高二数学古典概率

合集下载

高中数学第13章概率132概率及其计算1321古典概率模型应用案巩固提升课件湘教版必修5

高中数学第13章概率132概率及其计算1321古典概率模型应用案巩固提升课件湘教版必修5

第13章 概 率
9.已知关于 x 的二次函数 f(x)=ax2-4bx+1.设集合 P={-1,1,2,3,4,5}和 Q={-2,-1,1,2,3,4}, 分别从集合 P 和 Q 中任取一个数作为 a 和 b 的值, 求函数 y=f(x)在区间[1,+∞)上是增函数的概率.
第13章 概 率
解:函数 f(x)=ax2-4bx+1 的图象的对称轴为 x=2ab,要 使函数 f(x)=ax2-4bx+1 在区间[1,+∞)上为增函数,当 且仅当 a>0 且2ab≤1,即 a≥2b 且 a>0. 若 a=1,则 b=-2,-1; 若 a=2,则 b=-2,-1,1; 若 a=3,则 b=-2,-1,1; 若 a=4,则 b=-2,-1,1,2; 若 a=5,则 b=-2,-1,1,2. 所以事件包含的基本事件的个数是 2+3+3+4+4=16, 又所有基本事件的个数是 6×6=36, 所以所求事件的概率为1366=49.
解析:选 B.点(a,b)取值的集合共有 36 个元素.方程组只 有一个解等价于直线 ax+by=3 与 x+2y=2 相交,即a1≠b2, 即 b≠2a,而满足 b=2a 的点只有(1,2),(2,4),(3,6), 共 3 个,故方程组axx++2by=y=23,只有一个解的概率为3336=1112.
第13章 概 率
13.一个袋中装有四个形状大小完全相同的球,球的编号 分别为 1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于 4 的概率; (2)先从袋中随机取一个球,该球的编号为 m,将球放回袋 中,然后再从袋中随机取一个球,该球的编号为 n,求 n<m +2 的概率.
第13章 概 率
第13章 概 率
10.某学在高二年级开设了 A、B、C 三个兴趣小组,为

高二数学必修3知识点整理:古典概型

高二数学必修3知识点整理:古典概型

【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。

课题:古典概型

课题:古典概型

课题:古典概型江苏省赣榆县厉庄高级中学张宁善一、设计思路本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。

①设置“问题”情境,激发学生解决问题的欲望;②提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。

二、教学目标知识与技能目标:理解古典概型及其概率计算公式,会求简单的古典概型;会用列举法或图表法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法目标:通过模拟试验让学生理解古典概型的特征,并归纳出古典概型的概率计算公式,提高学生的探究问题、分析与解决问题的能力,渗透数形结合及转化的思想,优化学生的思维品质。

情感与态度目标:通过经历对古典概型公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、数学的严谨美。

三、教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。

四、教学难点判断一个试验是否为古典概型,及能找准在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

五、教学准备硬币、骰子;及阅读、寻找生活中的一些概率问题。

六、教学过程1 创设情境,提出问题在课堂教学的开始,让学生分组做下面两个试验:①掷一枚质地均匀的硬币;②掷一个质地均匀的骰子。

思考:在这两个试验中共出现了多少个结果?这两个试验所包含的基本事件的特点是什么?【设计意图】数学是现实世界的反映。

通过学生动手试验,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。

2 分析问题,形成概念引导学生回答,结合同学的课前预习,可自然引出基本事件的概念:在一次试验中可能出现的每一个基本结果。

分析可得这两个试验所包含的基本事件有限;每个基本事件出现的可能性一样。

这些特征也就是我们今天要研究的基本内容。

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

第1课时 古典概型的概率计算公式及其应用A级必备知识基础练1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.(2021浙江杭州期中)从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.1 26B.113C.326D.2133.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为( )A.1 12B.19C.136D.1184.(多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是 ,抽到高二学生的概率是 ,抽到高三学生的概率是 .6.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为 .7.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.9.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.5 8B.18C.38D.1411.若集合A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.2 9B.13C.89D.112.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A.任取2件,则取出的2件中恰有1件次品的概率是12B.每次抽取1件,不放回抽取两次,样本点总数为16C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D.每次抽取1件,有放回抽取两次,样本点总数为1613.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353.则在此次随机模拟试验中,每天下雨的概率的近似值是 ,三天中有两天下雨的概率的近似值为 .14.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60), [60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练17.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x/℃101113128发芽数y/颗2325302616 (1)求这5天发芽数的中位数;(2)求这5天的平均发芽数;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,的概率.用(m,n)的形式列出所有基本事件,并求满足{25≤m≤30,25≤n≤3018.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;(2)在节日期间,该商场制定了两种不同的促销方案:方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)商品价格[200,400)[400,600)[600,800)[800,1 000)[1 000,1 200)[1 200,1 400]优惠/元3050140160280320第1课时 古典概型的概率计算公式及其应用1.D 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性. A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概型,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选D.2.D 设“抽到K或Q”为事件A,∵基本事件总数为52,事件A包含的基本事件数为8,∴P(A)=8 52=2 13.3.D 样本点总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为236=1 18.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=1 3,故玩一局甲不输的概率是23,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7), (2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.4 151325 任意抽取一名学生是等可能事件,样本点总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的样本点的个数分别为20,25和30.故P(A)=2075=415,P(B)=2575=13,P(C)=3075=25.6.15 “从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8), (2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210= 1 5.7.23 甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙), (丙,乙,甲),共6种样本点,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点.所以甲、乙两人相邻而站的概率为46= 2 3.8.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2), (B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有:(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46= 2 3.所以甲、乙两支队伍出场顺序相邻的概率为23.10.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016= 5 8.11.C 随着a,b的取值变化,集合B有32=9(种)可能,如表.经过验证很容易知道其中有8种满足A∩B=B,所以概率是89.故选C.12.ACD 记4件产品分别为1,2,3,a,其中a表示次品.A选项,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=36=12,A正确;B选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1), (3,2),(3,a),(a,1),(a,2),(a,3)},共12种样本点,B错误;C选项,“取出的两件中恰有一件次品”的样本点数为6,其概率为12,C正确;D选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2), (1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},共16种样本点,D正确.故选ACD.13.1315 每个骰子有6个点数,出现1或2为下雨天,共有6种,则每天下雨的概率的近似值为13,10组数据中,114,251,表示3天中有2天下雨,所以从得到的10组随机数来看,3天中有2天下雨的有2组,则3天中有2天下雨的概率近似值为210= 1 5.14.720 从这6根细木棒中任取3根首尾相接,有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4), (1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6), (3,4,5),(3,4,6),(3,5,6),(4,5,6),共20个样本点,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共7个样本点,所以由古典概型概率公式可得所求概率为P=720.15.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.16.解(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.020.(2)设中位数为m,则0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1), (a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4. 17.解(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(m,n)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26), (25,16),(30,26),(30,16),(26,16),共10个基本事件.记满足{25≤m≤30,25≤n≤30为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P(A)=310,即事件{25≤m≤30,25≤n≤30的概率为310.18.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为:a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815.(2)对于方案一,优惠的价钱的平均值为:(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为:30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。

2021_2022学年新教材高中数学第七章概率2.1古典概型的概率计算公式课件北师大版必修第一册20

2021_2022学年新教材高中数学第七章概率2.1古典概型的概率计算公式课件北师大版必修第一册20
C.某射手射击一次,可能命中0环、1环、2环、…、10环
D.四名同学用抽签的方法选一人去参加一个座谈会
答案:D
2.先在5张卡片上分别写上数字1,2,3,4,5,将它们混合后,再任
意排成一行组成一个五位数,则得到的五位数能被2或5整除
的概率是(
)
..4
..8
解析:一个五位数能否被2或5整除关键看其个位数字,而由
(3,6),(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3).
弄清题意,避免遗漏.
随 堂 练 习
1.下列随机试验的数学模型属于古典概型的是(
)
A.在一定的条件下,移植一棵吊兰,它可能成活,也可能不成活
B.在平面直角坐标系内,从横坐标和纵坐标都为整数的所有
点中任取一个点
取,为了得到试验的全部结果,我们设男生为A,B,C,D,女生为
1,2,3,我们可以用一个“有序数对”来表示随机选取的结果.如
(A,1)表示从男生中选取的是男生A,从女生中选取的是女生1,
可用列举法列出样本空间的所有样本点,如下表所示.
A
B
C
D
1
2
3
(A,1)
(B,1)
(C,1)
(D,1)
(A,2)
)
A.在公交车站候车不超过10 min的概率
B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从
中任取一球,观察颜色
C.向一个圆面内随机地投一个点,观察该点是否落入圆内接
正方形内
D.向上抛掷一枚不均匀的硬币,观察正面、反面出现的情况
解析:用古典概型的两个特征去判断即可.
对于选项A,因为10 min是个 某商场举行购物抽奖促销活动,规定每名顾客从装

高二数学条件概率3

高二数学条件概率3

P(B)>0
变式:
P( AB) P( A B )P (B )
P(B)>0
创新P0444
在5道题中有3道理科题和2道文科题,如果
不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率; P(A)= 5 (2)第1次和第2次都抽到理科题的概率;
P(AB)=
3 5 2 4 3 10

3
(3)在第1次抽到理科题的条件下,第2次抽 1 到理科题的概率。 P(B|A)=
P(
P(A|B),P(AB)和P(B)会有什么样的关系
求条件概率公式
一般地,若P(B)>0,则事件B已发生的条件下A发 生的是条件概率
P(A B) P(AB) P(B)

(1) 在事件A发生的条件下,事件B发生的条件概率
P(B A) P(AB) P ( A)
P(A)>0
(2) 利用条件概率,有下面变式
(i i) 一般地
P(A B)
P(AB) P(B)
P ( A | B ) P ( A)
课本例2.如图2-3-1所示的正方形被平均分成 9个部分,向大正方形区域随机地投掷一个点 (每次都能投中),设投中最左侧3个小正方形区 域的事件记为A,投中最上面3个小正方形或 正中间的1个小正方形区域的事件记为B,求 P(AB),P(A|B).
1 P (AB) 4 P (A | B) 3 3 P (B) 4 1
再举一例.
抛掷一颗质地均匀的骰子所得的样本空间为
令事件 A 2, 3, 5,B 1 , 2, 4, 5, 6 S 1 , 2, 3, 4, 5, 6,
( A), P ( B) ,P ( AB), P ( A | B) 求 P

高二数学上册概率知识点

高二数学上册概率知识点

高二数学古典概型知识点1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式P(A)?m计算概率. n4.古典概型的概率公式:P(A)?A包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.高二数学随机事件知识点随机现象在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象对随机现象进行大量的重复试验(观测)其结果往往能呈现出某种统计规律性l随机试验为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验.如果试验具有下述特点:(1)试验可以在相同条件下重复进行;(2)每次试验的所有可能结果都是明确可知的,并且不止一个;(3)每次试验之前不能预知将会出现哪一个结果,则称这种试验为随机试验简称试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新星辰娱乐
[单选]下面可以作为知识产权投资入股的是()A、专利许可使用权B、专利权C、著作改编权D、连锁经营权 [单选]一位亲眼目睹美国9&#8226;11事件的妇女到现在头脑中还经常浮现出那悲惨的一幕。这属于()。A.形象记忆B.情景记忆C.情绪记忆D.动作记忆 [单选,A2型题,A1/A2型题]下列哪一项不是自发性蛛网膜下腔出血的原因()。A.颅内动脉瘤B.动静脉畸形C.烟雾病D.动脉硬化E.抗纤溶治疗 [问答题,案例分析题]背景:某工厂,由于某项工艺不够好,影响了产品质量,现在计划将该项工艺加以改进。取得新工艺有两条途径:一是从国外引进成套设备,需投资160万元,估计谈判成功的可能性是0.8。若成功,前2年为投产试运营期,考虑价格因素后预计年净现金流量为30万元,之后再 [问答题,简答题]定径机组一般有几种类型? [单选]关于寰枢关节叙述正确的是()A.可使头部做前俯、后仰和侧屈运动B.两侧关节间隙常不对称C.可使头部做旋转运动D.属于联合关节E.由寰椎两侧的下关节面与枢椎的上关节面构成 [问答题]一架装载如下的飞机的地板的最小承载限制是多少?货盘尺寸-长98.7宽78.9货盘重量-161磅系留装置-54磅货物重量-9,681.5磅 [单选]催吐适用于哪种情况()。A.昏迷患儿B.惊厥患儿C.婴儿D.强酸中毒E.神清能合作的患儿 [单选]孔子在《论语》中说:为人师者就当“诲人不倦”。这名话名言至今仍在中国流传说明了()A.职业道德的广泛性B.职业道德的连续性和稳定性C.职业道德的有限性D.职业道德的社会性 [单选,A1型题]真核生物的mRNA应该是()A.在胞质内合成和发挥其功能B.帽子结构是一系列的腺苷酸C.有帽子结构和聚A尾巴D.mRNA能携带遗传信息,所以可长期存在E.mRNA的前身是rRNA [单选]关于麻醉所致的心脏骤停不正确的是()A.小儿组的发生率明显高于成人组B.择期手术的发生率明显高于急症手术C.大多数病例在麻醉处理中存在明显的失误D.ASA3级、4级病例明显高于1级、2级E.诱导期明显高于维持期 [单选]甲公司得知乙公司在与丙公司进行一个项目的商谈,甲公司向乙公司发函,表示愿以更高的价格购买。乙公司遂中断了与丙公司的谈判。但甲公司反悔,拒绝与乙公司进行谈判。后查明,甲公司根本不需要该项目,其目的只是排挤丙公司,则甲公司应承担()。A.侵权责任B.缔约过失责任 [单选,A2型题,A1/A2型题]溃疡性结肠炎患者最常见的护理诊断是()A.体液不足B.皮肤完整性受损C.焦虑D.腹泻E.有感染的危险 [单选]某患者腰部伸展时疼痛,并会伴有下肢放射痛,屈曲时疼痛缓解,初步怀疑腰椎滑脱,应选择以下哪种检查确诊()A.X线B.CTC.MRID.造影E.穿刺 [单选]既能化火,又能遏伤阳气的温邪是:().A.湿热B.温毒C.风热D.燥热 [问答题,简答题]MF-8干粉灭火器如何使用? [单选]用人单位应当加强女职工劳动保护,采取措施改善女职工()条件。A、工作B、休息休假C、劳动安全卫生D、收入 [问答题,案例分析题]背景材料:某道路改建工程A合同段,道路正东西走向,全长973.5m,车行道宽度15m,两边人行道各3m与道路中心线平行且向北,需新建DN800mm雨水管道973m。新建路面结构为150mm厚砾石砂垫层,350mm厚二灰混合料基层,80mm厚中粒式沥青混凝土,40mm厚SMA改性沥青混 [单选]在下列有关MRI图像截断伪影的扫描,错误的是()。A.截断伪影通常出现在高对比组织的界面B.截断伪影通常表现为交替的亮带与暗带状伪影C.在傅立叶变换前对信号滤过,可减少截断伪影D.增大矩阵可减少截断伪影E.增大FOV能减少截断伪影 [问答题,案例分析题]病例摘要:闫某,男,32岁,市民,已婚,于2013年6月23日上午9时就诊。患者自述昨晚与朋友在市区露天就餐,并饮白酒半斤,其间感觉有一菜有酸腐之味,食下少量,今日凌晨3时许出现腹痛,泻下稀便两次,腹部坠胀不安,里急后重,肛门灼热,此后欲便不能,仅排出 [单选,案例分析题]男性,23岁。不规则发热1月余,伴双手指关节肿痛,四肢关节肌肉痛,口腔溃疡就诊。化验:RF(+),尿液检查蛋白尿(+++)。该患者在体检时,除哪项体征外余均可能出现()A.面部蝶形水肿性红斑B.关节畸形、肌肉萎缩C.胸腔积液D.贫血面容E.雷诺现象 [单选]患者,60岁,男性,突发头痛、呕吐、视物旋转伴行走不稳2小时。查体:一侧肢体共济失调,眼球震颤,构音障碍。最可能的诊断是()A.脑栓塞B.小脑出血C.脑叶出血D.蛛网膜下腔出血E.壳核出血 [单选]生油气层富含有机质和生物化石,尤其以含大量成分散状的()为主。A.浮游生物B.爬行动物C.植物D.微生物 [单选]L是区域D:x2+y2&le;-2x的正向周界,则(x3-y)dx+(x-y2)dy等于:()A.2&pi;B.0C.(3/2)&pi;D.-2&pi; [单选,A1型题]关于黄芩主要有效成分叙述错误的是()A.黄芩素B.汉黄芩素C.汉黄芩苷D.京尼平苷E.黄芩苷 [单选]某火电厂,220直流系统,每机组设阀铅酸电池,单母接线,两机组间有联络。不设保护回路的是()。A.蓄电池出口回路B.馈线C.直流分电柜电源进线D.蓄电池试验放电回路 [单选]造成胎儿宫内生长迟缓最常见的原因是().A.脐带绕颈B.本身发育异常C.双胎D.臀位E.妊高征 [单选]出生1分钟的新生儿,心率94次/分,无呼吸,四肢稍屈,无喉反射,口唇青紫全身苍白。Apgar评分为().A.5分B.4分C.3分D.2分E.1分 [单选]当设计温度≤()℃时,为低温容器。A.-20B.-10C.0D.10 [单选]《国务院关于投资体制改革的决定》要求,对使用政府性资金投资建设的项目,实行()管理。A.审批制B.核准制C.备案制D.注册制 [单选,A1型题]临诊上可用于化学去势的生殖激素是()A.黄体酮B.孕酮C.雌激素D.雄激素E.前列腺素 [单选,A2型题,A1/A2型题]外用攻毒杀虫、蚀疮去腐,内服截痰平喘、截疟的药物是()A.轻粉B.砒石C.升药D.炉甘石E.铅丹 [单选]诊断急性脓胸最可靠的依据是()A.高热、胸痛B.X线所见胸部致密影C.白细胞升高D.胸穿抽出脓液E.抗生素治疗有效 [多选]关于近曲小管的描述正确的是()。A.细胞呈锥体形或立方形,界限清楚B.腔面有刷状缘?C.细胞基部有纵纹D.胞质嗜酸性E.细胞核圆形,位于细胞中央 [填空题]高级优质钢在钢牌号后加字母符号()而特级优质钢则在钢牌号后加字母符号()。 [单选]()是指为改善车辆的技术性能或延长车辆使用寿命,改变原车辆零部件或总成的工作。A.车辆技术改造B.车辆大修C.车辆小修D.车辆改装 [单选]不符合皮肤病外用药剂型选择原则的是()A.急性炎症性皮损,仅有潮红、斑丘疹而无糜烂,选用粉剂或振荡剂B.有水疱选用湿敷C.糜烂、渗出时选用软膏D.亚急性炎症皮损可选用油剂、糊剂或乳剂E.慢性炎症皮损选用软膏、糊剂或硬膏 [单选]承包人的某些索赔要求,虽然在工程项目的合同条款中没有专门的文字依据。但可以根据该合同某些条款的含义,推论出承包人有索赔权,这种索赔被称为()。A.合同中的明示索赔B.综合索赔C.合同中的默示索赔D.双向索赔 [单选]行业标准是对的补充,是专业性、技术性较强的标准。()A.地方标准B.出口产品标准C.国家标准D.企业标准 [单选]下面描述对于指令的种类是哪项?“程度稍轻的一种指令,是上级根据酒店的发展要求或自己的经验积累对下属提出的一种期望”()A、命令B、要求C、建议D、请求
相关文档
最新文档