光学薄膜透、反射率常用测量方法
光学元件的制备与性能测试

光学元件的制备与性能测试光学元件是现代光学领域中的重要组成部分。
它们广泛应用于成像系统、激光器、光纤通信和其他领域。
在光学元件的制备与性能测试方面,科技工作者们不断推进技术水平,旨在提高光学元件的品质和性能,提高光学元件在实际应用中的效能。
制备光学元件的技术主要包括制造工艺和材料选择。
目前,常用的光学元件制造工艺主要有光学薄膜沉积、离子束抛光和3D打印等。
各种工艺各有特点,应根据不同的需求进行选择。
光学薄膜沉积是一种制备光学元件的常用工艺。
它是在光学元件的表面沉积一层高反射率或低反射率的薄膜,使光能够更好地进入或退出元件中。
该技术具有高效、规则性好、成本低等特点,常用于抗反射膜、滤光器等光学元件的制作。
离子束抛光(IBF)是一种高度自动化的加工技术,可用于制造高精度光学元件,并具有优异的光学性能。
IBF的加工速度快,表面质量高,加工精度高,是一种十分理想的磨削、抛光、铣削和雕刻工艺。
3D打印技术也常用于光学元件的制造。
该技术在光学领域中被称为“数字式制造技术”,通常采用定向光固化、粉末烧结和光束材料沉积等多种方法进行制造。
与传统加工方法相比,3D打印技术具有设计自由度高、加工周期短、生产成本底等特点。
除了制造工艺外,材料的选择也对光学元件的性能和使用寿命产生着重要影响。
常用的光学材料包括玻璃、石英、单晶材料和纳米材料。
玻璃和石英是光学元件中常用的材料,晶体材料和纳米材料的使用范围相对较窄,主要用于特殊应用。
光学元件的性能测试是评价其品质和性能的重要手段。
性能测试的方法主要包括光学测试和物理测试。
常用的光学测试方法有透射率测量、折射率测量、反射率测量、光谱测量、激光输出测量等。
透射率、折射率和反射率是光学元件性能测试中最基本的参数,必须精确可靠地测量。
光谱测量可用于分析光学元件的光学特性和机理,激光输出测量是激光器性能测试中的重要内容。
物理测试主要包括强度测试、温度测试和湿度测试等。
强度测试是测试光学元件的耐用程度、物理强度和耐冲击性。
薄膜技术与测量2

r = r1 + r2e
2 iδ 1
+ r3e
2 i (δ 1 +δ 2 )
+ r4e
2 i (δ 1 +δ 2 +δ 3 )
如果膜层没有吸收那么各个界面的振幅反射系数为实数
η0 η1 η1 η2 r1 = , r2 = , η0 + η1 η1 + η2 η 2 η3 η3 η 4 , r4 = r3 = η 2 + η3 η3 + η 4
所以: 所以:
M 21 E=+ M 12
从M=pqp可以推广到任意多层的对称膜系在数学上 可以推广到任意多层的对称膜系在数学上 都可以用一个单层膜的特征矩阵所表示。 都可以用一个单层膜的特征矩阵所表示。 例如:M=h(u(v(pqp)v)u)h 例如:
最常用的周期膜系如: 最常用的周期膜系如:M=HLHLHLHLHLH 一方面表示为: 一方面表示为 也可表示为: 也可表示为: M=H(L(H(L(H)L)H)L)H M=H/2(H/2 L H/2)5H/2 ( H/2 L H/2是一个对称单元 是一个对称单元
对于以中间一层为中心, 两边对称安置的多层膜, 对于以中间一层为中心 , 两边对称安置的多层膜 , 却 具有单层膜特征矩阵的所有特点, 具有单层膜特征矩阵的所有特点 , 在数学上存在着一个等 效层。 效层。 以pqp为例说明对称膜系在数学上存在一个等效折射率的 为例说明对称膜系在数学上存在一个等效折射率的 概念。这个称膜系的特征矩阵为: 概念。这个称膜系的特征矩阵为:
反射系数 分别为: 分别为:
η0 r1 = η0 η r3 = 2 η2
η1 η1 η 2 = 0 . 16 , r2 = = 0 . 16 , + η1 η1 + η 2 η3 η η4 = 0 . 07 , r4 = 3 = 0 . 04 + η3 η3 + η4
DLC薄膜制备和检测技术综述

文献综述DLC薄膜的制备和检测技术综述学院光电学院学科光学工程学号1101210021姓名薛俊2013年6月18日前言20世纪70年代初,Aisenberg[1]和E.Gspenc[2]分别次采用离子束沉积技术(IBD)和碳气相离子束增强沉积(IBED)技术制备了绝缘碳膜,命名该膜为DLC[1]。
20世纪70年代末,前苏联研制的DLC膜的硬度已经达到15000(维氏硬度)[3]。
DLC薄膜具有生产工艺简单,性能优良等特点。
20世纪80年代中期,在世界范围内掀起了研究、制备、开发和应用DLC膜的热潮。
厚度为100μm、表面粗糙度<10nm的DLC膜己经被美国通用原子公司(GA)利用PECVD制造出来[3]。
我国在制备DLC膜研究、应用方面也去得了长足的进展,不过与发达国家相比,差距还是存在的。
现在DLC膜还有很多问题存在争议或尚未解决。
这也问题严重制约了DLC膜的研究发展,现在,随着DLC制备技术的日益完善以及社会对DLC膜的需求量的增加,DLC 膜的应用研究价值也日益凸显。
1 DLC薄膜概况1971年德国的Aisenberg 采用碳离子束首次制备出了具有金刚石特征的非晶态碳膜,由于所制备的薄膜具有与金刚石相似的优异性能,Aisenberg于1973年首次把它称之为类金刚石(DLC)膜[1]。
DLC膜有着和金刚石几乎一样的性质,如高硬度、耐磨损、高表面光洁度、高电阻率、优良的场发射性能,高透光率及化学惰性等,它的产品广泛应用在机械、电子、光学和生物医学等各个领域。
尤其在光学领域,该技术在光学薄膜制造及其应用方面, 突破了大面积、高均匀性、高透射比、抗激光兼容的红外减反射膜镀制关键技术, 并在军事和民用上得以应用。
DLC膜的沉积温度低、表面平滑,具有比金刚石膜更高的性价比,且在相当广泛的领域内可以代替金刚石膜,所以自80年代以来一直是研究的热点。
碳是类金刚石膜的主要成分。
碳元素有3种同素异形体,即金刚石、石墨和各种无定形碳。
紫外可见分光光度计测试薄膜的反射率原理

紫外可见分光光度计(UV-Vis分光光度计)是一种用途广泛的光学仪器,可用于测量物质对紫外和可见光的吸收和反射率。
在材料科学和化学领域,紫外可见分光光度计被广泛应用于测试薄膜的反射率。
本文将探讨紫外可见分光光度计测试薄膜反射率的原理。
1. 紫外可见分光光度计紫外可见分光光度计是一种利用分光仪原理,测量材料吸收或透射光的仪器。
它可以在紫外、可见光范围内测量样品对特定波长光的吸收或反射率。
2. 薄膜反射率测试薄膜反射率是指薄膜表面对入射光的反射能力。
通常使用紫外可见分光光度计来测试薄膜在不同波长下的反射率,以评估薄膜的光学性能。
3. 反射率测试原理在使用紫外可见分光光度计测试薄膜反射率时,通常会将薄膜样品固定在样品舱中,然后利用分光光度计发出特定波长的光,经过样品后被探测器检测。
根据探测器接收到的光强,计算出薄膜在该波长下的反射率。
4. 正弦光束法一种常用的测试薄膜反射率的方法是正弦光束法。
该方法通过调节入射角度和光路长度,使得探测器能够测量薄膜在不同入射角度下的反射率。
这样可以得到薄膜在不同波长和入射角度下的反射率曲线。
5. 测量注意事项在进行薄膜反射率测试时,需要注意样品的制备和处理,确保样品表面平整、无气泡和杂质。
另外,还需要校准仪器,选择合适的波长范围和入射角度,以获得准确的反射率数据。
6. 应用领域薄膜反射率测试在光学材料、太阳能电池、涂料、光学薄膜等领域都有广泛应用。
通过测试薄膜的反射率,可以评估其光学性能,为材料研发和生产提供重要的数据支持。
在紫外可见分光光度计测试薄膜的反射率原理中,正弦光束法是一种常用的测试方法,通过调节入射角度和光路长度,测量薄膜在不同入射角度下的反射率,得到反射率曲线。
在进行测试时,需要注意样品制备和处理,以及仪器的校准和参数选择,以获得准确的反射率数据。
薄膜反射率测试在光学材料、太阳能电池、涂料等领域的应用价值巨大,为材料研发和生产提供重要的数据支持。
紫外可见分光光度计在测试薄膜反射率时,除了使用正弦光束法外,还可以采用其他方法进行测试,例如准直束法、全反射法、矢量法等。
光学薄膜折射率和厚度测试技术及研究

e l l i p s o m e t r y i s u s e d t o s e t t h e p r i m a r y s t a n d a r d o f o p t i c a l f i l m r e f r a c t i v e i n d e x a n d t h i c k n e s s
硕{ 一 论文
光学薄膜折射率和厚度测试技术及研究
毋响着各种新型薄膜器件和技术在新型武器装备上的应) I I . 而在国外,美国和英国已建立了光学薄膜折射率及厚度标准装置,美国的 . J . A . W o o la m公司和法国的 J Y公司生产的测量薄膜折射率及厚度的椭偏仪更是处于世
各向异性材料的测量等,并对这些测试结果进行了详尽的数据分析。
1 . 4 技术关键
光学薄膜折射率及厚度测试的难点及技术关键有以下几点: 1 ) 由于椭偏仪系统测试的直接值是甲和△, 而要获得光学薄膜折射率及厚度 值,必须先建立一个模型,由这个模型的预设值和实际测量值进行拟合, 通过计算机解超越方程从而得到折射率和厚度值。因此, 模型的建立是至
c o m m o n l y u s e d i n t h e w o r l d , a me t h o d w h i c h d e r i v e d f r o m v a r i a b l e a n g l e s p e c t r o s c o p i c
在以上参数中,薄膜的反射比、透射比标准我们已在 “ 八五”期间完成。而其他参数 目
前还没有标准, 例如折射率和厚度, 这些参数对薄膜的设计和工艺制造都是不可缺少的。 薄膜技术和器件的广泛应用, 推动着薄膜测试技术的发展, 同时面对武器装备的不 断更新和发展, 对提高薄膜的性能、评价膜系的优劣, 并对己有的测试仪器进行量值统 一提出了更高的要求。 在这方面国外研究起步较早,发展很快,加之先进的加工手段和
用透射法测量单层薄膜的折射率

文章编号:100525630(2007)0620090205用透射法测量单层薄膜的折射率Ξ蒋卫敏1,潘雪丰2,陶卫东2(1.宁波大学科学技术学院,浙江宁波315211;2.宁波大学理学院,浙江宁波315211) 摘要:根据单层薄膜透射率的表达式,提出了一种用透射法测量薄膜折射率的新方法。
按照该方法,通过测量p 光和s 光在相同入射角下的透射率,可以计算得到薄膜的折射率。
在测量中考虑了影响测量结果的两个方面,从而减少了实验误差。
在波长为532nm 的激光照射下,采用该法测得MgF 2薄膜的折射率为1.379±0.005,相对误差小于0.4%。
关键词:单层薄膜;折射率;透射率中图分类号:O 436.3 文献标识码:AMeasuring the refraction index of single thin film by transmission methodJIANG Wei 2min 1,PAN Xue 2feng 2,TAO Wei 2dong 2(1.College of Science and Technology ,Ningbo University ,Ningbo 315211,China ;(2.Faculty of Science ,Ningbo University ,Ningbo 315211,China ) Abstract :Based on the expression of transmittance of single thin film ,we provided a new way to measure refractive index of single thin film .According to the method ,the transmittance of the p 2polarized light and the s 2polarized light was measured at the same angle ,then worked out the solution of the refractive index .At the experiment ,two aspects which influenced the measuring result had been considered ,consequently reduced the experimental error .It was found out that the refraction index of MgF 2thin film was 1.379±0.005at the wavelength of 532nm ,and the relative error was less than 0.4%.Key words :single thin film ;reflectivity ;transmittance1 引 言近年来,在光电子技术领域中,光学薄膜的制备与研究已引起了人们越来越多的关注[1~3]。
现代光学薄膜技术pdf

现代光学薄膜技术pdf
现代光学薄膜技术是指利用薄膜材料和相关工艺制备具有特定光学性能的薄膜结构,以满足不同应用领域对光学特性的要求。
它在光学元件制造、光学涂层、光学器件等领域具有广泛应用。
光学薄膜技术主要包括以下几个方面:
1.薄膜材料选择:根据不同的光学要求,选择合适的材料作为薄膜的基底或涂层材料。
常用的薄膜材料包括金属、氧化物、氟化物、硅等。
2.薄膜设计:通过光学薄膜设计软件进行光学薄膜的设计,确定所需的反射、透射、吸收等光学性能。
设计时需要考虑波长范围、入射角度、偏振状态等因素。
3.薄膜制备:常用的薄膜制备技术包括物理气相沉积(PVD)、化学气相沉积(CVD)、溅射、离子束沉积等。
这些技术可用于在基底表面沉积薄膜材料,形成所需的光学性能。
4.薄膜性能测试:对制备好的光学薄膜进行性能测试,包括反射率、透过率、吸收率、膜层厚度等参数的测量。
常用的测试方法有分光反射光谱法、椭偏仪法等。
现代光学薄膜技术广泛应用于光学镜片、滤光片、
透镜、激光器、光纤通信等领域。
它可以改变光的传播和相互作用方式,实现对光的控制和调节,提高光学元件的性能和功能,满足不同应用的需求。
光学薄膜透反射率的常用测量方法

可以
可以
14
光谱分析测试系统-反射率的测量
•
•
•
•
反射率的测量不如透射率测量普及;
透明带内:R=1-T;
吸收带内:R=1-T-A;
对于吸收膜系或是对损耗敏感的激光高反射膜来
说,反射测量不可少;
15
光谱分析测试系统-反射率的困难
• 不容易找到在很宽波段范围内具有100%反射率性能长期
稳定的参考样品;
I Ix I y
偏振棱镜的测试方法
图(a)放置:
IIT
x s IyT
p
/I
T
I
(
I
TI
T
)
/I
xs
yp
11
图(b)放置:
T
(IT
IT
x P
y s)/I
Iy
Ix
T
T
T
T
T
(T
P
s)
P
s
I
对自然光透射率
1
1
T (T
T
TT)
P
• 偏振光在可见光和近红外光的差异
• 光斑位置的影响
30
光谱透射、反射特性是光学薄膜器件最
基本的光学特性,因此光谱仪也是薄膜
器件检测中最常用到的检测设备。光谱
测试分析时一定要仔细考虑样品的形状、
大小、光谱特性等对测试结果的影响。
31
测量样品口径的影响:当样品小于光斑尺寸(1cm2),采用光阑限制;
测试样品的厚度:对于较厚的样品在参考光路中也要放入等厚样品
测试样品楔形角影响:光束尽量准直+实用大口径的积分球探测;