初中数学七年级上册知识要点总结
初中数学七年级上册知识点总结

初中数学七年级上册知识点总结一、开方及其运算1. 正数的开平方对于一个非负数 a,它的非负平方根是一个非负数,记作√a,称为 a 的开方根。
例如,√25=5,√36=6。
2. 负数的平方根对于一个负数a,它的非负平方根不存在实数,但是可以引入虚数单位i,记作√(-a)=i√a。
例如,√(-16)=4i。
3. 开方的基本性质(1)√a * √b = √(ab)(2)√a / √b = √(a / b)(3)√(a^m) = a^(m/2)二、有理数1. 有理数概念有理数包括正整数、负整数、分数以及零,可以表示为 m/n(其中 m 和 n 是整数,且n≠0)。
2. 有理数的比较对于两个有理数 a 和 b,有以下比较方法:(1)若 a > b,则 a - b > 0(2)若 a < b,则 a - b < 0(3)若 a = b,则 a - b = 03. 有理数的运算(1)有理数加减法同号相加取同号,异号相加取绝对值大的数的符号。
(2)有理数乘法同号相乘为正,异号相乘为负。
4. 有理数的乘方对于一个有理数 a 和正整数 n:(1)a^n = a * a * ... * a(共 n 个 a 相乘)(2)a^(-n) = 1 / a^n(其中a ≠ 0)5. 有理数的除法有理数的除法可以转化为乘法问题,例如 a / b = a * (1/b)。
其中,1/b 称为 b 的倒数。
三、代数1. 代数与代数式代数是研究数与数之间的关系的一门数学学科,其中大量使用了字母表示数。
代数式由数字、字母及运算符号组成的表达式。
2. 代数运算(1)代数式加减法将同类项相加或相减,保持字母部分一致,系数相加或相减。
(2)代数式乘法将代数式乘法化简为一个代数式,注意字母的次方相加原则。
(3)代数式乘方利用分配律和乘方公式对代数式进行乘方运算。
3. 一次方程一次方程是指一个未知数的最高次数为一的方程,可以表示为 ax + b = 0(其中a ≠ 0),解是一个数。
初中数学七年级上册知识点总结

初中数学七年级上册知识点总结一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数与负数的概念- 绝对值的概念及计算2. 有理数- 有理数的定义- 有理数的加法与减法- 有理数的乘法与除法- 有理数的乘方与开方- 有理数的大小比较3. 代数表达式- 字母表示数- 单项式与多项式- 代数式的加减运算- 代数式的化简4. 一元一次方程- 方程的概念- 一元一次方程的建立- 方程的解法(移项、合并同类项、系数化为1)- 方程解的应用5. 线性不等式与不等式组- 不等式的概念- 线性不等式的解法- 不等式组的解集- 不等式的应用二、几何1. 几何基本概念- 点、线、面、体的概念- 直线、射线、线段- 角的概念及分类(锐角、钝角、直角、平角、周角)2. 平面图形- 正方形的性质- 长方形的性质- 三角形的分类与性质- 四边形的内角和定理- 圆的基本性质(圆心、半径、直径、弦、弧、切线)3. 面积与体积- 长方形与正方形的面积计算- 三角形的面积计算- 圆的面积计算- 长方体与立方体的体积计算4. 坐标系- 平面直角坐标系的建立- 点的位置表示- 坐标系中的距离与斜率概念三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、解题技巧与方法1. 逻辑思维与推理- 数学问题的分析与解决步骤- 归纳与演绎推理2. 问题解决策略- 分类讨论法- 画图辅助法- 转化与化归法3. 练习与应用- 习题的选择与练习- 数学知识在实际生活中的应用以上是初中数学七年级上册的主要知识点总结。
在教学过程中,教师应根据学生的实际情况,适当调整教学进度和难度,确保学生能够扎实掌握每个知识点。
同时,鼓励学生通过大量的练习来巩固所学知识,并培养其解决实际问题的能力。
初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
初中数学七年级上册知识点总结

初中数学七年级上册知识点总结一、整数与有理数1. 整数的概念与表示方法整数是由正整数、负整数和0组成的数集,用整数线表示,负数在整数线的左边,正数在整数线的右边。
2. 整数的加法和减法整数的加法和减法可以通过数轴来理解和计算,同号两数相加时取符号并将绝对值相加,异号两数相加时取绝对值较大的符号并将绝对值相减。
3. 整数的乘法和除法整数的乘法和除法也可以通过数轴来理解和计算,同号两数相乘得正数,异号两数相乘得负数,除法中的被除数和除数同号时结果为正,异号时结果为负。
4. 有理数的概念有理数是指可以表示为两个整数的比的数,包括整数、分数和小数。
5. 有理数的比较与大小对于两个有理数,可以通过比较分子分母的大小来确定它们的大小关系。
二、分数1. 分数的概念与表示方法分数是指整数与整数之间的比例关系,由分子和分母组成,分子表示份数,分母表示总份数。
2. 分数的约分和简化分数可以约分,即将分子和分母都除以它们的公约数,得到一个最简分数。
3. 分数的加法和减法分数的加法和减法要找到它们的公共分母,然后将分子进行加减运算,再将结果化简为最简分数。
4. 分数的乘法和除法分数的乘法直接将分子和分母相乘,然后化简为最简分数;分数的除法可以转化为乘以倒数的形式,再进行乘法运算。
5. 分数的综合运算分数的综合运算包括加法、减法、乘法和除法的组合运算,根据先乘除后加减的原则进行计算。
三、比例与百分数1. 比例与比例关系比例是指两个量之间的对应关系,根据量的比较可以得到比例关系。
2. 比例的性质比例的四个性质包括比例的反比、比例的可逆、单位比例和倍数比例。
3. 比例的表示方法比例可以使用分数表示,也可以使用冒号表示。
4. 百分数的概念和计算百分数是以百为基单位的比例,百分数的计算可以通过分数和倍数的相互转化进行。
5. 百分数的综合运用百分数在实际生活中有广泛的应用,包括利润率、增长率、降价率等。
四、图形的初步认识1. 点、线、面的基本概念点是没有长度、宽度和厚度的几何元素,线是由点按一定规律排列而成的几何元素,面是由线所围成的平面几何元素。
初中数学七年级上册知识点汇总

初中数学七年级上册知识点汇总第一章、有理数(一)有理数1、正整数、0、负整数统称为整数;正分数、负分数统称为分数。
整数和分数统称为有理数。
特别指出:所有正整数组成正整数集合;所有负整数组成负整数集合;因为小数可以化为分数,所以我们也把小数看成分数。
(二)数轴概念:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
特点:(1)在直线上任取一个点表示0,这个点叫做原点;(2)通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···,从原点向左,用类似的方法依次表示-1,-2,-3,···。
(三)相反数概念:只有符号不同的两个数叫做互为相反数。
特点:a和-a互为相反数,0的相反数是0。
(四)绝对值1、概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记作|a|。
2、特点:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:(1)如果a>0,那么|a|=a;(2)如果a=0,那么|a|=0;(3)如果a<0,那么|a|=-a。
数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
3、比较大小(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
特别指出:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。
二、有理数的加减法(一)有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数。
运算定律:1.加法交换律:两个数相加,交换加数的位置,和不变。
初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级上册数学知识点

七年级上册数学知识点七年级上册数学知识点总结:1. 数的运算- 有理数的概念:包括整数和分数。
- 有理数的加、减、乘、除运算法则。
- 绝对值和相反数的定义及其运算。
- 有理数的比较大小。
2. 代数初步- 代数式的概念:用字母表示数。
- 代数式的加减运算。
- 代数式的乘除运算。
- 代数式的简化。
3. 整式的乘除- 单项式与多项式的概念。
- 单项式与多项式的乘法运算。
- 多项式与多项式的乘法运算。
- 整式的除法运算。
4. 因式分解- 提取公因式法。
- 公式法:平方差公式和完全平方公式。
- 十字相乘法。
5. 分式- 分式的概念:分子和分母都是有理数的式子。
- 分式的乘除运算。
- 分式的加减运算。
- 分式的化简。
6. 一元一次方程- 一元一次方程的概念:只含有一个未知数,且未知数的最高次数为1的方程。
- 一元一次方程的解法:包括移项、合并同类项、系数化为1等步骤。
- 一元一次方程的应用。
7. 二元一次方程组- 二元一次方程组的概念:含有两个未知数,每个方程都是一次方程的方程组。
- 二元一次方程组的解法:加减消元法和代入消元法。
- 二元一次方程组的应用。
8. 不等式与不等式组- 不等式的概念:用不等号表示大小关系的式子。
- 不等式的解法:包括移项、合并同类项、系数化为1等步骤。
- 不等式组的解法:找出不等式组的解集。
- 不等式的应用。
9. 几何初步- 线段、射线和直线的概念。
- 角的概念:包括锐角、直角、钝角和周角。
- 相交线和平行线的性质。
- 平面图形的认识:包括三角形、四边形等。
10. 数据的收集与处理- 数据的收集方法:包括调查法、观察法等。
- 数据的整理:包括数据的分类、排序等。
- 数据的描述:包括平均数、中位数、众数等统计量的概念和计算方法。
以上是七年级上册数学的主要知识点,涵盖了数的运算、代数初步、整式的乘除、因式分解、分式、一元一次方程、二元一次方程组、不等式与不等式组、几何初步以及数据的收集与处理等内容。
七年级数学上册知识点总结8篇

七年级数学上册知识点总结8篇总结是指对某一阶段的工作、学习或思想中的阅历或状况进行分析讨论,做出带有逻辑性结论的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,我想我们须要写一份总结了吧。
总结普通是怎么写的呢?下列是我收集收拾的七年级数学上册学问点总结,仅供参考,大家一起来看看吧。
七年级数学上册学问点总结11、用加、减、乘(乘方)、除等运算符号把数或表示数的字母衔接而成的式子,叫做代数式。
(注:独自一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×〞号省略,数字写在字母前;字母与字母相乘时,一样字母写成幂的形式;数字与数字相乘时,“×〞号不能省略;式中浮现除法时,普通写成分数形式。
式中浮现带分数时,普通写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
4、单项式:由数字和字母乘积组成的式子。
独自一个数或一个字母也是单项式.因而,推断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,假设①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)单项数的次数:是指单项式中全部字母的指数的和.(留意指数1)5、多项式:几个单项式的和。
推断代数式是否是多项式,关键要看代数式中的每一项为哪一项否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特殊留意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。
留意单项式和多项式的每一项都包括它前面的符号。
6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
以上就是为大家收拾的七年级上册数学代数式学问点收拾:期末考试复习,大家还称心吗?盼望对大家有所帮忙!七年级数学上册学问点总结2代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,那么称为整式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提分数学七年级上知识清单第一章 有理数一.正数和负数:⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数:1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴:⒈数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数;⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数:⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
四.相反数:⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);0的相反数还是0;⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5);)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a 是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
五.绝对值⒈绝对值的几何定义一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a ; ②如果a<0,那么|a|=-a ; ③如果a=0,那么|a|=0。
可归纳为①:a ≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。
)②a ≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a 取任何有理数,都有|a|≥0。
即 (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;绝对值是0的数是0.即:a=0 <═> |a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;即:|a|≥0;绝对值的问题经常分类讨论;⑶任何数的绝对值都不小于原数。
即:|a|≥a ; 0a 1a a>⇔= ; 0a 1a a<⇔-=;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a (a>0),则x=±a ;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a= ⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b 或a=-b ;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大 ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
(3)正数的绝对值越大,这个数越大;(4)正数永远比0大,负数永远比0小;(5)正数大于一切负数;(6)大数-小数 > 0,小数-大数 < 0.5.绝对值的化简①当a ≥0时, |a|=a ; ②当a ≤0时, |a|=-a6.已知一个数的绝对值,求这个数一个数a 的绝对值就是数轴上表示数a 的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
六.有理数的加减法.1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与0相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号和括号)=(-33-15-1)+(18+23) (把符号相同的加数相结合)=-49+41 (运用加法法则一进行运算)=-8 (运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合 (凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合)=4-10+3.8 (运用加法法则进行运算)=7.8-10 (把符号相同的加数相结合,并进行运算)=-2.2 (得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法) -53-21+43-52+21-87 原式=(-53-52)+(-21+21)+(+43-87) =-1+0-81=-181Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合) (+0.125)-(-343)+(-381)-(-1032)-(+1.25) 原式=(+81)+(+343)+(-381)+(+1032)+(-141) =81+343-381+1032-141 =(343-141)+(81-381)+1032 =221-3+1032 =-3+1361 =1061 Ⅴ.把带分数拆分后再结合(先拆分后结合)-351+10116-12221+4157 原式=(-3+10-12+4)+(-51+157)+(116-221) =-1+154+2211 =-1+308+3015 =-307 Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)七.有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。