现如图4-2所示 的对话框,一般来说,选取子类“Sub-category”中 的“Generic”通用器件即可,图4-2右边给出通用器 件的查寻结果,可以单击来看看需要使用哪种元件。

(5) 电感和变压器 电感和变压器同属电感“Inductors”这一分类,只不 过在子类中,又分为通用电感、表面安装技术(SMT) 电感和变压器。一般来说,使用电感时直接拾取 “INDUCTOR”元件,使用变压器时,要看原、副 边的抽头数而定。 打开元件拾取对话框,选取“Inductors”大类下的子 类“Transformers”,如图4-4所示,在右侧显示出 变压器可选元件。常用的是前四种,名称前缀为 “TRAN-”,也可以直接输入这个前缀来搜寻变压器。 为了帮助大家记忆变压器的名称,以第一个变压器 “TRAN-1P2S”为例来说明它的含义。“TRAN”是 变压器的英文“TRANSFORMER”的缩写,“P”是 原边“PRIMARY”的意思,“S”是副边 “SECONDORY”的意思。而后面三个变压器都是 饱和变压器,

第3章Proteus的虚拟仿真工具ppt课件全

第3章Proteus的虚拟仿真工具ppt课件全
❖ 2. 编辑单频率调频波发生器 ❖ (1) 双击原理图中的单频率调频波发生器符号,出现
第3章 Proteus的虚拟仿真工具ppt 课件(全)
❖ 单频率调频波发生器的属性设置对话框,如图3-15 所示。
❖ 其中,主要参数说明如下: ❖ Offset:电压偏置值。 ❖ Amplitude:电压幅值。 ❖ Carrier Freq:载波频率fC。 ❖ Modulation Index:调制指数MDI。 ❖ Signal Freq:信号频率fS。 ❖ 经调制后,输出信号为
❖ 1. 放置单频率调频波发生器 ❖ (1) 在Proteus ISIS环境中单击工具箱中的
“Generator Mode”按钮图标,出现如图3-1所示的 所有激励源名称列表。
❖ (2) 用鼠标左键单击“SFFM”,则在预览窗口出现 单频率调频波发生器的符号。
❖ (3) 在编辑窗口双击,则单频率调频波发生器被放置 到原理图编辑界面中,可使用镜像、翻转工具对其 位置和方向进行调整。
❖ (5) 示波器显示的图形如图3-6所示。
SINE SOURCE 1
A
B
SINE SOURCE 2
C
D
图3-5 正弦波信号发生器与示波器的连接
图3-6 示波器显第示3章的正Pro弦teu波s的信虚号拟波仿真形工具ppt
课件(全)
3.1.3 脉冲发生器
❖ 脉冲发生器能产生各种周期的输入信号,如方波、 锯齿波、三角波及单周期短脉冲。
❖ 下面我们结合电路分析实例,对Proteus VSM 下的虚拟仿真仪器和工具逐一介绍。
第3章 Proteus的虚拟仿真工具ppt 课件(全)
3.1 激 励 源
❖ 激励源为电路提供输入信号。Proteus ISIS 为 用户提供了如表3-1所示的各种类型的激励源,允许 对其参数进行设置。

Proteus在模拟电路中仿真应用

Proteus在模拟电路中仿真应用

Proteus在模拟电路中仿真应用Proteus在很多人接触都是因为她可以对单片机进行仿真,其实她在模拟电路方面仿真能力也很强大。

下面对几个模块方面的典型带那路进行阐述。

第1部分模拟信号运算电路仿真1.0运放初体验运算,顾名思义,正是数学上常见的加减乘除以及积分微分等,这里的运算电路,也就是用电路来实现这些运算的功能。

而运算的核心就是输入和输出之间的关系,而这些关系具体在模拟电路当中都是通过运算放大器实现的。

运算放大器的符号如图1所示。

图1运算放大器符号输入端运算器都工作在线性区,故进行计算离不开工作在线性区的“虚短”和“虚断”这两个基本特点。

与之对应的,在Proteus中常常用到的放大器有如图2几种。

图2 Proteus中几种常见放大器上面几种都是有源放大器件,我们还经常用到理想无源器件,如图4所示,它的位置在“ Categor/ —“ Operational Amplifiers”一“ OPAMP”。

WMF En>n£aU<rni.All 后4事TCiC^M L L BI i CK€ +JW MTLal CowirtE )fci*C■»■*«■-Ura□■A^UI.E T“L・□IV^EHX J WJ? tirH-tcir^tdvinllpliUa 1>'I K IkchuicE H WSTFJ)C-> LFhE■ l L£riLLbki-XHHTA1EIZDi 4 TTMi. ■naatiriP TW»I li-wn- 血■4ri.出£・》」■!■ 3i iTfUr t LiLfFE 3ri*Uiijaf LM*icaiI TH TE *wi-r T B MUlrid.aTriMLEtlTE TTL 利au-i+a TTL ”啦Tvri. m. UH —・TTL ”F CM:I"TTL *><K TH ME nrL4i TIL U圧sr・・・E讣阳HIai-H-111 1IM LT fl-dTrcL^CT|livi ddliiJ :rh4JWE MUIHm[rtcXZUa. MJMlliYfliEF H K>艮册时Eri<T3W. F.ruvni:rhfnuo. ajuiKrraerh^wik KUl■価IF M T I-HEEMIM p.fJURjni:r BETA HJTJUKrn丁旧彌从BUUlBOffDI“欣甘駁屈MnNcri£<j£Mi p.mnmi:ruccu BJ.UIKJDI:ruour &uumncrtwuJUrrvw^f-P.mKnH:rienMij 乩:rttom WMMMlhiTfii:FBKldl HMMnN:ricnw P.TJIETE!:rt£3TAT即也仙MJMlliTfH卄崎昭El.mKnflErhTTTW ran Era:rhTKDTAMUlKm[rhTium BUiBhlTT^vru^in F.rjLiHjni:rhTWM MUI urnE4IA7H:KmS IE3:713:M<™毋啦Mil# 1E3:!1TR55 TE3:TO:■:耳]田4 unmTFscime- nnscur7U122ruji3IAKmmJUKIlun?3L0^lTUrill IFMFJUKI IEI:ICWtlTSUS? 即斗2盼OFMTIUK+ !□:£ZUKUZi- 713:IUW 购■:3l£rfi 1E3:tfjUTTI vurDTdT<也glPpH丄Ihil~iri-kil X・r帕心f—丄乩7・七7肌g h -希丹]暑hHil--tv-l>9il Opqr肛3hn臼m召奇lul~ir-lul Cf4r 皿------------ -1-------弧rfT. __…__ __________ F _________________«_____ _____ , _____ , _____32P. «B. IfiiJ-iff-lfijl lA. UG-tr«.i:inikl MpLi 右vr Wil, IP/w, 4-L2FIY-O J-SM". Hu^. C-0T-HA 0>wrMLrihhl A«fLi I I I-M:IG-dl 佃”斗・=Hia,L CshMMVU.hJ Li fi-u 宜Hi M O:i i ma) ■RP I I hwr 岭事jf. •刖IJ*T-K33LU llZi 丨皿心rlav ^W:. ITT-K53LU SifM Df-ir«.li Mid K NK. 0皿、Inr=i琴s. MfJtfiH. i-zaun. SW/JE. KT>MCF1T-T"r*<. b*4!^ SfWBi 涼!S I. *<1力lL4r-^iri^Ld>ii M“r,.i4ML JtagLsiLRT 口知上.:刖丿u. I0-H«jlLilfa~3H-rtEi k£iLQI [-lidrhLi-^a Jtafr]^-LKT dmr:. 3B¥|'U. ID-3ar) I L J B 3ir4iV E'^I T B LEkl 耳・I*・L I>X4L J^J JU L U*p-rarj-!.!* li EkSfiai Qi TaR Q> ^rraM kapl ■ fiaraF r4Cin«. ■! fibr^f 自I lit QD ijpwAiP心Aol> Istra Fraci EKC li ch'-Fnai 3if4C A:1 D[4riU»h] h<|d.i bin FraEi Elite II 9i 11:1 DpHaAl »h3 Mkl* TjrirEh-aei hiaih *忑・・」九「・、皿l^rrali kapl i (Tiara Pr-rmg ■! glr£f4q4 &rfi«! (D (i|xr4>.i mhlApfli favra Kf- ------- -■… 亠亠皿皿rtff.ni. ― ■“ 血JX5 1CKS ltoll-1ri-l*ll [旳□E-Kd.CI Uh] AH*CK£JM.CM€. hl卜tw-hd 】旳.U4M1 ta$3 ifLai-C IdiirBhiQj ifLaf 1711 I IVM L1^9*1 iftBi-B Hirra ■!■.■■ mi >.I4T A L ^HT<IT^II ICCM L Jh^JadLflrB ttia'ahBQj I J LHT ITU .i 日!wimr, a siAn, eiwi _iiri#r im.. Q>M留i■tiq心AppLi fur iMlr. l-llfflm. CK -Iff-IhlJIri-lhllCr<rs> iffl5U4如JAL 岛“秋iQh] AapLi Cur m.Cfe-irMi tad M^LI Eiftr ]|Utoplirin-1/0. ^nrV:i nd ・|>liFi>vr 5rt.ui-H-i«Ai Kikl A«|iLi fair•ir*.Iirt-i. :【!!■.ZWa ™■工!IB?ii55—. ”网Wu.卜泗SYi'ca. U-3Tf] IXAVu.才£却Z. «<3flFi -l^'u. *;新1 ffTJm, HEfl 3 Egei2¥l □钞f •即| 问酊卜的3P/u H-l±TPL4KB1 A*fLlElirtml ■iff-iul 计1“1 10PCt Frbi?»■III心F^r|riCh C*p-4rH.Li mJfw«oM hwrq'Jms 仏InrsuEfi £^rn*.i-?oi2 E-criuci!Df-drsti-M'riL rh1briA*l Mh.iSJx.! Hl・jh 乐J L^+urhlHi 小:rHi』THlift, jtti rL H 1-^I U□>L LHK* E^iLJiof Etwck -乩*4・taijlifa5LB.|14 ■■' ECV <£K1H IT IMC ii>M-iiLi -jrrf-u- hi]-±.B| IL-M I E - S E%al. LdaFfawWg 比^3::“世L B X aanJ JTIT, #■ T BTIIT ,FHari -u ■■ ~ hd… ErJ-.u>:»d JTtt. Lo* Fw P MErlAiEtd JTn,. Litr Fwaav F TH_Eiilq:+9 THT. Pr“iri4<i 耳田h£if*ul MfJifi u* hJ.. L-^UBB J jnt. hxMl ・■酹・內hii. BrJwcsJ JTtr. hnnBi "aLn 7-mr :I IKK^F U^-MM Qpirkh^uL te^LEi IF nth J3E1 Einlt 5T-KM*! .UICT-SBifiLCnurkl Fa.EvJ.. U■- - …h«L "tu4Swd- Lx«Erilal LuanA■.■■■! AapU jiiari iiw ■SririimAL ikpf^iEi I H4bQja-irljMMl JU^J L E I VLiMWJl>.i-n^ *v?li<avrtb gtrmiixr— taQilifudrLTfaliMal '■5«taM iJ r<!->■!> till_mT-丁障it. Gwwril l>r|Maq 2r和Pmc*心f<rr>T+ t|iri>.i4ul AafJaEi JTET-lijf'U. '^KrirtlTrrpjGiiJFET*丁峠GtfHi al lu-paaa O^rM Ml 1M4L W矶■ ilk TTTT lajiiLL a]JiRpli fiirrelk JTZT lRfi>.i h]AapLi Ei*r- _ |£1 iM^LI EiMLn J1TT-3M4I. H ・|>1山”Ln Jhi3R. JW-S RITS L paii 比lejlifavrLn l-M3-i UdK# FvT-M-i >l|iia-hi^-iul g^Ltitr ■!■讣JR J Cq^it Eval. Lva lai E4:, Mhi*h]:>M*hLii»al J^3 = Cl* ■■ilk 1TTT ]K*«LE ■*I r ■-r» wr T >”R 0 A .-i J rr«!*,F»*w.L« Fmc; fmc,r«».Elii z l 图4理想无源放大器件的位置1.1比例运算电路与加法器这种运算电路是最基本的其他电路都可以由它进行演变。

三相半波可控整流电路建模与仿真

三相半波可控整流电路建模与仿真

三相半波可控整流电路建模与仿真班级:应电091组号:第1组组员:何俊敏王晓龙邵建敏陈大靠蔡泽军2011年10月20日目录一.实验目的.............................................................................................................. - 4 -二.实验内容.............................................................................................................. - 4 -1.三相半波可控整流电路(电阻性负载).................................................... - 4 -1.1电路结构............................................................................................. - 4 -1.2仿真建模及参数设置......................................................................... - 5 -1.3仿真波形测试..................................................................................... - 7 -1.4小结..................................................................................................... - 9 -2.三相半波可控整流电路(阻-感性负载) .................................................. - 9 -2.1电路结构............................................................................................. - 9 -2.2仿真建模及参数设置....................................................................... - 10 -2.3仿真波形测试................................................................................... - 12 -2.4小结................................................................................................... - 14 -3. 三相半波共阳极可控整流电路 ............................................................... - 15 -3.1电路结构........................................................................................... - 15 -3.2仿真建模及参数设置....................................................................... - 16 -3.3仿真波形测试................................................................................... - 18 -3.4小结................................................................................................... - 19 -4.三相桥式全控整流电路(电阻性负载) ....................................................... - 20 -4.1电路结构........................................................................................... - 20 -4.2仿真建模及参数设置............................................................................... - 20 -4.3仿真波形测试................................................................................... - 21 -4.4小结................................................................................................... - 23 -5. 三相桥式全控整流电路(阻感性负载)..................................................... - 24 -5.1电路结构........................................................................................... - 24 -5.2仿真建模及参数设置....................................................................... - 24 -5.3仿真波形测试................................................................................... - 25 -5.4小结................................................................................................... - 28 -三.实验总结............................................................................................................ - 29 -一.实验目的1)不同负载时,三相可控整流电路的结构、工作原理、波形分析。

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。

(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。

(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。

(4)了解三种不同负载电路的工作原理及波形。

二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。

其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。

(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。

(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。

(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。

2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。

如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。

设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。

α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。

单相半波整流电路的仿真设计

单相半波整流电路的仿真设计

单相半波整流电路的仿真设计【摘要】本文主要围绕单相半波整流电路的仿真设计展开讨论。

在介绍研究背景指出单相半波整流电路在电力系统中的重要性,以及研究意义和研究目的。

在解释了单相半波整流电路的基本原理和工作特性,讨论了元件选择对电路性能的影响,并详细介绍了电路的仿真设计过程。

在结论部分对本文进行总结,展望未来研究方向,并得出结论。

本文不仅有助于加深对单相半波整流电路的理解,还提供了实际操作的指导,对于电力系统领域的研究和应用具有重要意义。

【关键词】单相半波整流电路、仿真设计、研究背景、研究意义、研究目的、基本原理、工作特性、元件选择、电路仿真设计、性能评估、总结、研究展望、结论1. 引言1.1 研究背景单相半波整流电路是电力电子领域中常见的电路之一,广泛应用于各种电源和电子设备中。

随着社会的科技进步和需求的不断增加,对电力电子器件的性能要求也越来越高,因此对单相半波整流电路的研究和优化显得尤为重要。

随着电子设备的普及和网络的发展,人们对电力电子器件的功率密度、效率、稳定性等方面都提出了更高的要求。

单相半波整流电路作为电力供应系统中重要的部件之一,其性能直接影响到整个系统的性能和稳定性。

研究单相半波整流电路的工作原理、特性以及设计优化,对提高电力系统的性能和效率具有重要意义。

目前,随着电力电子技术的不断发展和进步,单相半波整流电路的设计和仿真技术也在不断完善。

通过对单相半波整流电路进行仿真设计,可以更好地理解其工作原理和特性,为实际应用提供更好的设计参考和优化方案。

开展单相半波整流电路的仿真设计研究具有重要的现实意义和深远影响。

1.2 研究意义单相半波整流电路是电力电子领域中非常常见的电路之一,其在电源和电器中均有着广泛的应用。

研究单相半波整流电路的意义在于深入理解其工作原理和特性,为设计和优化电源系统提供基础。

通过仿真设计单相半波整流电路,可以验证理论分析的正确性,提高电路设计的准确性和效率。

深入研究单相半波整流电路的元件选择和性能评估,可以为工程实践提供重要的参考和指导。

实验一 整流电路仿真实验

实验一  整流电路仿真实验

实验一整流电路仿真实验一.单项半波可控整流电路
1.L=0H:
电路输出电流波形:
电路输出电压波形:
电路输入电压与输出电压比较波形:
2.L=0.5mH
电路输出电流波形:
电路输出电压波形:
电路输入电压与输出电压比较波形:
3.L=0.1H
电路输出电流波形:
电路输出电压波形:
电路输入电压与输出电压比较波形:
二.单相全控桥电路仿真
1.L=0.25mH
电路输出电压、输出电流、交流侧电流波形:
2.L=1mH
电路输出电压、输出电流、交流侧电流波形:
三.单相半控桥电路仿真
30
输出电压波形、晶闸管端电压波形、整流二极管端电压波形:
60
输出电压波形、晶闸管端电压波形、整流二极管端电压波形:
输出电压波形、晶闸管端电压波形、整流二极管端电压波形:
120
输出电压波形、晶闸管端电压波形、整流二极管端电压波形:
四.三相桥式全控整流电路仿真
1.
输出电压、晶闸管端电压、三相电压:
30
输出电压、晶闸管端电压、三相电压:
60
输出电压、晶闸管端电压、三相电压:
90
输出电压、晶闸管端电压、三相电压:
2.
输出电压、晶闸管端电压、三相波形:
30
输出电压、晶闸管端电压、三相波形:
60
输出电压、晶闸管端电压、三相波形:
90
输出电压、晶闸管端电压、三相波形:
3.
二次侧电流波形:
谐波分析:。

单相半波可控整流电路MATLAB仿真演示

单相半波可控整流电路MATLAB仿真演示

第一步:建立仿真模型1.启动MATLAB方法:双击桌面上的MATLAB的快捷方式图标。

演示过程请点击启动MATLAB.exe停止演示请点击鼠标右键,在弹出菜单中点击退出。

2.建立一个仿真模型的新文件方法:在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。

演示过程请点击建立仿真文件.exe3.提取电路元器件模块方法:在仿真模型窗口的菜单上点击图标,调出模型库浏览器,在模型库中提取所需的模块放到仿真平台。

组成单相半波可控整流电路的主要元器件有交流电源、晶闸管、RLC负载、脉冲发生器、测量仪器(电压表、电流表、示波器)演示过程请点击提取电路元器件.exe4.将电路元器件模块按电路原理图连接起来组成仿真电路。

方法:将元器件移到合适的位置,点击元器件修改模块名称,然后连接模块。

演示过程请点击将电路元器件连接成仿真电路.exe停止演示请点击鼠标右键,在弹出菜单中点击退出。

第二步:设置模型参数方法:双击模块图标弹出参数设置对话框,然后按框中提示输入。

1.交流电源电压电压为220V,频率为50Hz,初始相位为0°。

在电压设置中要输入的是电压峰值,在该栏中键入“220*sqrt(2)。

演示过程请点击交流电源参数设置.exe2.晶闸管晶闸管可以直接使用模型的默认参数,也可以另外设置。

3.负载电阻性负载时将R设为负载阻值,L的值为0,C的值为inf。

4.触发脉冲脉冲周期和交流电源同步,控制角α以脉冲的延迟时间来表示。

演示过程请点击其他模型参数设置.exe第三步模型仿真1.设置仿真参数方法:在菜单中选择Simulation,在下拉菜单中选择Simulation parameters,在弹出的对话框中设置的项目很多。

主要有开始时间、终止时间、仿真类型等。

2.开始仿真在菜单Simulation下选择Start,立即开始仿真,若要中途停止仿真可以选择Stop。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档