煤加氢液化的影响因素:1、原料煤的性质.

合集下载

影响神华煤直接液化性能的因素及分析

影响神华煤直接液化性能的因素及分析
第 3 5卷
第 3期
煤 炭 转 化
C0 AL C0N V ERS1 N 0
V ol 3 NO.3 _5
21 0 2年 7月
J 12 1 u. 0 2
影 响 神华 煤 直 接 液 化 性 能 的 因素 及 分 析
杜 海 胜 D 安 亮 韩 来 喜 王喜 武。 王 军
0 引 言
神华 煤直 接液化 示 范工 程是 我 国实施 能 源安 全 战 略 的一 项重 要工 程 , 世 界 首 套 现 代 煤 直 接 液 化 是
技术 工业 规模 装置 , 我 国具 有 完 全 自主 知 识 产权 是
因素 调整 的措 施 , 为 装 置 的优 化 操 作 提 供 一 定 的 可 参考 , 为实 现神 华 煤 直 接液 化 “ 、 、 、 、 ” 安 稳 长 满 优 的 宏 伟 目标 打下 基础 .
摘 要 对影 响神 华 煤 直接 液 化性 能 的 8个 因素 进行 分析 可知 , 因素 对煤 液 化反 应具 有 不 各 同的影 响 ; 工业 生产 中, 在 对影 响液 化 生成 油液 固分 离 因素 分析 可 知 , 固分 离效果 对 液 化 油产 率 液 有很 重要 的影 响. 同时对影 响 因素进 行 分析 并提 出 了优化 装 置操 作 的调整措 施 , 实际生产 调整 操 为 作、 装置 稳定 运行 以及 进一 步确 定合 适 的 工艺条 件提 供 一定 的参 考 , 为提 高装 置 的生产 效 率和煤 直
置处理.
2 原 料 及 主 要设 备
2 1 原 料及 辅助 材料 . 2 1 1 原料 煤性 质 ..
煤 液化 装 置 的 原料 煤 来 自备煤 装 置 , 料煤 性 原
质见 表 1 .

煤的直接液化ppt课件

煤的直接液化ppt课件

由于煤的大分子的基本结构单元是以芳烃核 为主体,并带有环烷侧链、杂环和含氧官能 团等非主体部分。
而煤的直接液化只是一个催化加氢过程,因 此其产物液化油也主要是由芳烃和环烃构成。
与石油产品相比,其特点为富含芳烃和脂环, 碳含量较高,氢含量较低,并含有一定量的 N、O和S等杂原子。
.
15
Hale Waihona Puke 基于上述特点,除可直接作为锅炉燃料油外, 液化油必须经过提质加工才能作为发动机燃 料进行利用。因为煤液体中的芳环成分虽然 会增加辛烷值,但它们难以燃烧,热值低, 而且燃烧过程中会产生较多的CO2和烟尘。
同时由于煤液化燃料的经济性短时间内还无 法与石油化工相比,因此在开发液体燃料之 外,可以开发非燃料化工产品,如合成医药、 农药、工程塑料等。
.
16
四、我国煤炭的直接液化技术
.
17
.
18
.
3
液化残渣气化 制取氢气
原料煤的破碎 与干燥
煤浆制备
液体产物分 馏和精制
工艺流程
加氢液化
气体净化
固液分离
.
4
要把固体煤转化为液体油,就必须采用高温 (400ºC~470ºC)或其它化学方法打碎煤的分子 结构,使大分子物质变成小分子物质,同时要从 外界供给足够量的H,以提高H/C比。
该工艺是把煤先磨成粉,再和自身产生的部分液 化油(循环溶剂)配成煤浆,在高温(450ºC) 和高压(20~30MPa)下直接加氢,获得液化油, 然后再经过提质加工,得到汽油、柴油等产品。1 吨无水无灰煤可产500~600kg油,加上制氢用煤, 约3~4吨原料煤可产1吨成品油。其工艺过程如下 图所示。
.
13
对压力而言,理论上压力越高对反应越有 利,但这样会增加系统的技术难度和危 险性,降低生产的经济性,因此,新的 生产工艺都在努力降低压力条件。

2014煤化工生产技术(理论)课程标准

2014煤化工生产技术(理论)课程标准

《煤化工生产技术》课程标准总学时数:86 理论课时:62 实践课时:24适用专业:煤化工生产技术学分:4制定人:煤化工教研室制定日期:2014年4月一、课程性质本课程是煤化工生产技术专业的一门必修课。

本课的任务是使学生掌握煤化工生产的基本概念,了解煤化工安全生产方面的知识,深化空气深冷液化分离、煤气化、煤液化、甲醇生产技术及煤化学产品加工工艺等方面知识;培养学生的煤化工生产操作方面的专业能力,如正确地确定生产的工艺条件的能力,在煤化工安全生产操作规程下解决生产过程中一般工艺技术问题的能力以及正确操作煤化工的重要设备等;同时注重培养学生的社会能力和方法能力。

本课程是在学生完成化工原理、物理化学、有机化学、无机化学、煤化学等基础课的学习后开设的,并通过专业实训与仿真实训强化学生的专业技能。

二、设计思路《煤化工生产技术》是以对企业技术骨干和管理人员关于工作任务的调查分析为依据,确立课程教学目标和内容;以培养就业能力为导向,课程内容与职业资格取证要求融通;以典型工作任务分析为基础,构建总体能力目标、具体能力目标和知识目标。

煤化工生产技术专业是以就业为导向、职业能力培养为目标,培养具有较强实践动手能力,具备必须的文化基础知识、煤化工工艺基本理论和从事煤化工生产操作、工艺运行、技术管理等工作的职业能力和综合素质,在生产、建设、管理、服务等一线工作精工艺、懂设备、懂管理的高素质技能型专门人才。

按照章节分为十一章,按工作任务工作岗位进行任务分解,形成6个学习情景:空气深冷液化分离;煤焦化技术;煤气化技术;煤液化技术;合成气合成天然气与甲醇技术;甲醇合成其他化学产品技术。

对工作过程的实施以工学结合方式实现。

在教学安排上,按周数进行。

采用教师授课、实训室实习、下厂参观及及顶岗操作,便于原理讲授与操作训练相结合。

每个学习情境内选取典型的工作任务,在教师指导下,课堂传授专业知识、课下掌握专业技能,把教师的教学过程与学生的学习过程、企业生产与工作过程联系起来,使学习内容充分体现企业实际需要,让学生在生产任务实施中训练操作技能、团队合作和沟通技能、工作能力和方法能力,体验企业工作过程和氛围,构建知识。

氢气在无催化煤液化中的反应机理

氢气在无催化煤液化中的反应机理

氢气在无催化煤液化中的反应机理氢气在无催化煤液化中的反应机理煤是一种重要的化石燃料,但其能源价值和利用效率都较低。

为了提高煤的利用率和降低环境污染,煤液化技术逐渐兴起。

煤液化是将煤转化为液态燃料或化工原料的过程,其中氢气是重要的反应物和能源来源。

本文将探讨氢气在无催化煤液化中的反应机理。

煤液化的主要反应路径是裂解和重组。

裂解是指将煤分子断裂成较小的分子,重组是指通过分子间交换反应使分子组成变得更复杂。

氢气在煤液化中的作用主要是加氢和脱氢反应。

加氢反应是指将煤分子中的C-C、C-O、C=N等化学键与氢气反应生成C-H键,使其分子量减小;脱氢反应是指将煤分子中的C-H键或其他键与氢气反应,生成C-C、C-O、C=N等新的键,使其分子量增加。

在无催化煤液化中,氢气的加氢作用是较为重要的反应途径。

煤的液化是一个复杂的过程,涉及到多种反应和中间体的产生与消失。

其中,氢气在煤液化中的反应机理受到了广泛的研究。

下面将从分子层面和宏观层面探讨氢气在煤液化中的反应机理。

1. 分子层面煤分子主要由三个元素构成,即C、H、O,其中C-H 键是煤分子中最常见的键。

氢气在煤液化中的反应机理主要是加氢反应和脱氢反应。

加氢反应煤分子中的C-C、C-O、C=N等化学键可以与氢气反应生成C-H键。

这种反应需要高温高压和催化剂的作用,但在无催化反应中也可以通过氢气和煤分子的动力学作用实现。

例如,煤中的苯环可以被氢气加氢生成环丙烷等烷基化合物。

反应速率与煤分子结构、反应条件和氢气浓度等因素有关。

脱氢反应脱氢反应是将煤分子中的C-H键或其他键与氢气反应,生成C-C、C-O、C=N等新的键,使其分子量增加。

这种反应主要发生在高温高压下,需要一定的催化剂。

例如,煤中的芳香烃可以被氢气脱氢生成芳香烃酮和芳香烃醇等化合物。

反应速率与反应条件和催化剂的种类和浓度等因素有关。

2. 宏观层面除了分子层面的反应机理外,氢气还对煤液化的宏观过程产生影响。

煤炭液化技术复习资料

煤炭液化技术复习资料

第三章1.什么是煤炭直接液化?定义:煤经化学加工转化成洁净的便于运输和使用的液体燃料、化学品或化工原料的一种先进的洁净煤技术.煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。

2.煤炭直接液化的途径是什么?如何实施?途径:煤先经加氢裂解等过程转化为液化油,再提质加工得到成品油.具体实施:先热解反应产生自由基碎片再由自由基碎片加氢得到的油再经脱杂(S,N,O等杂原子),缩合反应得到成品油。

3.煤炭直接液化反应有哪些?主要反应是什么?煤的热解反应自由基碎片的加氢反应脱杂原子反应缩合反应4.什么是自由基碎片?在直接液化过程中,煤的大分子结构首先受热分解,而使煤分解成以结构单元缩合芳烃为单个分子的独立的自由基碎片5.自由基碎片加氢反应中氢的来源是什么?哪些是主要来源?供给自由基的氢源主要有:(1)外界供给的氢在催化剂作用下变为活性氢;(2)溶剂可供给的或传递的氢;(3)煤本身可供应的氢(煤分子内部重排、部分结构裂解或缩聚形成的氢);(4)化学反应生成的氢,如CO和H2O反应生成的氢等.6.煤直接液化研究中油,沥青烯,前沥青烯,残渣是如何定义的?(1)油:可溶于正己烷的物质(2)沥青烯:不溶于正己烷而溶于苯(3)前沥青烯:不溶于苯而溶于四氢呋喃或吡啶(4)残渣:不溶于四氢呋喃或吡啶的物质7.描述煤炭直接液化反应的历程?首先,煤在溶剂中膨胀形成胶体系统,有机质进行局部溶解,发生煤的解体破坏,350~400℃左右发生分解、加氢、解聚、聚合以及脱杂原子等一系列反应,生成沥青质含量很多的高分子物质。

当温度达到450~480℃时,溶剂中氢的饱合程度增加,使氢重新分配程度也相应增加,从而使煤加氢液化过程逐步加深,使高分子物质(沥青质)转变为低分子产物-油和气。

这个过程中也是存在分解、加氢、解聚、聚合以及脱杂原子等一系列反应1)先裂解后加氢。

2)反应以顺序进行为主。

虽然在反应初期有少量气体和轻质油生成,不过数量不多。

煤的液化

煤的液化

12
煤的直接液化
二、煤加氢液化工艺简介 德国的IGOR+工艺 H--coal工艺 埃克森供氢溶剂法(EDS) 日本的NEDOL工艺 溶剂精炼煤法(SCR-I和SCR-II)
13
煤的直接液化 IGOR+工艺:
工艺特点: ①液固分离采用闪蒸塔,生 产能力大,效率高; ②循环油不含固体,还基本 上排除了沥青烯; ③煤糊相加氢和油的加氢精 制,使油收率增加,质量提 高。
煤液化是把固体煤炭通过化学加工过程,使其转化成为 液体燃料、化工原料和产品的先进洁净煤技术 。
煤的直接液化 煤加氢液化原理 煤加氢液化工艺简介 煤加氢液化的影响因素 煤的间接液化
费托(F-T)合成
2
煤的直接液化
煤直接液化 - 煤在高温高压下通过加氢反应直 接转化为液体油类; 煤间接液化 - 先使煤气化生成合成气( CO + H2),再由合成气合成液体燃料或化学产品。
(2n+1)H2+ nCO= CnH2n+2+ nH2O 烷烃 (n+1)H2+ 2nCO= CnH2n+2+ nCO2
烯烃nH
2nH2 + nCO=CnH2n+nH2O
2
+ 2nCO=CnH2n+nCO2
2nH2+ nCO=CnH2n+1OH+(n-1)H2O
(n+1)H2+(2n-1)CO=CnH2n+1OH+(n-1)CO2 (n+1)CO+(2n+1)H 2=CnH2n+1CHO+nH2O
煤加氢液化后所得产物组成十分复杂,包括气、液、固三 相的混合物。按照在不同溶剂中的溶解度不同,对液固部分进 行分离,得到油、沥青烯、前沥青烯(预沥青烯)和残渣。 油是轻质的可溶于正己烷或环己烷的产物,其相对分子质 量大约在300以下; 沥青烯是指可溶于苯,但不溶于正己烷或环己烷的部分, 类似石油沥青质的重质煤液化产物,其平均相对分子质量约为 500; 前沥青烯是指不溶于苯但可溶于吡啶和四氢呋喃的重质煤 液化产物,其平均相对分子质量约1000,杂原子含量较高;

煤化学-煤的直接液化课后作业

煤化学-煤的直接液化课后作业

煤化学第三章煤的直接液化1、简述煤直接液化的主要过程。

煤直接液化主要包括两个阶段:煤的热解和催化加氢。

热解阶段:煤首先发生热解反应,产生自由基“碎片”;催化加氢阶段:自由基在有氢条件下与氢结合而稳定,否则发生缩聚。

并伴随着脱杂原子和结焦反应。

煤结构中的一些氧、硫、氮也产生断裂,分别生成H2O(CO2/CO)、H2S和NH3气体而被脱除。

结焦反应是由于温度过高或供氢不足,煤热解的自由基碎片彼此发生缩合反应,生成半焦和焦炭。

2、简述煤直接液化工艺中循环溶剂的作用。

煤的直接液化必须有溶剂存在,这也是其与加氢热解的根本区别。

通常认为在煤的直接液化过程中,溶剂能起到如下作用:(1)、输送:将煤与溶剂制成浆液的形式便于工艺过程的输送。

(2)、反应介质,提供传热、传质:可以有效地分散煤粒子、催化剂和液化反应生成的热产物,有利于改善多相催化液化反应体系的动力学过程。

在有催化剂时,促使催化剂分散和萃取出在催化剂表面上强吸附的毒物。

(3)、直接或间接地参与反应:依靠溶剂能使煤粒发生溶胀和软化,使其有机质中的键发生断裂;(4)、供氢和传递氢的作用:部分饱和的多环芳烃都具有供氢能力,如四氢萘和1,4-二氢萘。

而十氢萘由于结构稳定,含氢量虽然最多,但供氢能力很差。

(5)、对氢气的溶解作用:溶解部分氢气,作为反应体系中活性氢的传递介质;或者通过供氢溶剂的脱氢反应过程,可以提供煤液化所需的活性氢原子。

(6)、溶剂抽提作用:萃取作用。

一般来说,煤焦油馏分和煤液化油对煤都有较好的溶解和分散能力。

3、简述煤直接液化的HTI工艺,以及该工艺的特点。

(1)、HTI工艺:HTI工艺是在H-Coal工艺和CTSL工艺的基础上,采用近十年开发的悬浮床反应器和HTI研发的胶体铁基催化剂而开发的一种煤加氢液化工艺。

将原料煤和催化剂以及循环溶剂制浆,通入氢气进入预热器,再依次进入两个串联的沸腾床三相反应器,发生热解和加氢反应,液化后进入分离器,轻质组分从上部进入加氢反应器再次加氢,进入分离器和常压蒸馏装置,得到高质量的油品。

煤加氢液化的影响因素:3、液化催化剂.

煤加氢液化的影响因素:3、液化催化剂.

2018/9/20
煤直接液化
2
单击此处编辑母版标题样式 催化剂对 煤加氢液化的影响 2. 催化剂的性能要求和催化剂的组催化剂;载体 根据不同情况,载体在催化剂中可以起到以下几方面的作用:
增加有效表面和提供合适的孔结构。
提高催化剂的机械强度。 提高催化剂的热稳定性
(2)催化剂的加入方式 (3)炭沉积
(4)液化反应的溶剂
(5)煤中矿物质
2018/9/20
煤直接液化
5
这里将催化剂在煤加氢液化中的作用归纳为3点: (1)活化反应物,加速加氢反应速率,提高煤液化的转化 率和油收率。 (2)促进溶剂的再加氢和氢源与煤之间的氢传递。 (3)选择性 。
2018/9/20
煤直接液化
4
单击此处编辑母版标题样式 催化剂对 煤加氢液化的影响 5. 影响催化剂活性的因素
催化剂的活性主要取决于催化剂本身的化学性质和结 构,这些与催化剂的活性组分筛选和制备有关,但也与使 用条件关系密切。 (1)催化剂加入量
单击此处编辑母版标题样式 催化剂对 煤加氢液化的影响 1. 催化作用的基本特征
(1)催化剂只能加速在化学上可能进行的反应速度,而不 能加速在热力学上无法进行的反应。 (2)催化剂只能改变化学反应的速度,而不能改变化学平 衡位置。 (3)催化剂只能改变化学反应速度,但它本身并不进入化 学反应的化学计量。
提供活性中心
和活性组分作用形成新化合物 节省活性组分用量,降低成本
2018/9/20
煤直接液化
3
单击此处编辑母版标题样式 催化剂对 煤加氢液化的影响 3. 催化剂的作用
催化剂的活性主要取决于金属的种类、比表面积和载 体等。一般认为Fe、Ni、Co、Mo、Ti、和W等过度金属对 加氢反应具有活性。这是由于催化剂通过对某种反应物的 化学吸附形成化学吸附键,致使被吸附分子的电子或几何 结构发生变化从而提高了化学反应活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单击此处编辑母版标题样式 原料煤的性质对 煤加氢液化的影响
煤加氢液化反应是十分复杂的化学反应,影响加氢液 化的因素很多,这里主要论述原料煤、溶剂、气氛与工艺 参数等因素。 选择加氢液化原料煤,主要考虑以下3个指标: 干燥无灰基原料煤的液体油收率高; 煤转化为低分子产物的速度,即转化的难易度;
氢耗量.
单击此处编辑母版标题样式 原料煤的性质对 煤加氢液化的影响
煤 种 中等挥发分烟 煤 高挥发分烟煤A 高挥发分烟煤B 高挥发分烟煤C 次 烟 煤B 次 烟 煤C 褐 煤 泥 炭
液体收率 /%
气体收率/%
总转化率/%
62 71.5 74 73 66.5 58 57 44
28 20 17 21.5 26 29 30 40
③氢含量越高,氧含量越低的煤,外供氢量越少,废水生成量 越少。 ④氮等杂原子含量要求低,以降低油品加工提质费用。 ⑤煤的岩相组成是一项重要指标,镜质组越高,煤液化性能越 好,一般镜质组达90%以上为好;丝质组含量高的煤,液化活 性差。 ⑥要求原料煤中灰<5%,一般原煤中灰难达此指标,这就要求 煤的洗选性能好,因为灰严重影响油的收率和系统的正常操作 。
90 91.5 91 94.5 92.5 87 87 84
煤化程度与其加氢液化转化率的关系
Page
2
单击此处编辑母版标题样式 原料煤的性质对 煤加ห้องสมุดไป่ตู้液化的影响 直接液化对煤质的要求
①要将煤磨成200目左右细粉,并干燥到水分<2%。
②应选择易磨或中等难磨的煤作为原料,最好哈氏可磨性系数 大于50以上。
相关文档
最新文档