煤加氢液化的影响因素:工艺参数.
煤气化制氢中的温度和催化剂对反应效果的影响

煤气化制氢中的温度和催化剂对反应效果的影响煤气化制氢是一种重要的工业化学过程,可以将煤等碳质原料转化为氢气和一氧化碳。
在这个过程中,温度和催化剂是影响反应效果的两个关键因素。
本文将就温度和催化剂分别探讨其在煤气化制氢中的作用和影响。
一、温度对煤气化制氢的影响温度是煤气化制氢反应中的一个重要操作参数,对反应速率、氢气产率和产品气体组成等都有显著的影响。
1.1 温度对反应速率的影响温度的升高可以促进煤气化反应的进行,提高反应速率。
在适当的温度范围内,反应速率随温度的升高而增加。
高温下,反应速率较低,因为在此温度下催化剂活性降低,反应过程受到抑制。
1.2 温度对氢气产率的影响温度对煤气化制氢反应的氢气产率也有显著的影响。
一般来说,在较低温度下,氢气产率较低,主要是由于反应速率较慢;而在过高温度下,氢气产率也会减少,原因是不完全煤气化产生大量一氧化碳。
因此,需要确定适当的温度条件来保证高氢气产率。
1.3 温度对产品气体组成的影响温度对煤气化制氢反应产物的气体组成也有影响。
低温下可以获得较高的氢气选择性,温度升高后,随着反应的进行,逐渐生成大量的甲烷和其他杂质气体。
二、催化剂对煤气化制氢的影响催化剂在煤气化制氢反应中起着关键作用,可以提高反应速率、降低反应温度和改善产物气体组成等。
2.1 催化剂对反应速率的影响适当选择合适的催化剂可以显著提高煤气化制氢反应速率。
催化剂能够加速反应中的化学键的断裂和形成、提供活性中心等,从而降低反应活化能,加快反应速率。
2.2 催化剂对反应温度的影响催化剂还可以降低煤气化制氢反应的反应温度。
通过选择适当的催化剂,可以在较低温度下实现高效的氢气产率和转化率。
2.3 催化剂对产品气体组成的影响催化剂的存在可以调控煤气化制氢反应产物气体的组成。
合适的催化剂选择和设计可以提高氢气的选择性,减少甲烷和其他杂质气体的产生。
综上所述,温度和催化剂是煤气化制氢反应中两个重要的影响因素。
合理调控温度可以提高反应速率、氢气产率和产品气体组成的选择性,而适当选择合适的催化剂可以进一步提高反应效果。
煤温和加氢液化制高品质液体燃料关键技术与工艺

煤温和加氢液化制高品质液体燃料关键技术与工艺引言在当前全球能源供应紧张的背景下,开发和利用高品质液体燃料成为了国际能源领域的研究热点之一。
煤温和加氢液化技术作为一种重要的液体燃料制备方法,具有资源成本低、适用范围广的优势,对我国能源战略和经济发展具有重要意义。
本文将从煤温和加氢液化的原理、关键技术及工艺流程等方面进行综合分析和探讨。
原理煤温和加氢液化是一种将固体煤转化为液体燃料的技术。
其原理是通过高温和高压的条件下,将煤在氢气的催化作用下进行化学反应,使煤中的高分子化合物裂解,并生成液体燃料。
这一过程主要包括三个步骤:煤的热解、煤的气化和煤的加氢。
煤的热解煤的热解是指将煤暴露在高温环境中,使煤中的有机质在没有氧气的条件下发生热解反应,生成气体和液体产物。
热解过程中,煤中的高分子化合物会发生裂解,生成低分子量的化合物,如烃类等。
煤的气化煤的气化是指将煤中的热解产物(如烃类)在高温和高压的条件下与氢气反应,生成更高价态的化合物。
在气化过程中,煤中的烃类会与氢气发生反应,生成一系列的液体和气体产物,其中液体产物就是液体燃料的主要来源。
煤的加氢煤的加氢是指将煤中的气化产物在高温和高压的条件下与氢气进一步反应,将气体产物中的不饱和化合物加氢饱和,生成高品质的液体燃料。
加氢反应可以提高液体燃料的氢碳比,增加其能量密度,提高其燃烧效率。
关键技术煤温和加氢液化制高品质液体燃料的关键技术包括催化剂选择、温度和压力控制、反应器设计等。
催化剂选择催化剂的选择对煤温和加氢液化的反应效果和产物质量起到关键作用。
优质的催化剂应具有高催化活性、良好的稳定性和选择性,能够在适宜的温度下催化反应进行。
常用的催化剂包括铁、镍、钼等金属催化剂以及复合催化剂。
温度和压力控制温度和压力是影响煤温和加氢液化反应进行的重要因素。
适当的温度和压力可以促进反应物的转化率和产物的质量。
一般来说,较高的温度和压力有利于提高反应速率和产品收率,但过高的温度和压力会增加能源消耗和设备投资。
煤加氢液化的影响因素:工艺参数.ppt

提高压力,还使液化过程有可能采用较高的反应温度。
氢压提高,对高压设备的投资、能耗和氢耗都要增加,成 本提高,选择合适的氢压。
2021/3/17
煤直接液化
5
工单艺击此参处数编对辑母煤版加标氢题样液式化的影响
3.反应时间
在适合的反应温度和足够氢供应下进行煤加氢液化,随时 间的延长,液化率开始增加很快,以后逐渐减慢,而沥青 烯和油收率相应增加,并依次出现最高点;气体产率开始 很少,随反应时间的延长,后来增加很快,同时氢耗量也 随之增加。
从生产角度出发,一般要求反应时间越短越好,因为反应 时间短意味着高空速、高处理量。
2021/3/17
煤直接液化
6
的液体层中的氢体浓度有关。 氢气压力提高,有利于氢气在催化剂表面吸附,有利于氢
向催化剂孔隙深处扩散,使催化剂活性表面得到充分利用。
2021/3/17
煤直接液化
4
工单艺击此参处数编对辑母煤版加标氢题样液式化的影响
2.反应压力
压力提高,煤液化过程中的加氢速度就加快,阻止煤热解 生成的低分子组分裂解或综合成半焦的反应提高油收率;
1.反应温度
不到一定温度(如330℃)不会发生加氢转化反应,在超 过初始热解温度的一定温度范围内,煤转化率随温度上升 而上升,达到最高点后在较小的高温区间持平,然后由于 发生聚合、结焦,转化率下降。
2021/3/17
煤直接液化
3
工单艺击此参处数编对辑母煤版加标氢题样液式化的影响
2.反应压力
采用高压的目的主要在于加快加氢反应速度。 煤在催化剂存在下的液相加氢速度与催化剂表面直接接触
工单艺击此参处数编对辑母煤版加标氢题样液式化的影响
影响煤液化的主要工艺参数:
新疆准东煤直接液化影响因素研究

新疆准东煤直接液化影响因素研究摘要:文章选取新疆准东煤为研究对象,探讨了新疆准东煤的直接液化性能影响因素;该煤具备良好的液化性能,直接液化的最佳工艺条件是:反应温度提高至440 ℃时,压力在2 MPa,反应时间60 min,溶煤比为7,以FeS2作为催化剂,加入量为5%时,转化率为70.9%;选择四氢萘作为强供氢溶剂,转化率为70.2%,油气产率为38.4%,沥青质为29.8%。
关键词:准东煤田;直接液化;影响因素;转化率1 新疆准东煤田概述预测资源总量中,煤质灰分低于25%的约占95%;低于10%的约占16%。
硫分低于1.5%的约占96%,其中低于1.0%的约占80%;侏罗纪煤层为中灰-低灰、中硫-特低硫煤,是良好的液化用煤。
而煤炭直接液化技术发展既减少环境污染又可以补偿石油资源的短缺,对我国经济发展具有非常重要的意义,有着广泛的发展前景。
本文主要探讨煤液化反应过程中各种操作条件对反应的影响及参数选择。
2 实验部分2.1 实验原料煤液化反应实验选择新疆准东煤作为实验用煤,处理后煤样规格小于等于200目,将干燥煤样入样品袋置于干燥器中供实验使用;四氢萘作为强供氢溶剂;选择FeS2作为催化剂。
2.2 煤样分析新疆准东煤的煤质分析,见表1。
2.3 实验药品和仪器试剂:分析纯四氢萘、四氢呋喃、甲苯、丙酮、苯、正己烷;设备:烟台建邦有限责任公司生产的高压反应釜,有效容积为1 L。
3 结果及讨论3.1 温度对液化结果的影响实验条件如下:供氢溶剂选择四氢萘;温度范围为380~440 ℃;不添加任何催化剂;反应停留时间为60 min;溶煤比为4;氢气初压为2 MPa。
实验结果见表2。
由表2可知:当反应温度不断提升,煤的转化率也在逐渐上升。
从380 ℃提高到440 ℃时,转化率也从40.1 %提高到48.6 %。
在430 ℃时转化率提升比较明显,之后温度再提高,转化率提升开始减缓。
同时油气产率也随液化反应温度的提高而增加,最高时达到26.9%,原因可能是温度提高到440 ℃时大分子开始分解为小分子,比如沥青质加氢分解。
煤的直接加氢液化技术

直接液化工艺流程简图
催 化 剂 H2
工艺过程
该工艺是把煤先磨成粉,再和自身组的部分液 化油(循环制剂)配成煤浆,在高温(450oC) 和高压(20—30MPa)下直接加氢,获得液化油, 然后再经过提质加工,得到汽油柴油等产品.1t 无水无灰煤可产500—600Kg油,加上制氢用 煤,约3—4t原料煤产1t油。
催化剂
循环油是主要的供氢载体,催化剂的功能是促 进溶于液相中的氢与脱氢循环油间的反应,使 脱氢循环油加氢并再生。 在直接液化过程中,煤的大分子结构首先受 热分解,而使煤分解成以结构单元缩合芳烃为 单个分子的独立的自由基碎片。在高压氢气和 催化剂存在下,这些自由基碎片又被加氢,形 成稳定的低分子物 。
催化剂作用
催化剂的作用是吸附气体中的氢分子,并将其 活化成活性氢以便被煤的自由基碎片接受。一 般选用铁系催化剂或镍、钼和钴类催化剂。硫 是煤直接液化的助催化剂,有些煤本身含有较 高的硫,可少加或不加助催化剂。
催化剂的影响
催化剂是煤直接液化过程的核心技术 优良的催化剂可以降低煤液化温度,减少副 反应并降低能耗,提高氢转移效率,增加液体 产物的收率。在用于煤液化工艺的各种催化剂 中,铁基催化剂以其高效、廉价及低污染而倍 受青睐。专利技术集中在改善铁基催化剂的性 能、开发新型高效的催化剂、催化剂制备工艺 改进和催化剂的预处理等。
催化剂分类
煤炭直接液化中使用的催化剂通常有三大类 第一类是钴(Co)、钼(Mo)、镍(Ni)催化剂 第二类是金属卤化物催化剂如如ZnCl2、SnCl2酸性催 化剂 第三类是铁系催化剂,包括含铁的天然矿石、含铁的工 业残渣和各种纯态铁的化合物(如铁的氧化物、硫化 物和氢氧化物)。
催化原理
煤直接液化高效催化剂活性组分以其纳米级 的颗粒均匀地分布在煤粒表面最大限度地发挥 其催化活性,因而其用量只是常规催化剂的 1/4。煤液化油收率可高出常规铁系催化剂5个 百分点左右,其经济效益十分明显。 例子: 神华集团已经决定在其煤直接液化示范工 程第一条示范生产线中采用高效催化剂。
煤加氢液化的影响因素:2、煤液化溶剂.

单击此处编辑母版标题样式 煤液化溶剂对 煤加氢液化的影响
溶剂的作用
溶剂的作用主要是热溶解煤、溶解氢气、供氢和传递氢作用、溶剂直
接与煤质反应等。
(a)热溶解煤 使用溶剂是为了让固体煤呈分子状态或自由基碎片分散于溶剂中,同
时将氢气溶解,以提高煤和固体催化剂、氢气的接触性能,加速加氢反
应和提高液化效率。 (b)溶解氢气
2018/9/20
煤直接液化
4
(f) 其他作用
在液化过程中溶剂能使煤质受热均匀,防止局部过热,溶剂和煤 制成煤糊有利于泵的输送。
2018/9/20
煤直接液化
3
单击此处编辑母版标题样式 煤液化溶剂对 煤加氢液化的影响
气氛
(a)氢气在液化中的作用 高压氢气有利于煤的溶解和加氢液化转化率的提高。如用烷烃油 分别在N2和H2中将煤加热至400℃溶解2h,然后冷却,结果发现在H2中 煤粒已有很大变化, 在N2中煤粒基本没变化。 (b)CO+H2O反应剂在液化中的作用 使用CO+H2O很容易使褐煤液化。低煤化程度的煤与CO+H2O的反应 要比与H2的反应更加容易, 随着煤化程度增加,CO+H2O的优势减弱, 而高含氧量的煤和有机物质对CO+H2O同样有较高的反应性。
单击此处编辑母版标题样式 煤液化溶剂对 煤加氢液化的影响 溶剂的分类
根据溶解效率和溶解温度可将溶剂分为5类: (a)非特效溶剂 在100℃温度下能溶解微量煤的溶剂。如乙醇、苯、乙醚、氯仿、甲 醇和丙酮等。 (b)特效溶剂 在200℃温度下能溶解20%~40%的煤。如吡啶、带有或不带有芳烃或 羟基取代基的低脂肪胺和其它杂环碱。 (c)降解溶剂 这类溶剂在400℃下能萃取煤高达90%以上。如菲、联苯等。 (d)反应性溶剂 在400 高温下溶解煤,是靠与煤质起化学反应,也称活性溶剂,如酚、 四氢喹啉等。 (e)气体溶剂 在超临界条件下,利用某些低沸点溶剂在超临界状态下萃取煤。
煤的液化

12
煤的直接液化
二、煤加氢液化工艺简介 德国的IGOR+工艺 H--coal工艺 埃克森供氢溶剂法(EDS) 日本的NEDOL工艺 溶剂精炼煤法(SCR-I和SCR-II)
13
煤的直接液化 IGOR+工艺:
工艺特点: ①液固分离采用闪蒸塔,生 产能力大,效率高; ②循环油不含固体,还基本 上排除了沥青烯; ③煤糊相加氢和油的加氢精 制,使油收率增加,质量提 高。
煤液化是把固体煤炭通过化学加工过程,使其转化成为 液体燃料、化工原料和产品的先进洁净煤技术 。
煤的直接液化 煤加氢液化原理 煤加氢液化工艺简介 煤加氢液化的影响因素 煤的间接液化
费托(F-T)合成
2
煤的直接液化
煤直接液化 - 煤在高温高压下通过加氢反应直 接转化为液体油类; 煤间接液化 - 先使煤气化生成合成气( CO + H2),再由合成气合成液体燃料或化学产品。
(2n+1)H2+ nCO= CnH2n+2+ nH2O 烷烃 (n+1)H2+ 2nCO= CnH2n+2+ nCO2
烯烃nH
2nH2 + nCO=CnH2n+nH2O
2
+ 2nCO=CnH2n+nCO2
2nH2+ nCO=CnH2n+1OH+(n-1)H2O
(n+1)H2+(2n-1)CO=CnH2n+1OH+(n-1)CO2 (n+1)CO+(2n+1)H 2=CnH2n+1CHO+nH2O
煤加氢液化后所得产物组成十分复杂,包括气、液、固三 相的混合物。按照在不同溶剂中的溶解度不同,对液固部分进 行分离,得到油、沥青烯、前沥青烯(预沥青烯)和残渣。 油是轻质的可溶于正己烷或环己烷的产物,其相对分子质 量大约在300以下; 沥青烯是指可溶于苯,但不溶于正己烷或环己烷的部分, 类似石油沥青质的重质煤液化产物,其平均相对分子质量约为 500; 前沥青烯是指不溶于苯但可溶于吡啶和四氢呋喃的重质煤 液化产物,其平均相对分子质量约1000,杂原子含量较高;
煤温和加氢液化制高品质液体燃料关键技术与工艺

煤温和加氢液化制高品质液体燃料关键技术与工艺煤温和加氢液化制高品质液体燃料关键技术与工艺煤是中国的主要能源之一,但是煤的高污染性和低能源利用率一直是制约中国经济发展的重要问题。
为了解决这个问题,煤温和加氢液化制高品质液体燃料成为了一个备受关注的领域。
本文将介绍煤温和加氢液化制高品质液体燃料的关键技术与工艺。
煤温和加氢液化制高品质液体燃料是一种将煤转化为高品质液体燃料的技术。
这种技术可以将煤中的有机物转化为液体燃料,同时去除其中的硫、氮等杂质,从而得到高品质的液体燃料。
这种液体燃料具有高能量密度、低污染、易于储存和运输等优点,可以替代传统的燃料油和天然气,成为未来的主要能源之一。
煤温和加氢液化制高品质液体燃料的关键技术包括煤的预处理、煤的气化、气化产物的净化、合成液体燃料的制备等。
其中,煤的预处理是非常重要的一步,它可以去除煤中的灰分、硫、氮等杂质,从而提高煤的气化效率和液体燃料的品质。
煤的气化是将煤转化为气体的过程,这个过程需要在高温高压的条件下进行。
气化产物的净化是将气化产物中的杂质去除,从而得到高纯度的合成气。
合成液体燃料的制备是将合成气转化为液体燃料的过程,这个过程需要在催化剂的作用下进行。
煤温和加氢液化制高品质液体燃料的工艺流程包括煤的预处理、煤的气化、气化产物的净化、合成气的制备、合成液体燃料的制备等。
这个工艺流程需要在高温高压的条件下进行,同时需要使用一系列的设备和催化剂。
这些设备和催化剂的选择和设计非常重要,它们可以影响整个工艺流程的效率和液体燃料的品质。
总之,煤温和加氢液化制高品质液体燃料是一种非常重要的技术,它可以将煤转化为高品质的液体燃料,从而解决煤的高污染性和低能源利用率的问题。
这种技术的关键技术和工艺流程非常复杂,需要在高温高压的条件下进行。
未来,煤温和加氢液化制高品质液体燃料将成为中国的主要能源之一,为中国经济的可持续发展做出重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/9/20
煤直接液化
4
单击此处编辑母版标题样式 工艺参数对 煤加氢液化的影响
2.反应压力
压力提高,煤液化过程中的加氢速度就加快,阻止煤热解
生成的低分子组分裂解或综合成半焦的反应提高油收率;
提高压力,还使液化过程有可能采用较高的反应温度。 氢压提高,对高压设备的投资、能耗和氢耗都要增加,成 本提高,选择合适的氢压。
煤直接液化
3
单击此处编辑母版标题样式 工艺参数对 煤加氢液化的影响
2.反应压力
采用高压的目的主要在于加快加氢反应速度。 煤在催化剂存在下的液相加氢速度与催化剂表面直接接触 的液体层中的氢体浓度有关。 氢气压力提高,有利于氢气在催化剂表面吸附,有利于氢
向催化剂孔隙深处扩散,使催化剂活性表面得到充分利用。
2018/9/20
煤直接液化
2
单击此处编辑母版标题样式 工艺参数对 煤加氢液化的影响
1.反应温度
不到一定温度(如330℃)不会发生加氢转化反应,在超
过初始热解温度的一定温度范围内,煤转化率随温度上升
而上升,达到最高点后在较小的高温区间持平,然后由于 发生聚合、结焦,转化率下降。
2018/9/20
2018/9/20
煤直接液化
5
单击此处编辑母版标题样式 工艺参数对 煤加氢液化的影响
3.反应时间
在适合的反应温度和足够氢供应下进行煤加氢液化,随时 间的延长,液化率开始增加很快,以后逐渐减慢,而沥青 烯和油收率相应增加,并依次出现最高点;气体产率开始 很少,随反应时间的延长,后来增加很快,同时氢耗量也 随之增加。 从生产角度出发,一般要求反应时间越短越好,因为反应
时间短意味着高空速、高处理量。
2018/9/20
煤直接液化
6
单击此处编辑母版标题样式 工艺参数对 煤加氢液化的影响
影响煤液化的主要工艺参数:
(1)反应温度
(2)反应压力
(3)停留时间
2018/9/20
煤直接液化
1
单击此处编辑母版标题样式 工艺参数对 煤加氢液化的影响
1.反应温度
在氢压、催化剂、溶剂存在条件下,加热煤糊会发生一系 列的变化。 首先煤发生膨胀,局部溶解,此时不消耗氢,说明煤 尚未开始加氢液化; 随着温度升高,煤发生解聚、分解、加氢等反应,未 溶解的煤继续热溶解,转化率和氢耗量同时增加; 当温度升到最佳值范围,煤的转化率和油收率最高; 温度再升高,分解反应超过加氢反应,综合反应也随 之加强,因此转化率和油收率减少,气体产率和半焦 产率增加,对液化不利。