光学薄膜透反射率的常用测量方法
真空薄膜的制备及其光学性能研究

真空薄膜的制备及其光学性能研究随着科技的发展,真空薄膜技术被广泛应用于许多领域,如电子、光学、汽车、通信等。
真空薄膜的制备和性能研究是当前研究的热点之一。
本文将介绍真空薄膜的制备方法和光学性能研究的相关内容。
一、真空薄膜制备方法真空薄膜制备的方法多样,其中最常用的方法有热蒸发、磁控溅射、电子束蒸发和离子束蒸发。
1. 热蒸发法热蒸发法是将固体材料加热到高温状态,使其蒸发并沉积在基底上形成薄膜的方法。
这是最基本的制备方法之一。
该方法适用于固体材料的制备,如氧化物、氟化物、金属和合金等。
但是该方法存在一些缺点,例如膜厚不均匀、易形成颗粒状结构和凝固速度慢等。
2. 磁控溅射法磁控溅射法是将材料靶放在真空腔室中,通过放电将靶表面的原子或离子击出到基板上生成薄膜的方法。
它具有膜厚均匀、成膜速度快和成膜选择性强等优点,适用于制备金属、混合材料和非晶体等。
3. 电子束蒸发法电子束蒸发法是将材料放在陶瓷棒中,通过高功率电子束将材料加热至蒸发点,沉积在基板上形成薄膜的方法。
该方法具有较高的成膜速度和高成膜率,适用于制备铝、铬、铜和钨等材料。
4. 离子束蒸发法离子束蒸发法是利用高能离子束直接蒸发材料,并在基底上形成薄膜的方法。
该方法通过使用高能离子束,在原材料上的束缚能变化,导致部分原子发生蒸发现象,最终在基板上形成薄膜。
该方法具有较高的成膜速度、薄膜致密度高以及合适的流行面取向等特点,适用于制备氮化物、碳化物、氧化物、砷化镓和硅等化合物。
二、真空薄膜光学性能研究真空薄膜具有良好的光学性能,对于不同领域的研究,往往需要对真空薄膜进行光学性能研究。
包括以下几个方面:1. 光学薄膜的反射率光学薄膜的反射率的研究是真空薄膜中较为重要的研究内容。
通过对光学反射薄膜的研究,可以研究光学元件的工作方式和性能,也可以研究薄膜材料的光学性能。
常用的反射率测试方法有求解测量法和显微光学反射法等。
2. 光学薄膜的透过率透过率是指光线经过薄膜后能够透过并到达反面的能量占入射光能量的比例。
偏振光反射法测量薄膜厚度和折射率的研究毕业论文

偏振光反射法测量薄膜厚度和折射率的研究薄膜技术的发展及其应用薄膜是一种较特殊的物质形态,其在厚度这一特定方向上尺寸较小,仅是微观可测的物理量,并且在厚度方向上由于表面、界面的存在,使物质的连续性发生中断,由此使得薄膜材料产生了与块状材料具有不同的性能。
也可以解释为,由于成膜的过程中晶体取向、晶粒大小、杂质浓度、成份的均匀性、基底材料、温度以及清洁度等因素的影响,使得薄膜的物理性能与块状材料的物理性能在诸多方面不同。
这引起了诸多科研工作者们较为浓厚的研究兴趣并使之得到更为广泛的应用。
二十世纪70年代以来,薄膜技术得到空前的发展,无论在学术研究上还是在工业应用中都取得了较丰硕的成果。
薄膜技术及薄膜材料已成为当代真空技术及材料科学研究中最活跃的领域之一,并在新科学技术革命中,具有举足轻重的地位。
薄膜技术涉及的范围比较广,其中包括物理气相沉积、化学气相沉积成膜技术,以离子束刻蚀为代表的微细加工技术,成膜、刻蚀过程的监控技术,以及薄膜分析、评价与检测技术等。
目前,薄膜技术在电子元器件、集成光学、电子技术、红外技术、激光技术、航天技术和光学仪器等许多领域均得到了极为广泛的应用,不仅成为了一门独立的应用技术,而且成为了材料表面改性和提高某些工艺水平的重要手段。
许多国家对薄膜材料和薄膜技术的研究开发极为重视,称之为“腾飞的薄膜产业”,并且每年均要举行多次国际会议。
最早应用薄膜技术的领域要算光学领域,早在1817年夫琅禾费就用酸蚀方法制成了光学上的减反射膜。
1930年,由于真空蒸发设备出现使薄膜大量地应用于光学领域。
近代的彩色电视、彩色摄影机、太阳能电池、激光器、集成光学等均离不开薄膜技术,大部分光学仪器或光电装置也均离不开光学薄膜。
利用薄膜的光学性能,可改变元件反射率、吸收率与透射率,实现光束分束、并束、分色、偏振、位相调整等,使某光谱带通或阻滞等。
薄膜技术应用领域很广泛,由于高精尖的制造技术、跨学科的综合设计与严格科学的实际应用,使薄膜技术应用在高新技术领域、信息、生物、航空、航天、新能源等前沿领域中显示越来越重要的地位。
薄膜技术与测量2

r = r1 + r2e
2 iδ 1
+ r3e
2 i (δ 1 +δ 2 )
+ r4e
2 i (δ 1 +δ 2 +δ 3 )
如果膜层没有吸收那么各个界面的振幅反射系数为实数
η0 η1 η1 η2 r1 = , r2 = , η0 + η1 η1 + η2 η 2 η3 η3 η 4 , r4 = r3 = η 2 + η3 η3 + η 4
所以: 所以:
M 21 E=+ M 12
从M=pqp可以推广到任意多层的对称膜系在数学上 可以推广到任意多层的对称膜系在数学上 都可以用一个单层膜的特征矩阵所表示。 都可以用一个单层膜的特征矩阵所表示。 例如:M=h(u(v(pqp)v)u)h 例如:
最常用的周期膜系如: 最常用的周期膜系如:M=HLHLHLHLHLH 一方面表示为: 一方面表示为 也可表示为: 也可表示为: M=H(L(H(L(H)L)H)L)H M=H/2(H/2 L H/2)5H/2 ( H/2 L H/2是一个对称单元 是一个对称单元
对于以中间一层为中心, 两边对称安置的多层膜, 对于以中间一层为中心 , 两边对称安置的多层膜 , 却 具有单层膜特征矩阵的所有特点, 具有单层膜特征矩阵的所有特点 , 在数学上存在着一个等 效层。 效层。 以pqp为例说明对称膜系在数学上存在一个等效折射率的 为例说明对称膜系在数学上存在一个等效折射率的 概念。这个称膜系的特征矩阵为: 概念。这个称膜系的特征矩阵为:
反射系数 分别为: 分别为:
η0 r1 = η0 η r3 = 2 η2
η1 η1 η 2 = 0 . 16 , r2 = = 0 . 16 , + η1 η1 + η 2 η3 η η4 = 0 . 07 , r4 = 3 = 0 . 04 + η3 η3 + η4
紫外可见分光光度计测试薄膜的反射率原理

紫外可见分光光度计(UV-Vis分光光度计)是一种用途广泛的光学仪器,可用于测量物质对紫外和可见光的吸收和反射率。
在材料科学和化学领域,紫外可见分光光度计被广泛应用于测试薄膜的反射率。
本文将探讨紫外可见分光光度计测试薄膜反射率的原理。
1. 紫外可见分光光度计紫外可见分光光度计是一种利用分光仪原理,测量材料吸收或透射光的仪器。
它可以在紫外、可见光范围内测量样品对特定波长光的吸收或反射率。
2. 薄膜反射率测试薄膜反射率是指薄膜表面对入射光的反射能力。
通常使用紫外可见分光光度计来测试薄膜在不同波长下的反射率,以评估薄膜的光学性能。
3. 反射率测试原理在使用紫外可见分光光度计测试薄膜反射率时,通常会将薄膜样品固定在样品舱中,然后利用分光光度计发出特定波长的光,经过样品后被探测器检测。
根据探测器接收到的光强,计算出薄膜在该波长下的反射率。
4. 正弦光束法一种常用的测试薄膜反射率的方法是正弦光束法。
该方法通过调节入射角度和光路长度,使得探测器能够测量薄膜在不同入射角度下的反射率。
这样可以得到薄膜在不同波长和入射角度下的反射率曲线。
5. 测量注意事项在进行薄膜反射率测试时,需要注意样品的制备和处理,确保样品表面平整、无气泡和杂质。
另外,还需要校准仪器,选择合适的波长范围和入射角度,以获得准确的反射率数据。
6. 应用领域薄膜反射率测试在光学材料、太阳能电池、涂料、光学薄膜等领域都有广泛应用。
通过测试薄膜的反射率,可以评估其光学性能,为材料研发和生产提供重要的数据支持。
在紫外可见分光光度计测试薄膜的反射率原理中,正弦光束法是一种常用的测试方法,通过调节入射角度和光路长度,测量薄膜在不同入射角度下的反射率,得到反射率曲线。
在进行测试时,需要注意样品制备和处理,以及仪器的校准和参数选择,以获得准确的反射率数据。
薄膜反射率测试在光学材料、太阳能电池、涂料等领域的应用价值巨大,为材料研发和生产提供重要的数据支持。
紫外可见分光光度计在测试薄膜反射率时,除了使用正弦光束法外,还可以采用其他方法进行测试,例如准直束法、全反射法、矢量法等。
光学薄膜折射率和厚度测试技术及研究

e l l i p s o m e t r y i s u s e d t o s e t t h e p r i m a r y s t a n d a r d o f o p t i c a l f i l m r e f r a c t i v e i n d e x a n d t h i c k n e s s
硕{ 一 论文
光学薄膜折射率和厚度测试技术及研究
毋响着各种新型薄膜器件和技术在新型武器装备上的应) I I . 而在国外,美国和英国已建立了光学薄膜折射率及厚度标准装置,美国的 . J . A . W o o la m公司和法国的 J Y公司生产的测量薄膜折射率及厚度的椭偏仪更是处于世
各向异性材料的测量等,并对这些测试结果进行了详尽的数据分析。
1 . 4 技术关键
光学薄膜折射率及厚度测试的难点及技术关键有以下几点: 1 ) 由于椭偏仪系统测试的直接值是甲和△, 而要获得光学薄膜折射率及厚度 值,必须先建立一个模型,由这个模型的预设值和实际测量值进行拟合, 通过计算机解超越方程从而得到折射率和厚度值。因此, 模型的建立是至
c o m m o n l y u s e d i n t h e w o r l d , a me t h o d w h i c h d e r i v e d f r o m v a r i a b l e a n g l e s p e c t r o s c o p i c
在以上参数中,薄膜的反射比、透射比标准我们已在 “ 八五”期间完成。而其他参数 目
前还没有标准, 例如折射率和厚度, 这些参数对薄膜的设计和工艺制造都是不可缺少的。 薄膜技术和器件的广泛应用, 推动着薄膜测试技术的发展, 同时面对武器装备的不 断更新和发展, 对提高薄膜的性能、评价膜系的优劣, 并对己有的测试仪器进行量值统 一提出了更高的要求。 在这方面国外研究起步较早,发展很快,加之先进的加工手段和
光学薄膜的反射率与透过率

光学薄膜的反射率与透过率光学薄膜是一种应用于光学器件中的特殊薄膜材料,它具有调节光的传输和反射特性的功能。
在光学领域中,人们经常关注的是光的反射和透过过程,而薄膜材料的反射率与透过率是评估其性能的重要指标。
一、反射率的定义和影响因素反射率是指入射光束中被反射的光的强度与入射光束中的光强度之比。
在光学薄膜中,反射率的大小受材料的光学性质和薄膜结构的影响。
1. 光学性质的影响不同材料对于不同波长的光具有不同的吸收和折射特性,导致反射率的差异。
例如,某种材料对于可见光的吸收较强,其反射率可能会较高。
2. 薄膜结构的影响薄膜材料经过特定的制备过程,形成了一定的结构。
该结构由多层薄膜组成,每一层材料的厚度和折射率不同。
通过调节薄膜层的数量和厚度,可以实现对反射率的控制。
当光束穿过薄膜时,会发生多次反射和透射,薄膜的结构能够影响光束的合成效果,从而改变反射率。
二、透过率的定义和影响因素透过率是指入射光束中通过薄膜透过的光的强度与入射光束中的光强度之比。
与反射率类似,透过率也受光学性质和薄膜结构的影响。
1. 光学性质的影响与反射率类似,光学薄膜材料对于不同波长的光具有不同的吸收和折射特性,从而影响透过率。
有些薄膜材料较为透明,可使大部分光束透过,其透过率较高。
2. 薄膜结构的影响薄膜的结构也会对透过率产生影响。
通过调节薄膜层的数量和厚度,光在穿过薄膜的过程中会发生多次反射和透射。
当薄膜的结构能够使透射光束的干涉衰减,透过率会降低。
相反,如果薄膜结构使透射光束的干涉增强,透过率会增加。
三、应用和优化光学薄膜的反射率与透过率在实际应用中有着广泛的用途。
以下是一些示例:1. 光学镀膜光学镀膜是应用最广泛的光学薄膜技术之一。
通过镀膜技术,可以在光学器件上制造具有特殊反射和透射特性的薄膜。
例如,将光学薄膜施加于镜片上,可以增加镜片的反射率,提高光学设备的工作效率。
2. 光学滤波利用光学薄膜的反射率和透过率特性,可以设计出各种滤波器。
光学薄膜技术答案

光学薄膜技术答案
光学薄膜技术是一种通过在材料表面上沉积一层或多层薄膜,
以改变光的传播和反射特性的技术。
以下是对光学薄膜技术的详细
解释:
1. 薄膜材料选择:光学薄膜技术使用的薄膜材料通常是具有特
定光学性质的材料,如二氧化硅(SiO2)、二氧化钛(TiO2)等。
选择合适的材料取决于所需的光学特性和应用。
2. 薄膜沉积方法:光学薄膜可以通过多种方法进行沉积,包括
物理气相沉积(PVD)、化学气相沉积(CVD)、溅射沉积等。
每种
方法都有其独特的优点和适用范围。
3. 薄膜设计和优化:在设计光学薄膜时,需要考虑所需的光学
性能,如透过率、反射率、折射率等。
通过调整薄膜的结构和厚度,可以实现特定的光学效果。
优化薄膜设计可以通过计算机模拟和实
验验证来实现。
4. 薄膜应用:光学薄膜技术在很多领域都有广泛的应用,包括
光学镜片、滤光片、反射镜、光学涂层等。
光学薄膜可以改善光学
仪器的性能,提高光学系统的效率和精确度。
5. 薄膜性能测试:对光学薄膜的性能进行测试是确保其质量和
性能的重要步骤。
常用的测试方法包括透过率测量、反射率测量、
折射率测量等。
这些测试可以通过使用专业的光学测量仪器来完成。
总而言之,光学薄膜技术是一种通过在材料表面上沉积特定薄
膜来改变光的传播和反射特性的技术。
它涉及薄膜材料选择、沉积
方法、设计和优化、应用以及性能测试等方面。
这项技术在光学领
域有着广泛的应用,并为光学仪器和系统的性能提供了重要的改进
和优化。
15光学薄膜透、反射率的常用测量方法

I Ix I y
偏振棱镜的测试方法
图〔a放置:
IIT
x s IyT
p
/I
T
I
(
I
TI
T
)
/I
xs
yp
图〔b放置:
T
(IT
IT
x P
y s)/I
Iy
Ix
T
T
T
T
T
(T
P
s)
P
s
I
对自然光透射率
1
1
T (T
T
TT)
P
s) (
按测试原理不同划分为:单色仪分光光度计和干涉型光谱测试系统;
➢单色仪型分光光度计原理
光源
照明光
学系统
单
单
色
仪
样品池
色
仪
传感器
处理
系统
• 光源:稳压电源、可见<钨丝灯或卤钨灯>、紫外<氙灯>、红外<卤钨
灯>;
• 照明系统:光束整形与会聚;
• 单色仪:由色散原件、狭缝机构以及色散原件的扫描驱动;光栅和棱镜
样品形状和尺寸的影响,一部分测量光没有
经过样品,需要选择合适的小孔光阑.
• 大气吸收对测量结果的影响,二氧化碳吸收
带水蒸气的吸收带回对测量结果带来较大
影响.
• 样品楔角对测量结果的影响,锲形的测试样
品会影响测量精度.
• 测试样品厚度对测试结果的影响,较厚的高
折射率基片会使光束在接受器光敏面的汇
分光光度计中影响测量的因素:
➢ 特点
需要2次测量,测量速度慢;