实验14多普勒效应

合集下载

多普勒效应综合实验报告

多普勒效应综合实验报告

多普勒效应综合实验报告1. 引言说起多普勒效应,大家可能觉得这名字听起来有点复杂,其实它跟我们的日常生活可有着千丝万缕的联系。

想象一下,你在路边悠闲地等车,突然一辆救护车呼啸而过,哔哔的警报声从远到近,接着又从近到远,听起来像是在和你打招呼似的。

这就是多普勒效应的真实写照,它让我们更好地理解声音是如何传播的。

这次实验,我们就是要深入探讨这个现象,看看它背后的奥秘。

2. 多普勒效应的原理2.1 基本概念多普勒效应,其实就是当声音源或观察者相对运动时,听到的声音频率发生变化的现象。

简单来说,如果一个物体朝你移动,你会听到比它实际发出的音调更高的声音;反之,如果它远离你,声音就会变低。

就像我们听到的那辆救护车,刚开始的时候它的声音尖锐得像是要冲破天空,离开时却变得温柔得多,像是在对我们说“再见”。

2.2 生活中的例子生活中其实随处可见多普勒效应的影子。

比如,当你在运动的时候,听到路边有人喊你的名字,声调总是高低起伏。

再想想过马路的时候,汽车急速驶来,那个轰鸣声让你不得不一闪而过,转身后再听到的声音则像是懒洋洋地说“我已经走远了”。

这些体验其实都在说明着多普勒效应的奇妙。

3. 实验过程3.1 准备工作这次实验我们准备了一些简单的设备,包括音频发生器、麦克风、扬声器和测量工具。

首先,我们设定一个音频频率,比如说440赫兹,这是一个标准的A音,听起来可亲切了。

接着,我们就要开始进行不同速度的实验,看看音频的变化。

3.2 实验步骤我们让扬声器固定在一个地方,然后把它调到一定的音频频率。

之后,一个同学(我们叫他“小明”吧)开始以不同的速度朝扬声器走近,或者远离。

每当他经过扬声器时,我们用麦克风记录下他听到的音频频率。

实验进行得相当顺利,小明从“飞奔”到“慢走”,记录下的数据一目了然。

通过这些数据,我们开始分析频率变化的规律,嘴上不敢说“哇,原来真有这么神奇”,但心里早就惊叹不已了。

4. 数据分析4.1 结果展示经过一番努力,我们得到了多个数据点,像是小明快速接近扬声器时,频率明显升高,而他远离时,频率又骤降。

大物实验报告-多普勒效应

大物实验报告-多普勒效应

大物实验报告多普勒效应实验4.12 多普勒效应实验报告一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及其机械能转化的规律。

实验仪器ZKY-DPL-3 多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)声波的多普勒效应假设一个点声源的振动在各向同性且均匀的介质中传播,当声源相对于介质静止不动时,各个波面可以组成个同心圆,声波的频率f0、波长λ0以及波速u0表示为f0=u0/λ0现将接收器测得的声波频率、波长和波速分别称为观测频率、观测波长和观测波速,并分别记为f、λ、u,可表示为f=u/λ当接收器以一定的速度向声源运动时,接收器所测得的各个球面波的观测波长λ仍等于λ0,测得的观测波速u 变为u0+v0,因此有f=(u0+v0)/λ0f=(1+v/u0)*f0式中,v0表示声源相对介质静止时,接收器与声源的相对运动速率,接收器朝向声源运动为正值,反之为负值。

同样地,如果接收器相对于介质静止,而声源以速率v’朝向接收器运动,此时接收器所测得的观测波长为λ'可表示为(u0-v')*T,其中,T为声源的振动周期。

同时,由于接收器相对于介质处于静止状态,其测得的观测波速u'仍等于u0,则接收器测得的观测频率为f'=u’/λ’=u0*f0/(u0-v’)对于更为普遍的情况,当声源与接收器之间的相对运动如图所示时,可以得到接收器的观测频率f为f=f0*(u0+v1*cosθ1)/(u0-v2*cosθ2)此式是具有普适性的多普勒效应公式。

三、实验步骤(要求与提示:限400字以内)1、超声的多普勒效应1.1 连接好实验仪器,使滑车牵引绳绕过滑轮与滑车驱动电动机后两端与滑车的前后端相连,并调整好滑车牵引绳的松紧。

多普勒效应综合实验报告

多普勒效应综合实验报告

多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。

本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。

实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。

实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。

2. 将小车以一定速度向听音器移动,并记录每次移动的距离。

3. 同时记录听音器接收到的声音频率。

4. 重复实验多次,以获得更准确的数据。

实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。

当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。

实验分析:这种现象可以通过多普勒效应来解释。

当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。

相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。

实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。

实验步骤:1. 准备一束激光和一个运动的反射镜。

2. 将激光照射到反射镜上,并记录反射光的频率。

3. 以一定速度移动反射镜,并记录每次移动的距离。

4. 同时记录反射光的频率变化。

5. 重复实验多次,以获得更准确的数据。

实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。

当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。

实验分析:这种现象同样可以通过多普勒效应来解释。

当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。

相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。

实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。

以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。

多普勒效应实验实验报告

多普勒效应实验实验报告

实验名称:多普勒效应实验实验目的:1. 理解多普勒效应的原理和现象;2. 掌握多普勒效应的实验方法;3. 通过实验验证多普勒效应的存在;4. 分析实验数据,得出实验结论。

实验原理:多普勒效应是指当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化的现象。

当波源向接收器移动时,接收到的频率会升高;当波源远离接收器时,接收到的频率会降低。

实验仪器:1. 发射器:频率为f的连续波发生器;2. 接收器:频率计;3. 跟踪器:用于控制波源与接收器之间的相对运动;4. 移动平台:用于承载波源和接收器;5. 测量工具:尺子、计时器等。

实验步骤:1. 将发射器和接收器放置在移动平台上,确保两者之间的距离为L;2. 设置发射器的频率为f,打开发射器;3. 通过跟踪器控制波源和接收器之间的相对运动,分别进行以下实验:a. 波源向接收器移动,记录接收器接收到的频率f1;b. 波源远离接收器,记录接收器接收到的频率f2;c. 接收器向波源移动,记录接收器接收到的频率f3;d. 接收器远离波源,记录接收器接收到的频率f4;4. 计算相对速度v,公式为v = (f1 - f) / f L;5. 计算相对速度v,公式为v = (f2 - f) / f L;6. 计算相对速度v,公式为v = (f3 - f) / f L;7. 计算相对速度v,公式为v = (f4 - f) / f L;8. 分析实验数据,得出实验结论。

实验结果:1. 波源向接收器移动时,接收器接收到的频率f1高于原始频率f;2. 波源远离接收器时,接收器接收到的频率f2低于原始频率f;3. 接收器向波源移动时,接收器接收到的频率f3高于原始频率f;4. 接收器远离波源时,接收器接收到的频率f4低于原始频率f;5. 计算得到的相对速度v分别为v1、v2、v3、v4,符合多普勒效应的规律。

实验结论:通过实验验证了多普勒效应的存在,即当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化。

大学物理实验多普勒效应

大学物理实验多普勒效应
通过测量仪器测量声波的频率 、波长等参数,并将数据记录 在记录仪上。
准备实验器材
确保声源和接收器能够正常工 作,测量仪器和记录仪已校准 。
放置接收器
将接收器放置在声源的一侧, 确保声波能够被接收器接收。
分析数据
根据记录的数据,分析多普勒 效应的现象和规律。
数据记录与处理
数据记录
在实验过程中,应实时记录声波 的频率、波长等参数,以及接收 器和声源的位置和角度等信息。
大学物理实验多普勒效应
汇报人: 2024-01-04
• 多普勒效应概述 • 实验目的与要求 • 实验器材与步骤 • 实验结果与分析 • 实验总结与思考
01
多普勒效应概述
多普勒效应的定义
总结词
多普勒效应是指波源和观察者之间相对运动时,观察者接收到的波长和频率发生 变化的现象。
详细描述
多普勒效应是物理学中一个重要的概念,它描述了波源和观察者之间相对运动时 ,观察者接收到的波长和频率的变化情况。当波源和观察者之间存在相对运动时 ,观察者感受到的波长和频率会发生变化,这种现象被称为多普勒效应。
VS
减小误差的方法
为了减小误差,我们采用了高精度的测量 工具,严格控制实验条件,并对数据进行 多次测量和取平均值处理,以提高结果的 可靠性。同时,我们还采用了合适的数学 模型和统计方法对数据进行处理和分析, 以减小误差对结果的影响。
05
实验总结与思考
实验总结
实验目的达成情况
通过本次实验,学生成功观察到了多普勒效 应的现象,并利用公式测量了声源与观察者 之间的相对速度。
实验操作流程
实验操作流程清晰,从设备安装到数据测量,再到 结果分析,每一步都有详细的指导。
数据记录与处理

多普勒效应实验报告

多普勒效应实验报告

多普勒效应实验报告多普勒效应是指当光源和观测者之间有相对运动时,光的频率会发生改变的现象。

本实验旨在通过测量不同速度下的多普勒效应来验证这一现象,并分析其中的规律。

实验仪器与原理实验中使用的仪器包括平行光管、声源、频率计、速度计等。

声源发出的声波通过平行光管发射出去,频率计用于测量声波的频率,速度计用于测量平行光管的运动速度。

当声源静止时,所发出的声波频率为f0。

当声源以速度v向观测者运动时,观测者接收到的声波频率为f1,根据多普勒效应公式,可以得出:f1 = f0 * (v + c) / (v + c')其中,f1为观测者接收到的声波频率,f0为声源发出的声波频率,v为声源的运动速度,c为声波在空气中的传播速度,c'为平行光管的移动速度。

实验步骤(1)调节频率计和速度计,保证其准确度。

(2)测量声源相对于观测者的运动速度v。

(3)让观测者在不同速度下测量接收到的声波频率。

(4)记录实验数据。

数据处理与分析在不同速度下,我们分别记录了声波的频率和声源的运动速度,并计算出了实验数据。

通过对实验数据的处理与分析,我们可以得出以下结论:(1)当声源向观测者运动时,接收到的声波频率会增加,而当声源远离观测者时,接收到的声波频率会减小,这符合多普勒效应的规律。

(2)通过实验数据的对比分析,可以得出声波频率与声源运动速度之间的关系,验证多普勒效应公式的准确性。

结论通过实验,我们验证了多普勒效应的存在,并成功测量了不同速度下声波的频率变化。

实验结果表明,多普勒效应在声波传播中起着重要作用,对于相关研究具有重要意义。

以上是本次多普勒效应实验的报告内容,希望能够对相关知识有所帮助。

感谢您的阅读。

多普勒效应及声速测量实验报告

多普勒效应及声速测量实验报告

多普勒效应及声速测量实验报告实验目的:通过实验探究多普勒效应原理及其在声速测量中的应用。

实验原理:多普勒效应是指在观察者和物体之间相对运动时,物体发出的声波的频率和观察者接收到的频率之间的变化。

当物体向观察者靠近时,观察者接收到的频率比物体发出的频率要高;相反,当物体远离观察者时,观察者接收到的频率比物体发出的频率要低。

在声速测量中,我们可以利用多普勒效应来测量声速。

我们可以发射一个声波信号,当信号击中另一固体物体反弹回来后,我们测量反弹信号的频率变化,从而计算出声速。

实验设备:声音发生器、音叉、示波器、计时器、直尺、实验台。

实验步骤:1. 将发生器放在实验台上,并调节成合适的频率。

2. 将音叉放在实验台上,调节成与发生器相同的频率。

3. 将示波器与音叉相连,观察示波器显示的波形,并记录下音叉的频率。

4. 将音叉固定在实验台上,将示波器调至多普勒效应实验模式,并调节示波器的控制器,使波形频率增加50Hz左右。

5. 开始实验,将一个直尺放在音叉震动的方向上,将其上的一段用胶布固定在音叉上,并让另一端在示波器前来回振动。

6. 启动计时器,记录下直尺来回振动一次所需的时间,反复测量多次并取平均值。

7. 计算出声波的频率,利用多普勒效应公式(f1 = f0(v - v0) / (v + v1))计算出声速。

实验结果:在实验过程中,我们记录了多组来回振动一次所需的时间,并计算出平均值,如下所示:来回振动时间(秒)平均值(秒)0.417 0.4210.416 0.4180.415 0.4210.418 0.4200.422 0.423通过上述记录和计算,我们可以得出音叉的频率为440Hz,利用多普勒效应公式,可得出声速为340m/s。

实验结论:通过本次实验,我们成功探究了多普勒效应的原理并在声速测量中应用,更深入地了解了声波在空间中的传播规律,并通过实验得出了准确的声速计算结果,从而加深了对声学的理论和实践知识的理解和认识。

多普勒效应测声速实验报告(共7篇)

多普勒效应测声速实验报告(共7篇)

多普勒效应测声速实验报告(共7篇)【引言】多普勒效应是声波传播中较为重要的现象之一,广泛应用于医疗、气象、地质探测、防护等领域。

本实验通过制作测声速设备,利用多普勒效应来测量声速,并探讨了声速和温度、同济和介质类型的关系。

经过实验测量和数据处理,得出了一定的结论和启示。

【实验原理】在测量声速时,可以利用声波的多普勒效应来获得,即声波在静止的观测者听到的频率与声波源相对运动的速度有关,可表示为:f’ = f * (1 + v / V)其中f’为观测者听到的频率,f为声波源的频率,v为观测者和声波源之间的相对速度,V为声波在介质中的传播速度。

因此,通过测量声波在不同条件下的频率和相对速度,可以求出声速的大小。

【实验设备和方法】1. 实验设备(1)多功能信号源(2)示波器(3)麦克风(4)各种电缆及连接器(5)热水杯2. 实验方法(1)设置多功能信号源为振幅调制模式,调节频率为2kHz,输出一个正弦波信号。

(2)将麦克风稳定地放置在恒温水杯中,使水杯内的水温保持在40℃左右。

(3)将麦克风接到示波器上,将示波器设置为 X-Y 模式。

(4)调整多功能信号源的振幅和频率,使其输出符合要求。

(5)通过调节热水杯的温度,改变介质的密度和声速,记录各个状态下的频率、相对速度等数据。

(6)根据测量的数据计算声速,并探讨声速和温度、同济和介质类型的关系。

通过实验,我们得到了如下的实验数据:| 温度℃ | 频率f(Hz) | 相对速度v(m/s)||:--------:|:-----------:|:----------------:|| 30 | 1999.6 | 1.2 || 35 | 1999.8 | 1.4 || 40 | 2000.0 | 1.6 || 45 | 2000.2 | 1.8 || 50 | 2000.4 | 2.0 |根据公式f’ = f * (1 + v / V)和测量的数据可以计算出室温下的声速约为332.88 m/s,温度对声速的影响符合一定的规律:随温度升高,声速也会相应地升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多普勒效应综合实验当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。

多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。

例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。

基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。

在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。

电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。

本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。

【实验目的】1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

②自由落体运动,并由V-t关系直线的斜率求重力加速度。

③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。

④其它变速直线运动。

【实验原理】1、超声的多普勒效应根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f = f0(u+V1cosα1)/(u–V2cosα2)(1)式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:f = f0(1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。

若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u ,由此可计算出声速u=f0/k 。

由(2)式可解出:V = u(f/f0–1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

2、超声的红外调制与接收早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。

由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。

新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。

即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。

由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。

采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。

信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

【实验仪器及简介】多普勒效应综合实验仪由实验仪,超声发射/接收器,红外发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。

实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。

实验仪采用菜单式操作,显示屏显示菜单及操作提示,由☐❑♦◆键选择菜单或修改参数,按“确认”键后仪器执行。

可在“查询”页面,查询到在实验时已保存的实验的数据。

操作者只须按提示即可完成操作,学生可把时间和精力用于物理概念和研究对象,不必花大量时间熟悉特定的仪器使用,提高了课时利用率。

实验一验证多普勒效应并由测量数据计算声速让小车以不同速度通过光电门,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率。

由仪器显示的f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。

用作图法或线性回归法计算f-V直线的斜率k,由k计算声速u并与声速的理论值比较,计算其百分误差。

一.仪器安装图2 多普勒效应验证实验及测量小车水平运动安装示意图图1 多普勒实验仪面板图如图2所示。

所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。

调节水平超声传感发生器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收传感器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。

将组件电缆接入实验仪的对应接口上。

安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。

在充电时要注意,必须让小车上的充电板和电磁铁上的充电针接触良好。

【注意事项】①安装时要尽量保证红外接收器、小车上的红外发射器和超声接收器、超声发射器三者之间在同一轴线上,以保证信号传输良好;②安装时不可挤压连接电缆,以免导线折断;③小车不使用时应立放,避免小车滚轮沾上污物,影响实验进行。

二.测量准备1.实验仪开机后,首先要求输入室温。

因为计算物体运动速度时要代入声速,而声速是温度的函数。

利用♦◆将室温T值调到实际值,按“确认”。

2.第二个界面要求对超声发生器的驱动频率进行调谐。

在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率f0,这样接收器获得的信号幅度才最强,才能有效的发射与接收超声波。

一般f0在40KHz左右。

调谐好后,面板上的锁定灯将熄灭。

3.电流调至最大值后,按“确认”。

本仪器所有操作,均要按“确认”键后,数据才被写入仪器。

【注意事项】①调谐及实验进行时,须保证超声发生器和接收器之间无任何阻挡物;②为保证使用安全,三芯电源线须可靠接地。

三.测量步骤1.在液晶显示屏上,选中“多普勒效应验证实验”,并按“确认”;2.利用◆键修改测试总次数(选择范围5~10,一般选5次),按▼,选中“开始测试”;3.准备好后,按“确认”,电磁铁释放,测试开始进行,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率;改变小车的运动速度,可用以下两种方式:a.砝码牵引:利用砝码的不同组合实现;b.用手推动:沿水平方向对小车施以变力,使其通过光电门。

为便于操作,一般由小到大改变小车的运动速度。

4.每一次测试完成,都有“存入”或“重测”的提示,可根据实际情况选择,“确认”后回到测试状态,并显示测试总次数及已完成的测试次数;5.改变砝码质量(砝码牵引方式),并退回小车让磁铁吸住,按“开始”,进行第二次测试;6.完成设定的测量次数后,仪器自动存储数据,并显示f-V关系图及测量数据。

【注意事项】小车速度不可太快,以防小车脱轨跌落损坏。

四.数据记录与处理由f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。

用◆键选中“数据”,❑键翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k。

公式(4)为线性回归法计算k值的公式,其中测量次数i=5 ~n,n≤10。

2 2i i iiiiV V fVfVk-⨯-⨯=(4)由k计算声速u = f0/k,并与声速的理论值比较,声速理论值由u0 = 331(1+t/273)1/2 (米/秒)计算,t表示室温。

测量数据的记录是仪器自动进行的。

在测量完成后,只需在出现的显示界面上,用◆键选中“数据”,❑键翻阅数据并记入表1中,然后按照上述公式计算出相关结果并填入表格。

实验二研究匀变速直线运动,验证牛顿第二运动定律质量为M的接收器组件,与质量为m的砝码托及砝码悬挂于滑轮的两端,运动系统的总质量为M +m,所受合外力为(M-m)g(滑轮转动惯量与摩擦力忽略不计)。

根据牛顿第二定律,系统的加速度应为:a = g (M-m) /(M+m)(5)采样结束后会显示V-t曲线,将显示的采样次数及对应速度记入表2中。

由记录的t ,V数据求得V-t直线的斜率即为此次实验的加速度a。

将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。

一.仪器安装与测量准备1.仪器安装如图4所示,让电磁阀吸住自由落体接收器,并让该接收器上充电部分和电磁阀上的充电针接触良好。

2.用天平称量接收器组件的质量M,砝码托及砝码质量,每次取不同质量的砝码放于砝码托上,记录每次实验对应的m。

3.由于超声发生器和接收器已经改变了,因此需要对超声发生器的驱动频率重新调谐。

图4 匀变速直线运动安装示意图【注意事项】①须将“自由落体接收器保护盒”套于发射器上,避免发射器在非正常操作时受到冲击而损坏;②安装时切不可挤压电磁阀上的电缆;③调谐时需将自由落体接收组件用细绳拴住,置于超声发射器和红外接收器得中间,如此兼顾信号强度,便于调谐。

④安装滑轮时,滑轮支杆不能遮住红外接收和自由落体组件之间信号传输。

二.测量步骤1.在液晶显示屏上,用▼选中“变速运动测量实验”,并按“确认”;2.利用 键修改测量点总数为8(选择范围8~150),▼选择采样步距,并修改为50 ms(选择范围50~100ms),选中“开始测试”;3.按“确认”后,磁铁释放,接收器组件拉动砝码作垂直方向的运动。

测量完成后,显示屏上出现测量结果。

4.在结果显示界面中用 ◆ 键选择“返回”,“确认”后重新回到测量设置界面。

改变砝码质量,按以上程序进行新的测量。

【注意事项】需保证自由落体组件内电池充满电后(即实验仪面板上的充电指示灯为绿色)开始测量。

三.数据记录与处理采样结束后显示 V -t 直线,用 ◆ 键选择“数据”,将显示的采样次数及相应速度记入表2中,t i为采样次数与采样步距的乘积。

由记录的t ,V 数据求得V -t 直线的斜率,就是此次实验的加速度a 。

将表2得出的加速度a 作纵轴,(M -m)/(M +m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。

【注意事项】① 为避免电磁铁剩磁的影响,第1组数据不记;② 接收器组件下落时,若其运动方向不是严格的在声源与接收器的连线方向,则α1(为声源与接收器连线与接收器运动方向之间的夹角,右图是其示意图)在运动过程中增加,此时公式(2)不再严格成立,由(3)式计算的速度误差也随之增加。

故在数据处理时,可根据情况对最后2个采样点进行取舍。

表2 匀变速直线运动的测量 M= (kg )接收器位置 图5 运动过程中α1角度变化示意图实验三研究自由落体运动,求自由落体加速度一.仪器安装仪器安装如图6所示,注意事项同实验二。

相关文档
最新文档