实验一 伪随机码发生器实验

合集下载

伪随机码发生器研究与设计

伪随机码发生器研究与设计

伪随机码发生器的研究与设计Pseudo-random code generator Research and Design摘要伪随机序列产生技术是集数学、计算机科学、电子与通信等诸多学科于一身的技术,其产生技术自上世纪末至今一直是国内外的研究热点并取得了不少的成果。

伪随机码越来越受到人们的重视,被广泛应用于导弹、卫星、飞船轨道测量和跟踪、雷达、导航、移动通信、保密通信和通信系统性能的测量以及数字信息处理系统中。

目前国内外均有项目研究提高伪随机序列发生器可靠性、状态利用率等问题。

本课题介绍了伪随机码的应用和研究概况,研究了伪随机码的产生方式和产生原理,并以此为基础阐述了一种基于移位寄存器的m序列伪随机码发生器的设计与实现的方法。

最终在使用集成电路的前提下,先分析由移位寄存器电路构成的伪随机序列发生器的设计方法,分步设计了移位寄存器电路和同步复位信号发生电路;再通过一系列的误差和可靠性调整设计,最终用小规模集成电路和外加时钟信号设计实现了线性反馈移位寄存器产生周期P=15的m序列,并且给出了完整的实现电路和时序分析结果。

关键词:伪随机码,绕码,m序列,移位寄存器ABSTRACTPseudo-random sequence generation technique is a mathematics, computer science, electronics and communication, and many other subjects in one of the technology, its production technology since the end of the century has been the research focus at home and abroad and made a lot of results.Pseudo-random code more and more attention, is widely used in missiles, satellites, spacecraft orbit measurement and tracking, radar, navigation, mobile communications, secure communications and communication system performance measurement and digital information processing system. Research projects at home and abroad are pseudo-random sequence generator to improve reliability, availability status and other issues.This topic describes the application of pseudo-random code and research overview of the pseudo-random code generation means and generating principle, and described as the basis for an m-sequence shift register based pseudo-random code generator of the design and implementation Approach. Final premise in the use of integrated circuits, the first shift register circuits of the pseudo-random sequence generator design, step by step design of the shift register circuit and the synchronous reset signal circuit; then through a series of errors and reliable Adjustment design, end-users and small-scale integrated circuit design of the clock signal applied to achieve a linear feedback shift register generating cycle P = 15 m-sequence and provides a complete implementation of the circuit and timing analysis. Key words:Pseudo-random code,Around the code, m sequence,Shift register目录摘要 (Ⅰ)ABSTRACT (Ⅱ)目录 (Ⅲ)1 绪论 (1)1.1 伪随机序列的研究概况 (1)1.2 伪随机序列的应用领域及其意义 (1)1.3 课题研究内容与难点 (2)2 伪随机序列发生器 (3)2.1 伪随机序列的定义及其特点 (3)2.2 伪随机序列的产生 (3)2.3 伪随机序列反馈函数 (4)3伪随机码发生器电路设计 (7)3.1 移位寄存器电路设计 (7)3.2置数功能电路设计 (7)3.3可靠性附加电路设计 (8)3.4元器件选型 (10)3.5整体电路图 (10)4电路时序分析 (12)4.1移位寄存器电路时序分析 (12)4.2完整电路时序分析 (12)结束语 (14)参考文献 (15)附录芯片逻辑引脚图及各型号性能对比 (16)致谢 (17)1 绪论1.1 伪随机码的研究概况伪随机码又称伪随机序列或伪噪声序列。

伪随机码生成器

伪随机码生成器

M序列发生器M序列是最常用的一种伪随机序列,是一种线性反馈移位寄存器序列的简称。

带线性反馈逻辑的移位寄存器设定各级寄存器的初试状态后,在时钟的触发下,每次移位后各级寄存器状态都会发生变化。

其中一级寄存器(通常为末级)的输出,随着移位寄存器时钟节拍的推移会产生下一个序列,称为移位寄存器序列。

他是一种周期序列,周期与移位寄存器的级数和反馈逻辑有关。

以4级移位寄存器为例,线性反馈结构如下图:4级以为寄存器反馈图其中a4=a1+a0信号a4:a0禁止出现全0,否则将会出现全0,序列不变化。

实验仿真Code:library IEEE;use IEEE.STD_LOGIC_1164.ALL;-- Uncomment the following library declaration if using-- arithmetic functions with Signed or Unsigned values--use IEEE.NUMERIC_STD.ALL;-- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code.--library UNISIM;--use UNISIM.VComponents.all;entity random_4 isPort ( clk : in STD_LOGIC;reset : in STD_LOGIC;din : in STD_LOGIC_VECTOR (3 downto 0);dout : out STD_LOGIC_VECTOR (3 downto 0);load : in STD_LOGIC);end random_4;architecture Behavioral of random_4 issignal rfsr :std_logic_vector(3 downto 0);--signal temp:std_logic;beginprocess(clk,reset,load,din)beginif (reset ='1') thenrfsr <=(others =>'0');elsif (clk' event and clk='1') thenif(load ='1') then ----load =1rfsr<= din;elserfsr(3) <= rfsr(0) xor rfsr(1);rfsr(2 downto 0) <= rfsr(3 downto 1);end if;end if;end process;------signal rename----dout <= rfsr;end Behavioral;testbench:LIBRARY ieee;USE ieee.std_logic_1164.ALL;-- Uncomment the following library declaration if using-- arithmetic functions with Signed or Unsigned values--USE ieee.numeric_std.ALL;ENTITY random_testbench ISEND random_testbench;ARCHITECTURE behavior OF random_testbench IS-- Component Declaration for the Unit Under Test (UUT)COMPONENT random_4PORT(clk : IN std_logic;reset : IN std_logic;din : IN std_logic_vector(3 downto 0);dout : OUT std_logic_vector(3 downto 0);load : IN std_logic);END COMPONENT;--Inputssignal clk : std_logic := '0';signal reset : std_logic := '0';signal din : std_logic_vector(3 downto 0) := (others => '0'); signal load : std_logic := '0';--Outputssignal dout : std_logic_vector(3 downto 0);-- Clock period definitionsconstant clk_period : time := 10 ns;---variablesignal cnt: integer :=0;BEGIN-- Instantiate the Unit Under Test (UUT)uut: random_4 PORT MAP (clk => clk,reset => reset,din => din,dout => dout,load => load);-- Clock process definitionsclk_process :processbeginclk <= '0';wait for clk_period/2;clk <= '1';wait for clk_period/2;end process;-- Stimulus processstim_proc: process(clk)begin-- hold reset state for 100 ns. if(cnt = 0) then--initializationreset <= '1' after 100 ps;load <= '1' after 100 ps;din <="0001";cnt <= cnt +1;---elsif(cnt =1) thenreset <= '0' after 100 ps;load <= '1' after 100 ps;din <="0001";cnt <= cnt +1;elsif(clk' event and clk ='1') then reset <= '0' after 100 ps;load <= '0' after 100 ps;din <="0001";---executuecnt <= cnt +1;if(cnt = 100) thencnt <= 2;end if;end if;end process;END;。

通信原理实验-实验一 信号发生器系统实验

通信原理实验-实验一 信号发生器系统实验

实验一信号发生器系统实验一、实验内容1.用内时钟信号源产生的信号作为总时钟输入,分别分析各级电路,并测出各测量点波形。

2.分析伪随机码发生器的工作原理。

3. 掌握数字基带各种信号的定义与产生方法,观察各点波形。

4. 熟悉时分复用信号的产生与帧同步信号集中插入的方法,观察各点波形。

5. 掌握用函数发生器产生正弦波和三角波的方法,观察并调节8038的输出波形。

6.掌握各输出信号在整个系统中的作用。

二、实验分析本实验的信号发生器分为三个独立的部分:①以 4.096MHz晶振为中心的时钟信号产生部分②以4.433MHz晶振为中心的数字信号产生部分③以8038函数发生器为中心的模拟信号产生部分。

信号发生器的作用是提供实验箱各实验系统的各种时钟信号和其它有用信号及测试信号,其各部分的工作原理如下:(1)时钟信号产生部分:产生不同频率的方波、伪随机序列及其他脉冲信号用以作为后续实验各个模块的时钟信号和基带信号。

(2)数字信号产生部分:产生六种基带信号NRZ、RZ、BNRZ、BRZ、BPH、AMI。

(3)模拟信号产生部分:输出方波、三角波、正弦波等波形。

三、实验结果1、时钟信号产生部分的测量:TP007(蓝色-下)与TP006(黄色-上)在1、2引脚跟2、3引脚下的波形图如下所示: 1、2引脚 2、3引脚2、数字信号产生部分的测量:(1)TP011的波形:(2)TP012(下)的波形(与TP011(上)双踪):(3)TP013的波形(与TP011双踪)拨码开关SW001、SW002、SW003的设置分别为: 1000 0000 1100 0000 1110 0000。

(3)TP014的波形(与TP013双踪)(4)TP015(下)的波形(与TP013双踪):(5)TP016(下)的波形(与TP013双踪)(6)TP017(下)的波形(与TP013双踪):(7)TP018(下)的波形(与TP013双踪)。

伪随机码产生器实验

伪随机码产生器实验

实验八伪随机码产生器实验一、实验实训目的1.了解扩频通信的原理2.掌握伪随机序列——m序列产生器的结构二、实验原理与说明信号的频带宽度与其脉冲宽度近似成反比。

很窄的脉冲序列的带宽很宽,因此如果用很窄的脉冲序列对所传信息进行调制,则可产生很宽频带的信号。

CDMA 蜂窝网移动通信系统就是采用这种方式获得扩频信号的。

所用的这种很窄的脉冲码序列称为扩频码序列。

用很窄的脉冲序列对所传信息进行调制的一种方式就是直接序列扩频。

直接序列扩频系统采用的很窄的脉冲序列——伪随机码在发端对要发送的信息码进行频谱展宽——扩频,在收端用相同的伪随机码序列进行解扩,然后将展宽的扩频信号还原成原始信息。

作为扩频码的伪随机码具有类似白噪声的特性,可以用一种周期性的脉冲信号来近似随机噪声的性能,称之为伪随机码或PN码。

用于扩频码的伪随机码常用的m序列。

m序列容易产生、规律性强等优良特性,目前的CDMA系统就是采用这种PN 序列---m序列来进行扩频通信的。

m序列是最长线性移位寄存器的简称,m序列具有与伪随机噪声类似的尖锐自相关特性,但它不是真正随机的,而是按照一定规律周期性变化,它的周期P=2n-1。

n称之为m序列的阶数,也是构成m序列产程器所用移位寄存器的级数。

可以用硬件电路来实现一个m序列。

以最简单的n=3的三级移位寄存器构成的m序列发生器如图1所示。

移位寄存器是D触发器(如74163),在时钟脉冲CP上升沿到来时,输出Q等于输入D。

中间第二、三级移位寄存器的输出Q2和Q3经模2加(异或)电路后反馈到第一级移位寄存器的输入D1端,构成反馈电路。

当初始状态Q1Q2Q3为111时,在时钟脉冲的控制下,各输出端的输出数据如表1所示,得到输出周期为P=23-1=7的码序列1110010。

在输出一个周期的序列后,Q1Q2Q3又回到111状态。

在时钟的控制下,输出序列做周期性的重复。

1110010就是一个周期是7的m序列。

产生周期为P=2n-1的m序列的方法类似。

专业实验类:伪随机信号发生器

专业实验类:伪随机信号发生器

H a r b i n I n s t i t u t e o f T e c h n o l o g yEDA技术高级应用实验报告姓名:禾小鬼同组人:学号:16S班级:信息2班指导教师:xxx院系:电信学院实验二伪随机信号发生器一、实验原理实验要求设计一个伪随机信号发生器,什么是伪随机信号发生器?如果一个序列,一方面它是可以预先确定的,并且是可以重复地生产和复制的;一方面它又具有某种随机序列的随机特性(即统计特性),我们便称这种序列为伪随机序列。

因此可以说,伪随机序列是具有某种随机特性的确定的序列。

它们是由移位寄存器产生确定序列,然而他们却具有某种随机序列的随机特性。

因为同样具有随机特性,无法从一个已经产生的序列的特性中判断是真随机序列还是伪随机序列,只能根据序列的产生办法来判断。

伪随机序列系列具有良好的随机性和接近于白噪声的相关函数,并且有预先的可确定性和可重复性。

这些特性使得伪随机序列得到了广泛的应用,特别是在CDMA系统中作为扩频码已成为CDMA技术中的关键问题。

特性为序列中两种元素出现的个数大致相等;如果把n个元素连续出现叫做一个长度为n的元素游程,则序列中长度为n的元素游程比长度为n+1的元素游程多一倍;序列有类似白噪声的自相关函数。

实验指导书上已经给出一个4位伪随机信号发生器的原理图,如图1所示,一个4位的移位寄存器,第1级和第4级的输出信号通过一个异或门反馈到第1级的输入。

随着连续的时钟周期信号,可以生成15个不同的测试向量。

图1 伪随机二进制序列产生器在开始之前,首先要明确设计目的,我们的想要用电路图方法实现设计一个“伪随机信号发生器”。

首先设计一个4位伪随机信号发生器,按照图1所示连接电路即可。

然后,扩展到多位。

二实验过程和结果1.第一步:建立一个新的工程新建工程的过程中,最重要的是设置器件,不同的器件的,设计之间并不兼容。

会有一个综合的信息框,注明了我所做的设置,看看没问题就可以了。

伪随机序列发生器

伪随机序列发生器

伪随机序列发生器一、实验目的:理解伪随机序列发生器的工作原理以及实现方法,掌握MATLAB\DSP BUILDER设计的基本步骤和方法。

二、实验条件:1. 安装WindowsXP系统的PC机;2. 安装QuartusII6.0 EDA软件;的序列发生器,并通⒈ ⒉ ⒊⒋⒌⒍⒎⒏⒐ ⒑ ⒒⒓⒔⒕⒖⒗四、实验原理:对于数字信号传输系统,传送的数字基带信号(一般是一个数字序列),由于载有信息,在时间上往往是不平均的(比如数字化的语音信号),对应的数字序列编码的特性,不利于数字信号的传输。

对此,可以通过对数字基带信号预先进行“随机化”(加扰)处理,使得信号频谱在通带内平均化,改善数字信号的传输;然后在接受端进行解扰操作,恢复到原来的信号。

伪随机序列广泛应用与这类加扰与解扰操作中。

我们下面用DSP BUILDER来构建一中伪随机序列发生器——m序列发生器,这是一种很常见的伪随机序列发生器,可以由线性反馈器件来产生,如下图:其特征多项式为:()∑==ni i i x C x F 0注:其中的乘法和加法运算都是模二运算,即逻辑与和逻辑或。

可以证明,对于一个n 次多项式,与其对应的随机序列的周期为。

12−n 接下来我们以为例,利用DSP BUILDER 构建这样一个伪随机序列发生器。

125++x x开Simulink 浏览器。

Simulink我们可以看到在Simulink 工作库中所安装的Altera DSP Builder 库。

2. 点击Simulink 的菜单File\New\Model 菜单项,新建一个空的模型文件。

3. 按照下图在Model编辑器的工作区中放置如下的模型:其中Logical Bit Operator模块在Gate & Control库中,把它拖到工作区中后双击打开参数设置对话框,设置成2输入异或门。

为了能够在Matlab中获得仿真结果,可以给输出再添加一个示波器Scope,这个模型在Simulink标准库的Sources库中。

实验一CMI、PN码型变换实验

实验一CMI、PN码型变换实验

实验一CMI、PN码型变换实验一、实验目的1.熟悉光纤通信传输实验系统中信号发生器的组成原理、光发送端信号产生的方法。

2.了解单片机在光纤通信传输系统中的应用以及该单元电路对整个光纤实验系统的管理与控制过程。

3.掌握伪随机码(PN)发生器的工作原理和实验方法。

4.了解光纤通信采用的线路码型。

5.掌握传号烦转码(CMI)的特点,并了解其编码方法。

6.熟悉示波器的使用。

二、实验仪器1.光纤通信传输系统实验箱一台2.20MHz示波器一台三、实验内容与步骤1.连接电源线,按下电路分路开关PA、PB。

发光二极管D1、D2、D3、D4亮,表明实验箱上±5V 和±12V电源工作正常;2.按下“复位”键,使系统处于复位状态。

此时发光二极管D5~D12依次循环点亮,表明实验系统中的中央处理器电路进入正常工作状态;3.用示波器测出图中各测试点(TP101、TP102、TP103、TP104)以及测试点(89C51的主时钟TP1、89C51的地址锁存信号TP2)的波形;4.按下“PN”键,再按“确认”键,PN码对应的发光二极管D8闪烁,表示系统工作于PN码状态;5.用示波器测出图中各测试点(TP109、TP110)的波形,并做纪录;6.按下“复位”键,使系统处于复位状态。

按下“CMI”键,再按“确认”键,CMI码对应的发光二极管D7闪烁,表示系统工作于CMI码状态;7.用示波器测出图中各测试点(TP109、TP110、TP111、TP112、TP113、TP114、TP115)的波形,并做纪录。

四、实验报告要求1.分析伪随机码发生器的工作原理。

2.分析CMI码编码电路的工作原理。

3.比较CLK时钟、PN码、CMI码的波形,并对波形加以分析。

课题设计一 伪随机码产生和码变换综合设计实验报告

课题设计一  伪随机码产生和码变换综合设计实验报告

南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:□验证□综合■设计□创新实验日期: 6.2 实验成绩:课题设计一伪随机码产生和码变换综合设计
一、实验目的
1、了解数字信号的波形特点;
2、掌握D触发器延时设计数字电路的原理及方法;
二、设计要求
设计一个7位伪随机码发生器并将绝对码转化为相对码。

三、设计思路
在实验一中,已经完成了15位32KHz的伪随机码仿真电路,它是由4个D触发器实现的。

4个触发器自然就能产生24-1位的伪随机码。

而课题要求我们设计7位伪随机码,同理要用到log2(7+1) = 3个触发器。

相对码是根据绝对码是否发生变化而决定是“0”还是“1”的。

所以可以采用D触发器的延时特性来实现信号自身和前一时刻的比较。

将7位伪随机码输入到一个D触发器进行一个码元的延时,再同自身进行异或,就能得到相对码。

四、实验仿真电路及波形
1、7位伪随机码产生电路及波形
7位伪随机码产生电路
7位伪随机码波形(0101110) 2.绝对码变相对码电路及波形
绝对码变相对码电路
相对码输出波形(0111001)
五、实验心得及体会
本次课题设计课参考实验一来设计,比较简单,但在设计过程中还是得认真仔细,理解原理,才能得出符合要求的设计结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一伪随机码发生器实验
电科1103 杨帆
3110104337
一、实验目的
1、掌握伪随机码的特性。

2、掌握不同周期伪随机码设计。

3、用基本元件库和74LS系列元件库设计伪随机码。

4、了解ALTERA公司大规模可编程逻辑器件EPM7128SLC84内部结构和应用。

5、学习FPGA开发软件MAXPLUSⅡ,学习开发系统软件中的各种元件库应用。

6、熟悉通信原理实验板的结构。

二、实验仪器
1、计算机一台
2、通信基础实验箱一台
3、100MHz示波器一台
三、实验原理
伪随机码是数字通信中重要信码之一,常作为数字通信中的基带信号源;
扰码;误码测试;扩频通信;保密通信等领域。

伪随机码的特性包括四个方
面:
1、由n级移位寄存器产生的伪随机序列,其周期为-1;
2、信码中“0”、“1”出现次数大致相等,“1”码只比“0”码多一个;
3、在周期内共有-1游程,长度为i 的游程出现次数比长度为i+1的游程出现
次数多一倍;
例如:四级伪码产生的本原多项式为X
4
+X
3+1。

利用这个本原多项式构成的4级伪随机序列发生器产生的序列为:
1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
四、实验内容及步骤
1、在MAXPLUSⅡ设计平台下进行电路设计
1.1 四级伪随机码发生器电路设计
电路原理图如图1-2所示。

在MAXPLUS II 环境下输入上述电路,其中:dff ------单D触发器
xor ------二输入异或门
nor4 ------四输入或非门
not ------反相器
clk ------时钟输入引脚(16M时钟输入)
8M ------二分频输出测试点引脚
nrz ------伪随机码输出引脚。

相关文档
最新文档