柴诚敬化工原理课后答案(01)第一章 流体流动
化工原理课后习题答案第一章流体流动答案

第一章 流体流动习题解答1.解:(1) 1atm=101325 Pa=760 mmHg真空度=大气压力—绝对压力,表压=绝对压力—大气压力 所以出口压差为p =461097.8)10082.0(10132576.00⨯=⨯--⨯N/m 2(2)由真空度、表压、大气压、绝对压之间的关系可知,进出口压差与当地大气压无关,所以出口压力仍为41097.8⨯Pa 2.解: T=470+273=703K ,p=2200kPa混合气体的摩尔质量Mm=28×0.77+32×0.065+28×0.038+44×0.071+18×0.056=28.84 g/mol混合气体在该条件下的密度为:ρm=ρm0×T0T×pp0=28.8422.4×273703×2200101.3=10.858 kg/m33.解:由题意,设高度为H 处的大气压为p ,根据流体静力学基本方程,得 dp=-ρgdH大气的密度根据气体状态方程,得 ρ=pMRT根据题意得,温度随海拔的变化关系为 T=293.15+4.81000H代入上式得ρ=pMR (293.15-4.8×10-3H )=-dpgdh移项整理得dpp=-MgdHR293.15-4.8×10-3H对以上等式两边积分,101325pdpp=-0HMgdHR293.15-4.8×10-3H所以大气压与海拔高度的关系式为 lnp101325=7.13×ln293.15-4.8×10-3H293.15即:lnp=7.13×ln1-1.637×10-5H+11.526(2)已知地平面处的压力为101325 Pa ,则高山顶处的压力为 p 山顶=101325×330763=45431 Pa将p 山顶代入上式ln 45431=7.13×ln1-1.637×10-5H+11.526 解得H =6500 m ,所以此山海拔为6500 m 。
化工原理课后习题答案

第一章流体流动1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。
已知该地区大气压强为 98.7×103 Pa。
解:由绝对压强 = 大气压强–真空度得到:设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa=8.54×103 Pa设备内的表压强 P表 = -真空度 = - 13.3×103 Pa2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥的油品,油面高于罐底 6.9 m,油面上方为常压。
在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm的钢制螺钉紧固。
若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力即P油≤σ螺解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺 = 39.03×103×3.14×0.0142×nP油≤σ螺得 n ≥ 6.23取 n min= 7至少需要7个螺钉4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。
已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/㎥。
试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。
分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1´和4-4´为等压面,2-2´和3-3´为等压面,且1-1´和2-2´的压强相等。
根据静力学基本方程列出一个方程组求解解:设插入油层气管的管口距油面高Δh在1-1´与2-2´截面之间P1 = P2 + ρ水银gR∵P1 = P4,P2 = P3且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h)联立这几个方程得到ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据1.0³×10³×1 - 13.6×10³×0.068 = h(1.0×10³-0.82×10³)h= 0.418m6. 根据本题附图所示的微差压差计的读数,计算管路中气体的表压强p。
化工原理天大柴诚敬02定

D —小室内径。
d R R D
2
29
一、压力与压力差的测量
如果双液压差计小室内液面差可忽略,则
p1 p2 ( A C ) gR
(1-17)
30
二、液位的测量
1- 容器
2-平衡器的小室
3- U管压差计
图1-7 压差法测量液位
31
三、液封高度的计算
设备的液封也是过程工业中经常遇到的问题, 设备内操作条件不同,采用液封的目的也就不 同。流体静力学原理可用于确定设备的液封高 度。具体见[例1-6]
1.3.2 流率与平均流速
39
一、流量
单位时间内流过任一流通截面的流体体积 称为体积流率(volume flow rate),习惯上亦称之 为体积流量。
40
一、流量
流量的表示方法: 体积流量,以qv,s表示,单位为m3/s。
质量流量,以qv,s 表示,单位为kg/s。
体积流量与质量流量的关系为
qm,s qv,s
41
二、平均流速
流速是空间位置的函数,我们称之为流体的 点速度。例如当流体流经一段管路时,由于流体 存在黏性,使得管截面上各点的速度不同。从而 由壁面至管中心建立起一个速度分布。在工程计 算时,通常采用平均速度来代替这一速度分布。
42
二、平均流速
平均速度
平均速度(bulk velocity)系指体积流量与流 通截面积之比,以u 表示,其单位为m/s。
v r dFn n dA
v r dFt t dA
8
第一章 流体流动
1.2 流体静力学 1.2.1 流体的受力 1.2.2 静止流体的压力特性
9
静止流体的压力特性
【精品】目前最全化工原理课后习题答案(钟理版)

uc 2
2
pa g (h z) 13600 9.81 0.76 1000 9.81 7 3.27 104 N
2. 虹吸管延长后, 假定管内液体仍保持连续状态, 在断面 1-1 和 2 -2 之间列机械能守恒式 得
,
,
u, 2 gz, 2
pc, pa gh
3. 管路流量不变, A- B 不变,压差计读数 R 亦不多变。管路水平放置, ZA -ZB = 0, 故
p A p B= A B=98.1N / m2
1- 5 在图示管路中水槽液面高度维持不变,管路中的流水视为理想流体,试求 ( 1)管路出口流速; ( 2)管路中 A、B、C 各点的压强(分别以 N/ ㎡和 m H 2 O 表示) ; ( 3 )讨论流体在流动过程中不同能量之间的转换。
uc 2 pc (W gzC ) 1000[5 g 3g 2 g ] 2 1000 3 9.81 2.943 104 N / m2 (-3m H 2O)
由于管内流速在( 1)中已经求出,从断面 1-1 至 A、 B、 C 各断面分别列机械能守恒式, 亦可求出各点的压强。 3. 相对于所取的基准,水槽内的总势能为 5gJ/kg,水槽从断面 1-1 流至断面 2-2,将全部势 能转化为动能。 水从断面 1-1 流至断面 A-A,获得动能
4
-2
R 。同理, 2
p0' ' gR ' gH ' ' gR ' g R gH g
R 2
R=
p0, -( , gR- gH) p0, -p0 3.51 104 = = =0.254m g g 1000 9.81 , , g- g- 13600 9.81- 2 2 2
化工原理上册课后习题及答案

第一章:流体流动二、本章思考题1-1 何谓理想流体?实际流体与理想流体有何区别?如何体现在伯努利方程上?1-2 何谓绝对压力、表压和真空度?表压与绝对压力、大气压力之间有什么关系?真空度与绝对压力、大气压力有什么关系?1-3 流体静力学方程式有几种表达形式?它们都能说明什么问题?应用静力学方程分析问题时如何确定等压面?1-4 如何利用柏努利方程测量等直径管的机械能损失?测量什么量?如何计算?在机械能损失时,直管水平安装与垂直安装所得结果是否相同?1-5 如何判断管路系统中流体流动的方向?1-6 何谓流体的层流流动与湍流流动?如何判断流体的流动是层流还是湍流?1-7 一定质量流量的水在一定内径的圆管中稳定流动,当水温升高时,Re将如何变化?1-8 何谓牛顿粘性定律?流体粘性的本质是什么?1-9 何谓层流底层?其厚度与哪些因素有关?1-10摩擦系数λ与雷诺数 Re 及相对粗糙度/ d 的关联图分为4个区域。
每个区域中,λ与哪些因素有关?哪个区域的流体摩擦损失hf与流速u的一次方成正比?哪个区域的hf 与u2成正比?光滑管流动时的摩擦损失hf与u的几次方成正比?1-11管壁粗糙度对湍流流动时的摩擦阻力损失有何影响?何谓流体的光滑管流动?1-12在用皮托测速管测量管内流体的平均流速时,需要测量管中哪一点的流体流速,然后如何计算平均流速?三、本章例题例 1-1如本题附图所示,用开口液柱压差计测量敞口贮槽中油品排放量。
已知贮槽直径 D 为 3m,油品密度为900kg/m3。
压差计右侧水银面上灌有槽内的油品,其高度为h1。
已测得当压差计上指示剂读数为R1 时,贮槽内油面与左侧水银面间的垂直距离为H1。
试计算当右侧支管内油面向下移动30mm 后,贮槽中排放出油品的质量。
解:本题只要求出压差计油面向下移动m p a30mm 时,贮槽内油面相应下移的高度,即可求出p a排放量。
HH1D hh1首先应了解槽内液面下降后压差计中指示剂读数的变化情况,然后再寻求压差计中油面下R1移高度与槽内油面下移高度间的关系。
化工原理上册课后习题及答案

第一章:流体流动二、本章思考题1-1 何谓理想流体?实际流体与理想流体有何区别?如何体现在伯努利方程上?1-2 何谓绝对压力、表压和真空度?表压与绝对压力、大气压力之间有什么关系?真空度与绝对压力、大气压力有什么关系?1-3 流体静力学方程式有几种表达形式?它们都能说明什么问题?应用静力学方程分析问题时如何确定等压面?1-4 如何利用柏努利方程测量等直径管的机械能损失?测量什么量?如何计算?在机械能损失时,直管水平安装与垂直安装所得结果是否相同? 1-5 如何判断管路系统中流体流动的方向?1-6何谓流体的层流流动与湍流流动?如何判断流体的流动是层流还是湍流?1-7 一定质量流量的水在一定内径的圆管中稳定流动,当水温升高时,Re 将如何变化? 1-8 何谓牛顿粘性定律?流体粘性的本质是什么? 1-9 何谓层流底层?其厚度与哪些因素有关?1-10摩擦系数λ与雷诺数Re 及相对粗糙度d / 的关联图分为4个区域。
每个区域中,λ与哪些因素有关?哪个区域的流体摩擦损失fh 与流速u 的一次方成正比?哪个区域的fh 与2u 成正比?光滑管流动时的摩擦损失fh 与u 的几次方成正比?1-11管壁粗糙度对湍流流动时的摩擦阻力损失有何影响?何谓流体的光滑管流动? 1-12 在用皮托测速管测量管内流体的平均流速时,需要测量管中哪一点的流体流速,然后如何计算平均流速? 三、本章例题例1-1 如本题附图所示,用开口液柱压差计测量敞口贮槽中油品排放量。
已知贮槽直径D 为3m ,油品密度为900kg/m3。
压差计右侧水银面上灌有槽内的油品,其高度为h1。
已测得当压差计上指示剂读数为R1时,贮槽内油面与左侧水银面间的垂直距离为H1。
试计算当右侧支管内油面向下移动30mm 后,贮槽中排放出油品的质量。
解:本题只要求出压差计油面向下移动30mm 时,贮槽内油面相应下移的高度,即可求出排放量。
首先应了解槽内液面下降后压差计中指示剂读数的变化情况,然后再寻求压差计中油面下移高度与槽内油面下移高度间的关系。
《化工原理》课本习题答案

《化工原理》课本习题答案第一章流体流动1 PA(绝)= 1.28×105 N/m2PA(表)= 2.66×104N/m22 W = 6.15吨3 F = 1.42×104NP = 7.77×104Pa4 H = 0.39m5 △P = 2041×105N/m26 P = 1.028×105Pa△h = 0.157m7 P(绝)= 18kPa H = 8.36m8 H = R PA> PB9 略10 P = Paexp[-Mgh/RT]11 u = 11.0m/s ; G = 266.7kg/m2sqm = 2.28kg/s12 R = 340mm13 qv = 2284m3/h14 τ= 1463s15 Hf = 0.26J/N16 会汽化1718 F = 4.02×103N19 略20 u2 = 3.62m/s ; R = 0.41m21 F = 151N22 v = 5.5×10-6m2/s23 =0.817 a = 1.0624 略25 P(真)= 95kPa ; P(真)变大26 Z = 12.4m27 P(表)= 3.00×105N/m228 qv = 3.39m3/h P1变小 P2变大29 qv = 1.81m3/h30 H = 43.8m31 τ= 2104s32 He = 38.1J/N33 qv =0.052m3/s=186m3/h34 qv1 = 9.7m3/h ; qv2 = 4.31m3/hqv3 = 5.39m3/h ; q,v3 = 5.39m3/h35 qvB/qvC = 1.31 ; qvB/qvC =1.05 ;能量损失36 P1(绝)=5.35×105Pa37 = 13.0m/s38 qv = 7.9m3/h39 qVCO2(上限)=3248l/h40 = 500 l/s ; τ=3×104PaF = 3×102N P = 150w41 he = 60.3J/kg42 τy = 18.84Pa μ∞ = 4.55Pa·s43 τy = 39.7Pa44 略第二章流体输送机械1 He = 15+4.5×105qV2He = 45.6J/N Pe = 4.5KW2 P = ρω2r2/2 ; Φ/ρg = u2/2g = 22.4J/N3 He = 34.6J/N ; η = 64%4 略5 qV = 0.035m3/s ; Pe = 11.5KW6 串联7 qV = 0.178m3/min ; qV, = 0.222m3/min8 会汽蚀9 安装不适宜,泵下移或设备上移10 IS80-65-160 或 IS100-65-31511 ηV = 96.6%12 不适用13 P = 33.6KW ; T2 = 101.0℃14 qV = 87.5m3/h ; 选W2第三章流体的搅拌1 略2 P = 38.7w ; P’ = 36.8w3 d/d1 = 4.64 ; n/n1 = 0.359 ; N/N1 = 100 第四章流体通过颗粒层的流动1 △φ = 222.7N/m22 △φ/L = 1084Pa/m3 V = 2.42m34 K = 5.26×10-4m2/s ; qe = 0.05m3/m25 A = 15.3m2 ; n = 2台6 略7 △V0 = 1.5L8 △V = 13L9 q = 58.4l/m2 ; τw = 6.4min10 τ = 166s ; τw = 124s11 K = 3.05×10-5m2/sVe = 5.06×10-2m3 ; V = 0.25m312 n’ = 4.5rpm ; L’/L = 2/3第五章颗粒的沉降和流态化1 ut = 7.86×10-4m/s ; ut’ = 0.07m/s2 dP = 88.8μm3 τ = 8.43×10-3s ; s = 6.75×10-5m4 dpmax = 3.6μm5 dpmin = 64.7μm ; ηP = 60%6 可完全分开7 ζRe2<488 η0 = 0.925 ; x出1 = 0.53x出2 = 0.27 ; x出3 = 0.20x出4 = 0 ; W出 = 59.9kg/day9 ε固 = 0.42 ; ε流 = 0.71 ; ΔФ = 3.14×104N/m210 略11 D扩 = 2.77m12 略第六章传热1 δ1 = 0.22m ; δ2 = 0.1m2 t1 = 800℃3 t1 = 405℃4 δ = 50mm5 (λ’-λ)/ λ = -19.7%6 略7 Q,/Q = 1.64 λ小的放内层8 a = 330W/m2*℃9 a = 252.5W/ m2*℃10 q = 3.69kw/m211 q1/q2 =112 w = 3.72×10-3kg/s ; w’=7.51×10-3kg/s13 Tg = 312℃14 Tw = 746K15 τ = 3.3hr16 ε A = 0.48 ; ε B = 0.4017 略18 热阻分率0.3%K’=49.0W/m2·℃ ; K,, = 82.1W/m2·℃19 w = 3.47×10-5kg/m·s ; tw = 38.7℃20 δ= 82mm21 a1 =1.29×104W/m2·℃ ; a,2 = 3.05×103W/m2·℃ ; R = 7.58*10-5m2·℃/W22 δ= 10mm ; Qmax = 11.3KW23 R = 6.3×10-3m2·℃/W24 n = 31 ; L = 1.65m25 L = 9.53m26 qm = 4.0kg/s ; A = 7.14m227 qm2 = 10.9kg/s ; n = 36 ; L = 2.06m ; q,m1 = 2.24kg/s28 qm = 0.048kg/s29 t2 = 76.5℃ ; t2 = 17.9℃30 t,2 = 98.2℃ ; 提高水蒸气压强T’=112.1℃31 qm1 = 1.24kg/s32 T,2 = 78.7℃ ; t,2 = 61.3℃33 T = 64.6℃ ; t2a = 123.1℃ ; t2b = 56.9℃34 t2 = 119℃35 τ = 5.58hr36 单壳层Δtm = 40.3℃ ; 双壳层Δtm’=43.9℃37 a = 781W/m2·℃38 L = 1.08m ; t2’=73.2℃39 NP = 2 ; NT = 114 ; L实 = 1.2L计 = 3.0m ; D = 460mm 第七章蒸发1 W = 1500kg/h ; w1 = 12.8% ; w2 = 18.8%2 Δt = 12.0℃3 A = 64.7m2 ; W/D = 0.8394 W = 0.417kg/s ; K = 1.88×103W/m2·℃ ; w’= 2.4%5 t1 = 108.6℃ ; t2 = 90.9℃ ; t3 = 66℃6 A1 = A2 = 9.55m2第八章吸收1 E=188.1Mpa;偏差0.21%2 G=3.1×10-3kgCO2/kgH2O3 Cmin=44.16mg/m3水;Cmin=17.51mg/m3水4 (xe-x)=1.19×10-5;(y-ye)=5.76×10-3 ;(xe-x)=4.7×10-6 ;(y-ye)=3.68×10-35 (y-ye)2/(y-ye)1=1.33 ; (xe-x)2/(xe-x)1=2.676 τ=0.58hr7 τ=1.44×106s8 Kya=54.9kmol/m3·h ; H OG=0.291m ;液相阻力分率15.1%9 N A=6.66×10-6kmol/s·m2 ; N A’=1.05×10-5kmol/(s·m2)10 略11 略12 NOG=13 略14 略15 x1=0.0113; =2.35×10-3 ;H=62.2m16 (1)H=4.61m;(2)H=11.3m17 Gmin=0.489kmol/m2·h ; x2=5.43×10-618 HA=2.8m ; HB=2.8m19 (1)HOG=0.695m;Kya=168.6kmol/m3·h;(2)w=4.36kmol/h20 y2=0.00221 η’=0.87;x1’=0.0032522 y2’=0.000519第九章精馏1 (1)α1=2.370 ;α2=2.596 ;(2)αm=2.4842 t=65.35℃; xA=0.5123 t=81.36℃ ; yA=0.18724 (1)NT=7; (2)V=20.3kmol/h; (3)D=47.4kmol; W=52.6kmol25 t=60℃; xA=0.188; xB=0.361; xC=0.45126 x(A-D) :0.030;0.153;0.581;0.237 y(A-D) :0.141;0.306;0.465;0.08527 D/F=0.4975;W/F=0.5025; xD(A-D):0.402;0.591;0.007;9.7×10-5 ;xW(A-D):1.4×10-5;0.012;0.690;0.29828 N=14.1 ; N1=7.9第十章气液传质设备1 EmV=0.7582 ET=41%3 N实=104 D=1.2m5 HETP=0.356m6 D=0.6m; △P/H=235.44Pa/m第十一章萃取1 (1)E=64.1kg;R=25.9kg;x=0.06;y=0.046 (2)kA=0.767;β=14.62 (1)E=92.2kg;R=87.8kg;yA=0.13; xA=0.15(2)E°=21.31kg;R°=78.69kg;yA°=0.77;xA°=0.163 (1)R=88.6kg;E=130.5kg;yA=0.0854;yS=0.862;yB=0.0526;xS=0.0746;xB=0.82 5 (2)S=119.1kg4 xA2=0.225 E1=125kg;RN=75kg;yA1=0.148;yS1=0.763;yB1=0.089;xSN=0.0672;xBN=0.9136 (1)S/B=24.9;(2)S/B=5.137 (1)Smin=36.47kg/h (2)N=5.1第十二章其它传质分离方法1 m=47.7kg2 t1=44.9℃3 a=138.3m2/g4 τB=6.83hr5 W3=0.0825;qm2=5920.3kg/h; JV1=0.0406kg/m2·s;JV2=0.0141kg/m2·s 第十三章热质同时传递的过程1 略2 (1)θ1=20℃; (2)t2=40℃;H=0.0489kg水/kg干空气3 H=0.0423kgH2O/kg干H24 (1)W=0.0156kgH2O/kg干空气(2)tw3=18.1℃5 t2=45.2℃;H2=0.026kg水/kg干气6 W=2.25kg水/kg干气7 P2=320.4kN/m28 Z=2.53m第十四章固体干燥1 =74.2%; =5.6%2 W水=0.0174kg水/kg干气; Q=87.6kJ/kg干气3 略4 (1)ΔI=1.25kJ/kg干气;(2)t2=55.9℃;(3)t2=54.7℃5 (1)t2=17.5℃;H2=0.0125kg水/kg干气 (2) =10.0%6 自由含水量=0.243kg水/kg干料结合水量=0.02kg水/kg干料。
化工原理(上册)—化工流体流动与传热第三版柴诚敬习题答案

化工原理(上册) - 化工流体流动与传热第三版柴诚敬习题答案第一章:引言习题1.1答案:该题为综合性问题,回答如下:根据流体力学原理,液体在容器中的自由表面是一个等势面,即在平衡时,液体表面上各点处的压力均相等。
所以整个液体处于静止状态。
习题1.2答案:该题为计算题。
首先,根据流速的定义:流体通过某个截面的单位时间内通过的体积与截面积之比,可得流速的公式为:v = Q / A,其中v表示流速,Q表示流体通过该截面的体积,A表示截面积。
已知流速v为10m/s,截面积A为0.5m²,代入公式计算得:Q = v × A = 10m/s × 0.5m² = 5m³/s。
所以,该管道内的流体通过的体积为5立方米每秒。
习题1.3答案:该题为基础性知识题。
流体静压头表示流体的静压差所能提供的相当于重力势能的高度。
根据流体的静压力与流体的高度关系可知,流体静压力可以通过将流体的重力势能转化为压力单位得到。
由于重力势能的单位可以表示为m·g·h,其中m为流体的质量,g为重力加速度,h为高度。
而流体的静压头就是将流体静压力除以流体的质量得到的,即流体静压力除以流体的质量。
所以,流体静压头是等于流体的高度。
第二章:流体动力学方程习题2.1答案:该题是一个计算题。
根据题意,已知流体的密度ρ为1.2 kg/m³,截面积A为0.4 m²,流速v为2 m/s,求流体的质量流量。
根据质量流量公式:Q = ρ × A × v,代入已知数值计算得:Q = 1.2 kg/m³ × 0.4 m² × 2 m/s = 0.96 kg/s。
所以,流体的质量流量为0.96 kg/s。
习题2.2答案:该题为综合性问题,回答如下:流体动量方程是描述流体运动的一个重要方程,其中包含了流体的质量流量、速度和压力等参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 流体流动流体的重要性质1.某气柜的容积为6 000 m 3,若气柜内的表压力为5.5 kPa ,温度为40 ℃。
已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、C H 4 1%,大气压力为 101.3 kPa ,试计算气柜满载时各组分的质量。
解:气柜满载时各气体的总摩尔数()mol 4.246245mol 313314.860000.10005.53.101t =⨯⨯⨯+==RT pV n 各组分的质量:kg 197kg 24.246245%40%4022H t H =⨯⨯=⨯=M n m kg 97.1378kg 284.246245%20%2022N t N =⨯⨯=⨯=M n mkg 36.2206kg 284.246245%32%32CO t CO =⨯⨯=⨯=M n m kg 44.758kg 444.246245%7%722CO t CO =⨯⨯=⨯=M n m kg 4.39kg 164.246245%1%144CH t CH =⨯⨯=⨯=M n m2.若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起,试求混合油的密度。
设混合油为理想溶液。
解: ()kg 120kg 606021t =+=+=m m m331221121t m 157.0m 7106083060=⎪⎪⎭⎫ ⎝⎛+=+=+=ρρm m V V V 33t t m m kg 33.764m kg 157.0120===V m ρ 流体静力学3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。
若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同? 解:(1)设备内绝对压力绝压=大气压-真空度= ()kPa 3.65Pa 1020103.8533=⨯-⨯(2)真空表读数真空度=大气压-绝压=()kPa 03.36Pa 103.651033.10133=⨯-⨯4.某储油罐中盛有密度为960 kg/m 3的重油(如附图所示),油面最高时离罐底9.5 m ,油面上方与大气相通。
在罐侧壁的下部有一直径为760 mm 的孔,其中心距罐底1000 mm ,孔盖用14 mm 的钢制螺钉紧固。
若螺钉材料的工作压力为39.5×106 Pa ,问至少需要几个螺钉(大气压力为101.3×103 Pa )?解:由流体静力学方程,距罐底1000 mm 处的流体压力为[](绝压)Pa 10813.1Pa )0.15.9(81.9960103.10133⨯=-⨯⨯+⨯=+=gh p p ρ 作用在孔盖上的总力为N 10627.3N 76.04π103.10110813.1)(4233a ⨯⨯⨯⨯⨯-==)-=(A p p F每个螺钉所受力为N 10093.6N 014.04π105.39321⨯=÷⨯⨯=F因此()(个)695.5N 10093.610627.3341≈=⨯⨯==F F n5.如本题附图所示,流化床反应器上装有两个U 管压差计。
读数分别为R 1=500 mm ,R 2=80 mm ,指示液为水银。
为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入习题5附图习题4附图一段水,其高度R 3=100 mm 。
试求A 、B 两点的表压力。
解:(1)A 点的压力()(表)Pa 101.165Pa 08.081.9136001.081.9100042汞3水A ⨯=⨯⨯+⨯⨯=+=gR gR p ρρ(2)B 点的压力()(表)Pa 107.836Pa 5.081.91360010165.1441汞A B ⨯=⨯⨯+⨯=+=gR p p ρ6.如本题附图所示,水在管道内流动。
为测量流体压力,在管道某截面处连接U 管压差计,指示液为水银,读数R =100 mm ,h =800 mm 。
为防止水银扩散至空气中,在水银面上方充入少量水,其高度可以忽略不计。
已知当地大气压力为101.3 kPa ,试求管路中心处流体的压力。
解:设管路中心处流体的压力为p 根据流体静力学基本方程式,A A p p '= 则 a ++p gh gR p ρρ=汞水()80.132kPaPa 1.08.9136008.08.91000103.1013=⨯⨯-⨯⨯-⨯=--=gRgh p p a 汞水ρρ7.某工厂为了控制乙炔发生炉内的压力不超过13.3 kPa (表压),在炉外装一安全液封管(又称水封)装置,如本题附图所示。
液封的作用是,当炉内压力超过规定值时,气体便从液封管排出。
试求此炉的安全液封管应插入槽内水面下的深度h 。
解:3.13=gh 水ρ()()m 36.1m 8.9100010003.133.13=⨯⨯==g h 水ρ流体流动概述8. 密度为1800 kg/m 3的某液体经一内径为60 mm 的管道输送到某处,若其平均流速为0.8 m/s ,求该液体的体积流量(m 3/h )、质量流量(kg/s )和质量通量[kg/(m 2·s)]。
习题7附图习题6附图解: m 14.8s m 360006.0414.38.04π3322h =⨯⨯⨯===d uuA V s kg 26.2s kg 100006.0414.38.04π22s =⨯⨯⨯===ρρd u uA w()()s m kg 800s m kg 10008.022⋅=⋅⨯==ρu G9.在实验室中,用内径为1.5 cm 的玻璃管路输送20 ℃的70%醋酸。
已知质量流量为10 kg/min 。
试分别用用SI 和厘米克秒单位计算该流动的雷诺数,并指出流动型态。
解:(1)用SI 单位计算查附录70%醋酸在20 ℃时,s Pa 1050.2m kg 106933⋅⨯==-μρ, 0.015m cm 5.1==d()m 882.0s m 1069015.04π60102b =⨯⨯⨯=u()5657105.21069882.0015.03b =⨯⨯⨯==-μρdu Re 故为湍流。
(2)用物理单位计算()s cm g 025.0cm g 10693⋅==μρ, cm 5.1=d ,s m c 2.88b ==u 5657025.0069.12.885.1b =⨯⨯==μρdu Re10.有一装满水的储槽,直径1.2 m ,高3 m 。
现由槽底部的小孔向外排水。
小孔的直径为4 cm ,测得水流过小孔的平均流速u 0与槽内水面高度z 的关系为:zg u 262.00=试求算(1)放出1 m 3水所需的时间(设水的密度为1000 kg/m 3);(2)又若槽中装满煤油,其它条件不变,放出1m 3煤油所需时间有何变化(设煤油密度为800 kg/m 3)? 解:放出1m 3水后液面高度降至z 1,则 ()m 115.2m 8846.032.1785.01201=-=⨯-=z z由质量守恒,得21d 0d M w w θ-+=,01=w (无水补充)20000.62w u A A A ρρ==(为小孔截面积)AZ M ρ= (A 为储槽截面积)故有 0262.00=+θρρd dz A gz A即θd AAgzdz 062.02-= 上式积分得 ))((262.022112100z z A A g -=θ()min 1.2s 4.126s 115.2304.0181.9262.0221212==-⎪⎭⎫ ⎝⎛⨯=11.如本题附图所示,高位槽内的水位高于地面7 m ,水从φ108 mm ×4 mm 的管道中流出,管路出口高于地面1.5 m 。
已知水流经系统的能量损失可按∑h f =5.5u 2计算,其中u 为水在管内的平均流速(m/s )。
设流动为稳态,试计算(1)A -A '截面处水的平均流速;(2)水的流量(m 3/h )。
解:(1)A - A '截面处水的平均流速在高位槽水面与管路出口截面之间列机械能衡算方程,得22121b12b2f 1122p p gz u gz u h ρρ++=+++∑ (1)式中 z 1=7 m ,u b1~0,p 1=0(表压) z 2=1.5 m ,p 2=0(表压),u b2 =5.5 u 2 代入式(1)得22b2b219.8179.81 1.5 5.52u u ⨯=⨯++ s m 0.3b =u(2)水的流量(以m 3/h 计)()h m 78.84s m 02355.0004.02018.0414.30.3332b2s ==⨯-⨯⨯==A u V习题11附图 习题12附图12.20 ℃的水以2.5 m/s 的平均流速流经φ38 mm ×2.5 mm 的水平管,此管以锥形管与另一φ53 mm ×3 mm 的水平管相连。
如本题附图所示,在锥形管两侧A 、B 处各插入一垂直玻璃管以观察两截面的压力。
若水流经A 、B 两截面间的能量损失为1.5 J/kg ,求两玻璃管的水面差(以mm 计),并在本题附图中画出两玻璃管中水面的相对位置。
解:在A 、B 两截面之间列机械能衡算方程22121b12b2f 1122p p gz u gz u h ρρ++=+++∑式中 z 1=z 2=0,s m 0.3b1=us m 232.1s m 2003.0053.020025.0038.05.222221b121b1b2=⎪⎭⎫⎝⎛⨯-⨯-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=d d u AA u u∑h f =1.5 J/kgkg J 866.0kg J 5.125.2232.1222f 2b12b2b221-=⎪⎪⎭⎫⎝⎛+-=+-=-∑h u u u p p ρ故mm 3.88m 0883.0m 81.9866.021===-gp p ρ 13.如本题附图所示,用泵2将储罐1中的有机混合液送至精馏塔3的中部进行分离。
已知储罐内液面维持恒定,其上方压力为1.0133⨯105 Pa 。
流体密度为800 kg/m 3。
精馏塔进口处的塔内压力为1.21⨯105 Pa ,进料口高于储罐内的液面8 m ,输送管道直径为φ68 mm ⨯4 mm ,进料量为20 m 3/h 。
料液流经全部管道的能量损失为70 J/kg ,求泵的有效功率。
解:在截面-A A '和截面-B B '之间列柏努利方程式,得2211221e 2f 22p u p u gZ W gZ h ρρ+++=+++∑ ()s m 966.1s m 004.02068.0414.33600204πkgJ 700m 0.8Pa 1021.1Pa 100133.1222f1125251=⨯-⨯====≈=-⨯=⨯=∑d VA V u hu Z Z p p ;;;;()222121e 21f 2p p u u W g Z Z h ρ--=++-+∑习题13附图习题14附图()()768.9WW 173800360020kg J 175kg J 704.7893.146.2kgJ 700.88.92966.1800100133.121.1e s e 25=⨯⨯===+++=⎥⎦⎤⎢⎣⎡+⨯++⨯-=W w N W e 14.本题附图所示的贮槽内径D =2 m ,槽底与内径d 0为32 mm 的钢管相连,槽内无液体补充,其初始液面高度h 1为2 m (以管子中心线为基准)。