2超导材料 ppt课件
合集下载
超导体的二流体模型(共12张PPT)

# 金属中自由电子气的存在
伦敦第二方程的简单推导
既然超导体内部B=0,则超导体内部的电流亦为零。
超流电子 速度凝聚
伦敦方程 超导电动力学
在超导体内, 一定存在着电流与磁场相互制约的机制,使它
们都只能存在于表面薄层内,而不能深入到超导体内部
伦敦第二方程
伦敦假设除了麦氏方程外,在超导体内还有另一个磁场和电 流相互制约的关系
麦克斯韦方程+第二方程=迈纳斯效应
因为在超导体内部的回路C上,磁感应强度B=0,但A≠0,矢势A影响着超导电子波函数的相位,从而导致磁通量子化现象。
它指出在超导体内部B=0,由磁场边值关系当超导体外部有磁场时,紧贴超导体表面两侧处应有边值关系
但 超可流以电有 子既某 动种 量然空 有间 序超,导有体序 额内外放部热 B=0,则超导体内部的电流亦为零。
由麦氏方程
B L是在超导体内B值发生显著变化的线度。
伦敦假设除了麦氏方程外,在超导体内还有另一个磁场和电流相互制约的关系 伦敦假设除了麦氏方程外,在超导体内还有另一个磁场和电流相互制约的关系
L------电流穿透深度
J
因为在超导体内部的回路C上,磁感应强度B=0,但A≠0,矢势A影响着超导电子波函数的相位,从而导致磁通量子化现象。
伦敦方程 超导电动力学
伦敦假设除了麦氏方程外,在超导体内还有另一个磁场和电流相互制约的关系
但可以有某种பைடு நூலகம்间 伦敦方程 超导电动力学
2 1 1 磁通量子化在超导物理中具有重要作用。
B B, 超流电子动量有序 , 有序 额外放热
2 L 这现象再次指出矢势A的物理实在性。
L是在超导体内B值发生显著变化的线度。 L 它指出在超导体内部B=0,由磁场边值关系当超导体外部有磁场时,紧贴超导体表面两侧处应有边值关系
超导材料介绍课件PPT

No Power Loss Act as Magnet Tc, Jc, Hc Electron Tunnelling
第8页
1. 零电阻效应
不同导体的电阻-温度曲线
水银的零电阻效应
在特定的温度下材料的电阻突然消失的现象称为超导(电)现象,发生这 一现象的温度叫超导转变温度Tc,也叫临界温度。材料失去电阻的状态称 为超导态,存在电阻的状态称为正常态。具有超导态的材料称为超导材料。 零电阻效应是超导态的一个基本特征。
第4页
1986年缪勒和柏德诺兹发现了钡镧铜氧体系高温超导化合物。于1987 年获得若贝尔奖。这一研究成果导致了多种液氮温区高温超导体材料 的出现,并宣告了超导技术开发应用时代即将到来。
第5页
金兹伯格
莱格特
阿布里科索夫
2003年诺贝尔物理学奖授予美国阿尔贡国家实验室的阿力克谢·阿 布里科索夫、俄国莫斯科莱伯多夫物理研究所的维塔利·金兹伯格 和美国伊利诺斯大学教授安东尼·莱格特,以奖励他们在超导和超 流理论方面的先驱性贡献。
第11页
超导体与理想导体的磁性质的区别
超导态是一个 热力学平衡现 象,抗磁性可 逆;理想导体 的这种磁性质 与加场过程有 关,不可逆。
第12页
3. 超导体的临界参数
➢临界温度Tc ➢临界磁场Hc ➢临界电流密度Jc
一些金属超导体临界 磁场与温度的关系
维持超导状态的必要条件
第13页
4. 超导隧道效应
第二类超导体的相图
N
T Tc
第18页
混合态
T<Tc 0<H<Hc1
T<Tc Hc1<H<Hc2
Flux penetrates above the lower critical field Hc1 Superconductivity survives up to the upper critical field Hc2 Type II Most alloys, HTS, MgB2.
2.超导材料

磁悬浮现象就是超 导体具有完全抗磁性的 证明。人们做过这样一 个实验,在一个浅平的 锡盘中,放入一个体积 很小磁性很强的永久磁 铁,然后把温度降低, 使锡出现超导性。这时 可以看到,小磁铁竟然 离开锡盘表面,飘然升 起,与锡盘保持一定距 离后,便悬空不动了。
产生这一现象的原因,是由于超导体的 完全抗磁性,使小磁铁的磁力线无法穿透超 导体,磁场发生畸变,便产生了一个向上的 浮力。进一步的研究表明:处于超导态的物 体,外加磁场之所以无法穿透它的内部,是 因为在超导体的表面感生一个无损耗的抗磁 超导电流,这一电流产生的磁场,恰巧抵消 了超导体内部的磁场。
3.2迈斯纳效应(完全抗磁性)
迈斯纳 (Meissner) 于 1933 年通过实验证明, 当金属在外磁场中冷却而从非超导态转变 为超导态时,体内原有的磁力线立即被推 出体外,磁感应强度恒等丁零,这种现象称 为迈斯纳效应。迈斯纳效应又叫完全抗磁 性。而且若对超导体施以强外磁场 (小于等 于Hc) ,体内亦将没有磁力线透过。也就是 说,超导体不仅是一个理想的导电体,而 且也是一个理想的抗磁体。现常用迈斯纳 效应这个重要性质来判别物质是否具有超 导性。
为了防止合金在高温下被氧化和排除气 体,以获得良好的加工性能和较纯净的合金, 需要在真空或惰性保护气氛中熔炼。先在电 子轰击炉中熔炼成初锭,作为真空电弧熔炼 的自耗电极。再经真空自耗熔炼成 Nb-Ti 合 金锭。有时为了得到均匀的 Nb-Ti 合金锭, 需经多次重熔。但是,从超导性来看,杂质 的存在有利于Jc的提高(作为强磁场超导合 金材料要求其Jc高)。一定含量的杂质,常 常是改善超导性能所必要的。所以未必重熔 次数愈多、纯度愈高愈好。
大家都知道,若将金属线圈放在磁场中,则线圈内将产生感应 电流,对于正常金属线圈来说,当磁场去掉后,线圈内电流很 快衰减为零,而对于超导线圈,情况却完全不同,图 1 是著名 的持续电流实验。将一超导线圈放在磁场中并冷却到临界温度 以下,突然撤去磁场,则在超导线圈中产生感生电流。
超导应用.ppt

接着昂尼斯又对多种金属、合金、化合物材料进行低温下的实验,发现它们中 的许多都具有在低温下电阻消失、感应电流长期存在的现象。由于在通常条件下导 体都有电阻,昂尼斯就称这种低温下失去电阻的现象为超导。在取得一系列成功的 实验之后,昂尼斯立即正式公布这一发现,并且很快引起科学界的高度重视,昂尼 斯也因此荣获1913年诺贝尔物理学奖。
5:超导体的应用
❖ 电子学应用
自1962年超导量子隧道效应发现以后,超导技术在 电子学中的应用揭开了新的篇章,经过多年的发展, 至今已有许多新型的超导电子器件研制成功,这些 超导电子器件包括:超导量子干涉器(SQUID)、 超导混频器、超导数字电路、超导粒子探测器等。
❖ 生物医学应用
超导技术在生物医学中的应用包括超导核磁共振成 像装置(MRI)和核磁共振谱仪(NMR) 核磁共振成像的原理是基于被测对象的原子磁场与 外磁场的共振现象来分析被测对象的内部状态。
※BCS理论的一个基本近似是:取消了电-声子作用 对能量与动量的依赖关系,采用了常数截断处理。 实际上,该理论假设,只在费米面以外一定的能层 内,两电子间才会具有吸引作用而形成Cooper对, 且为作德用 拜势 频的 率大 。小 )不实变际。上(在能晶层体范中围与为电子相D 关的相D 互, 作用是非常复杂的,因此虽然它能够解释低温超导 体大多数特征,但铅,汞,铌等几种元素的性质却 与BCS理论计算有相当的出入。——此时应当用强耦 合理论对其加以修正。
※伦敦方程的修正-Pippard非局域理论
JS与A(r)的非局域关系-Pippard方程:
j (r , t)
3
4l
d 3r
R
R A(r)
R4
eR/p
其中, 并且假设 a
nse2 m
5:超导体的应用
❖ 电子学应用
自1962年超导量子隧道效应发现以后,超导技术在 电子学中的应用揭开了新的篇章,经过多年的发展, 至今已有许多新型的超导电子器件研制成功,这些 超导电子器件包括:超导量子干涉器(SQUID)、 超导混频器、超导数字电路、超导粒子探测器等。
❖ 生物医学应用
超导技术在生物医学中的应用包括超导核磁共振成 像装置(MRI)和核磁共振谱仪(NMR) 核磁共振成像的原理是基于被测对象的原子磁场与 外磁场的共振现象来分析被测对象的内部状态。
※BCS理论的一个基本近似是:取消了电-声子作用 对能量与动量的依赖关系,采用了常数截断处理。 实际上,该理论假设,只在费米面以外一定的能层 内,两电子间才会具有吸引作用而形成Cooper对, 且为作德用 拜势 频的 率大 。小 )不实变际。上(在能晶层体范中围与为电子相D 关的相D 互, 作用是非常复杂的,因此虽然它能够解释低温超导 体大多数特征,但铅,汞,铌等几种元素的性质却 与BCS理论计算有相当的出入。——此时应当用强耦 合理论对其加以修正。
※伦敦方程的修正-Pippard非局域理论
JS与A(r)的非局域关系-Pippard方程:
j (r , t)
3
4l
d 3r
R
R A(r)
R4
eR/p
其中, 并且假设 a
nse2 m
超导材料 PPT

仅从超导体的零电阻现象出发得不到迈斯纳效应,同样用迈斯纳效 应也不能描述零电阻现象,因此,迈斯纳效应和零电阻性质是超导态的 两个独立的基本属性,衡量一种材料是否具有超导电性必须看是否同时 具有零电阻和迈斯纳效应。
超导性质和相关理论
观察迈纳斯效应的磁悬浮试 验
超导性质和相关理论
超导隧道效应
弱连接超导体:S-I-S
02 超导性质和相关理论
零电阻效应
超导性质和相关理论
A) 临界温度: 电阻突然消失的温度被称为超导体的临界温度Tc。超导临界 温度与样品纯度无关,但是越均匀纯净的样品超导转变时的电阻陡降 越尖锐。
B)临界磁场: 超导电性可以被外加磁场所破坏, 对于温度为T (T<Tc)的超导 体, 当外磁场超过某一数值Hc (T)的时候,超导电性就被破坏了,Hc (T)称为临界磁场。在临界温度Tc,临界磁场为零。Hc(T)随温度的变化 一般可以近似地表示为抛物线关系:
(2) 正常电子的性质与正常金属自由电子气体相同,受到振动晶格的散射而产生 电阻,对熵有贡献。
超导性质和相关理论
(3) 超流电子处在一种凝聚状态,即某一低能态,所以超导态是比正常态 更加有序的状态。这个假设的依据是:超导态在H=Hc 的磁场中将转变 为正常态,而超导态的自由能要比正常态低 0Hc2V/2 (V是超导材料的体 积)。超导态的电子不受晶格散射,所以超流电子对熵没有贡献。
超导性质和相关理论
伦敦电磁学方程
1935年,伦敦兄弟在二流体模型的基础上,提出两个描述超导电流
其中Hc0是绝对零度时的临界磁场。
大家学习辛苦了,还是要坚持
继续保持 安静
超导性质和相关理论
C) 临界电流: 在不加磁场的情况下,超导体中通过足够强的电流也会破 坏超导电性, 导致破坏超导电性所需要的电流称作临界电流Ic(T)。在临界 温度Tc,临界电流为0。 临界电流随温度变化的关系有:
超导性质和相关理论
观察迈纳斯效应的磁悬浮试 验
超导性质和相关理论
超导隧道效应
弱连接超导体:S-I-S
02 超导性质和相关理论
零电阻效应
超导性质和相关理论
A) 临界温度: 电阻突然消失的温度被称为超导体的临界温度Tc。超导临界 温度与样品纯度无关,但是越均匀纯净的样品超导转变时的电阻陡降 越尖锐。
B)临界磁场: 超导电性可以被外加磁场所破坏, 对于温度为T (T<Tc)的超导 体, 当外磁场超过某一数值Hc (T)的时候,超导电性就被破坏了,Hc (T)称为临界磁场。在临界温度Tc,临界磁场为零。Hc(T)随温度的变化 一般可以近似地表示为抛物线关系:
(2) 正常电子的性质与正常金属自由电子气体相同,受到振动晶格的散射而产生 电阻,对熵有贡献。
超导性质和相关理论
(3) 超流电子处在一种凝聚状态,即某一低能态,所以超导态是比正常态 更加有序的状态。这个假设的依据是:超导态在H=Hc 的磁场中将转变 为正常态,而超导态的自由能要比正常态低 0Hc2V/2 (V是超导材料的体 积)。超导态的电子不受晶格散射,所以超流电子对熵没有贡献。
超导性质和相关理论
伦敦电磁学方程
1935年,伦敦兄弟在二流体模型的基础上,提出两个描述超导电流
其中Hc0是绝对零度时的临界磁场。
大家学习辛苦了,还是要坚持
继续保持 安静
超导性质和相关理论
C) 临界电流: 在不加磁场的情况下,超导体中通过足够强的电流也会破 坏超导电性, 导致破坏超导电性所需要的电流称作临界电流Ic(T)。在临界 温度Tc,临界电流为0。 临界电流随温度变化的关系有:
超导材料发展历程及现行理论解释与应用.pptx

5
6
发展历程
• 1911年,荷兰科学家H. K. Ones 利用低温技术研究金属的电阻特性时发现Hg在温度 低至4.2K时电阻降为零。后人把这种状态叫超导态。并把电阻突然降为零的温度 称为临界温度,记为Tc。
• 但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。 人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌 三锗的23.22K,才提高了19K,科学家们用乌龟来形容这个程度。
• 一个比较形象的理解:当一个电子在晶格中运动时,由于异性电荷相吸而导 致局域晶格畸变,当另外一个电子通过时,会感受到第一个电子通过时导致 的晶格畸变的影响,从而在两个电子之间产生间接吸引相互作用,这就是 “库珀对”,其总动量和总自旋为零。所有电子对在运动过程中能够保持 “步调一致”(相位相干,即相位相同),即使受到杂质等散射也将保持总 动量不变,从而在外加电场作用下能够不损失能量而运动——这种现象就是 超导。所以说,超导是微观量子凝聚态的宏观表现。
• (3)临界电流密度Jc:当通过超导体的电流密度超过临界电流密度Jc时, 超导体由超导体恢复为正常状态。临界电流密度Jc与温度、磁场强度有关。
4
实验检验
为了证实(超导体)电阻为零,科学家将一 个铅制圆环,放入温度低于Tc=7.2K的空间, 利用电磁感应使环内激发起感应电流。结果 发现,环内电流能持续下去,从1954年3月16 日始,到1956年9月5日止,在两年半的时间 内的电流一直没有衰减,这说明圆环内的电 能没有损失,当温度升到高于Tc时,圆环由 超导状态变正常态,材料的电阻骤然增大, 感应电流立刻消失,这就是著名的昂尼斯持 久电流实验。
的崔田教授组在“传统
高温超导体”的研究上
6
发展历程
• 1911年,荷兰科学家H. K. Ones 利用低温技术研究金属的电阻特性时发现Hg在温度 低至4.2K时电阻降为零。后人把这种状态叫超导态。并把电阻突然降为零的温度 称为临界温度,记为Tc。
• 但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。 人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌 三锗的23.22K,才提高了19K,科学家们用乌龟来形容这个程度。
• 一个比较形象的理解:当一个电子在晶格中运动时,由于异性电荷相吸而导 致局域晶格畸变,当另外一个电子通过时,会感受到第一个电子通过时导致 的晶格畸变的影响,从而在两个电子之间产生间接吸引相互作用,这就是 “库珀对”,其总动量和总自旋为零。所有电子对在运动过程中能够保持 “步调一致”(相位相干,即相位相同),即使受到杂质等散射也将保持总 动量不变,从而在外加电场作用下能够不损失能量而运动——这种现象就是 超导。所以说,超导是微观量子凝聚态的宏观表现。
• (3)临界电流密度Jc:当通过超导体的电流密度超过临界电流密度Jc时, 超导体由超导体恢复为正常状态。临界电流密度Jc与温度、磁场强度有关。
4
实验检验
为了证实(超导体)电阻为零,科学家将一 个铅制圆环,放入温度低于Tc=7.2K的空间, 利用电磁感应使环内激发起感应电流。结果 发现,环内电流能持续下去,从1954年3月16 日始,到1956年9月5日止,在两年半的时间 内的电流一直没有衰减,这说明圆环内的电 能没有损失,当温度升到高于Tc时,圆环由 超导状态变正常态,材料的电阻骤然增大, 感应电流立刻消失,这就是著名的昂尼斯持 久电流实验。
的崔田教授组在“传统
高温超导体”的研究上
超导材料

世界第一个高温超导输电系统部署完成
2008年7月2号,美国超导公司正式在一个商业电网中部署了世界上第一个 高温超导输电系统。超导体能够快速、高效并且轻松地传输大量电力。相 比同样粗细的铜导线,他们的输电能力高达150倍,但因为技术困难,超 导体输电的商业应用发展缓慢。 上周部署的这个系统收到了美国能源部的资助,是长岛电力局电网的 一部分,由三根138千伏的电缆组成。它于2008年4月开始通电,在满负荷 运转时能够满足30万户家庭的用电需求。 然而要在电网中用超导体完全取代铜导线,目前仍然有一些技术障碍, 最关键的问题是费用。现在在长岛运行的第一代电缆十分昂贵,因为它们 都镀上了一层银。第二代镀铜导线能够省下五分之四的费用,但才刚刚进 入实验阶段。
可以这样简单地理解:
在常温下,金属原子失去外层电子成为正离 子规则排列在晶格的结点上作微小振动。自由电 子无序地充满在正离子周围。在电压作用下,自 由电子的定向运动就成为电流。自由电子在运动 中受到的阻碍称为电阻。 当超导临界温度以下时,自由电子将不再完 全无序地“单独行动”,由于晶格的振动,会形 成“电子对”(即“库珀电子对”)。温度愈低, 结成的电子对愈多,电子对的结合愈牢固,不同 电子对之间相互的作用力愈弱。在电压的作用下, 这种有秩序的电子对按一定方向畅通无阻地流动 起来。如下图:
U
隧道 效应
E<U
• 经典
E<U
• 量子
如果其中的 Al 进入超导态,就称为约 瑟夫森结(下图)。 1962年,剑桥大学的博士后约瑟夫森 (B D Josephson)理论计算表明,当绝缘 层小于1.5~2×10-9m时,除了前面所述的 正常电子的隧道电流外,还会出现一种与 库珀电子对相联系的隧道电流,而且库珀 电子对穿越势垒后,仍保持其配对的形式。 这种不同于单电子隧道效应的新现象,称 为约瑟夫森效应。
超导材料解析PPT教学课件

2020/10/16
8
而后朱经武发现的铊钡钙铜氧系合金的超导温度更 接近室温,达120K。使超导温度从极为寒冷的液氦区 进入到比较温暖的液氮区。
2020/10/16
9
二 超导基本原理
• 二流体模型
·BCS理论
2020/10/16
10
二流体模型
比热:
金属晶体的基本组成单位是原子,而原子又是
由原子核和核外电子组成,电子在金属内共有
外电子的吸引作用。这样两个电子通过晶格点阵发生
间接的吸引作用。
2020/10/16
21
库柏电子对
• 库柏(Cooper)证明:当2个 电子间存在净的吸引作用 时,在费米面附近就存在 一个动量大小相等、方向 相反且自旋相反的束缚态 ;它的能量比2个独立的电 子总能量低,这种2个电子 对的束缚态称为库柏对。
2020/10/16
22
BCS超导微观理论
1. 超导电性来源于电子间通过晶格作媒介所产生的相互吸引 作用,
2. 当这种作用超过电子间的库仑排斥作用时,电子会形成 束缚对,也就是库柏电子对,从而导致超导电性的出现。
3. 库柏对会导致能隙存在,超导临界场、热力学性质和大 多数电磁学性质都是这种库相对活动的结果。
2020/10/16
19
机理解释
L. N. Cooper认为超导态是由正则动量(机械 动量与场动量之和)为零的超导电子组成的,它是 动量空间的凝聚现象。要发生凝聚现象,必须有 吸引力的作用存在。
2020/10/16
20
电子在晶格点阵中运动,它对周围的正离子有吸
引作用,从而造成局部正离子的相对集中,导致对另
4.
5. 元素或合金的超导转变温度与费米面附近电子能态密度 N(EF)和电子-声子相互作用能U有关,可用电阻率来估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/12/27
24
BCS超格作媒介所产生的相互吸引 作用,
2. 当这种作用超过电子间的库仑排斥作用时,电子会形成 束缚对,也就是库柏电子对,从而导致超导电性的出现。
3. 库柏对会导致能隙存在,超导临界场、热力学性质和大 多数电磁学性质都是这种库相对活动的结果。
2020/12/27
18
· 同位素效应
• 超导临界转变Tc 与原子质量的平 方根成反比
Tc M 1 (1/2)
2020/12/27
19
• 由于晶格振动的频率也与原子量的平方根成反比, 所以同位素效应也暗示了超导体中电子行为和晶 格之间的密切联系。
2020/12/27
20
超导能隙
• 由超导态的比热容可知 ,超导态的电子能谱中 存在一个半宽度为Δ的 能量间隔,在这个能量 间隔内禁止电子占据, 人们把2Δ或Δ称为超 导态的能隙。
2020/12/27
6
低温超导体应用的局限性
• 低温超导体的临界转变温度最高为 30 K, 因此,它必须在液氦 (零下269C) 温度下 工作。
• 液氮 (零下196C) 无论在价格、来源和制 备都比液氦具有大得多的优势。
2020/12/27
7
26 种超导金属元素
2020/12/27
8
研究发现:金属合金的超导转变温度比单 质金属稍微高一些
4. 5. 元素或合金的超导转变温度与费米面附近电子能态密度
N(EF)和电子-声子相互作用能U有关,可用电阻率来估计。
2020/12/27
25
BCS超导微观理论
3. 在绝对零度下,对于超导态,低能量的即在费米 球内部深处的电子,仍与处在正常态中的一样。
4. 但在费米面附近的电子,则在吸引力作用下, 按相反的动量和自旋全部结成库柏对,也就是凝 聚的超导电子,在有限温度下,一方面出现一些 不成对的单个激发电子,相当于所谓正常的电子 ;
锗三铌 (Nb3Ge) 的超导转变温度为 23.2 K, 在 20 世纪 80 年代以前是最高记录。
2020/12/27
9
1986年,贝特诺茨和缪勒从别人多次失败中 总结教训,放弃了在金属和合金中寻找超导材料 的老观念,终于发现一种Ba-La-Cu-O 系氧化物 材料 (BLCO) 材料在43K这一较高温度下出现超 导现象。
2.3.4 超导材料
2020/12/27
1
2 超导材料
超导材料是一种没有电阻的材料,既 能节约能量,还能把电流储存起来。
2020/12/27
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨,
2020/12/27
14
二流体模型认为金属超导转变后,金属中一
部分正常电子凝聚成超流状态,其行动完全自由, 畅通无阻,这是一种有序状态,是由于动量凝聚 造成的。
2020/12/27
15
另一个实验是伦敦的模型,超导电流只分布在超
导线表面附近的薄层内,超导体内没有电流也没 有磁场,因此体现抗磁性。
2020/12/27
化,所以金属实际上是由带正电的离子组成的 晶格点阵(C1)和电子气(Ce)组成。不难想象, 金属比热包含晶格比热和电子比热。前者和T3
成正比,后者满足 Ce =γT,γ是电子比热系数。
2020/12/27
13
• 实验表明,当达到临界温度时,晶格结构没有发 生变化,但金属比热却发生了跳跃式转变。
这种转变是由于电子 发生了某种转变,可 能金属内的电子变成 了“超流电子”。基 于这种联想高特-卡西 米提出了二流体模型
• 能隙就是破坏一个库柏对所需要的能量,至 少2Δ
16
二流体模型的成功之处: • 1.把超导体中的电子分为两类:常态电子和超导电子。 • 2.认为超导态与电子的状态有关。
二流体模型的局限性:
• 1.电子是如何从常态变成超导态? • 2.为何超导电流只分布在超导线表面附近的薄层内?
2020/12/27
17
·BCS理论
·同位素效应 ·超导能隙 ·机理解释
对另外电子的吸引作用。这样两个电子通过晶格点
阵发生间接的吸引作用。
2020/12/27
23
库柏电子对
• 库柏(Cooper)证明:当2个 电子间存在净的吸引作用 时,在费米面附近就存在 一个动量大小相等、方向 相反且自旋相反的束缚态 ;它的能量比2个独立的电 子总能量低,这种2个电子 对的束缚态称为库柏对。
2020/12/27
10
而后朱经武发现的铊钡钙铜氧系合金的超导温度更 接近室温,达120K。使超导温度从极为寒冷的液氦区 进入到比较温暖的液氮区。
2020/12/27
11
二 超导基本原理
• 二流体模型
·BCS理论
2020/12/27
12
二流体模型
比热:
金属晶体的基本组成单位是原子,而原子又是
由原子核和核外电子组成,电子在金属内共有
5. 另一方面库柏对吸引力减弱,结合程度变差。
温度越高,成对的电子数越少,结合程度越差。
当达到临界温度时,库柏对全部拆散成单个的正
常电子,超导态即转变成正常态了。
2020/12/27
26
用BCS理论解释超导性质
零电阻、能隙的解释
• 在超导态情况下,载流子是库柏电子对。库 柏对的电子虽然受到散射,但在过程中,总 动量不变,电流就不会变,相当于无阻状态
2020/12/27
21
机理解释
L. N. Cooper认为超导态是由正则动量(机械 动量与场动量之和)为零的超导电子组成的,它是 动量空间的凝聚现象。要发生凝聚现象,必须有 吸引力的作用存在。
2020/12/27
22
电子在晶格点阵中运动,它对周围的正离子有
吸引作用,从而造成局部正离子的相对集中,导致
没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/12/27
4
2.1 超导材料的发展历程
1911年,科学家发现,金属的电阻和 它的温度条件有很大关系:
温度高时,它的电阻就增加,温度低 时电阻减少。
2020/12/27
5
1.超导现象的发现
1911年,昂内斯选
择了水银作为实验材料, 在液氦的温度下进行研究。 发现温度降到 4.2 K 左右 时,水银的电阻竟然消失 了!