同余的概念及基本性质
同余方程的求解方法与应用

同余方程的求解方法与应用同余方程是数论中的一个重要概念,它在密码学、编码理论等领域有广泛的应用。
本文将介绍同余方程的求解方法,并讨论其在实际问题中的应用。
一、同余方程的定义与性质同余方程是指形如ax ≡ b (mod m)的方程,其中a、b、m为已知的整数,x为未知数。
同余方程的求解即是要找到满足该方程的整数x的取值。
同余方程具有以下性质:1. 若a ≡ b (mod m),则对任意整数x,ax ≡ bx (mod m)。
2. 若ax ≡ ay (mod m),且a与m互素,则x ≡ y (mod m)。
二、求解同余方程的方法1. 穷举法:逐个尝试整数x的取值,验证是否满足方程。
如果方程有解,则解的集合可以表示为{x | x ≡ x0 (mod m)},其中x0为方程的一个解。
2. 欧拉定理:对于互素的整数a和m,有a^φ(m) ≡ 1 (mod m),其中φ(m)表示小于m且与m互素的正整数的个数。
如果b ≡ a^k (mod m),则可以将方程转化为ak ≡ b (mod m)来求解。
这样做的好处是可以将指数降低,从而简化计算。
3. 扩展欧几里得算法:对于一般的同余方程ax ≡ b (mod m),可以利用扩展欧几里得算法求解。
该算法给出了方程ax + my = d的解,其中d为a和m的最大公约数。
如果b是d的倍数,则方程有解,且解的个数为d个。
三、同余方程的应用1. 密码学:同余方程在密码学中有重要的应用。
例如,在RSA公钥加密算法中,同余方程用于对消息进行加密与解密。
通过选择合适的公钥和私钥,可以实现对消息的加密与解密操作。
2. 信号处理:同余方程可以应用于信号处理中的调频解调技术。
在调频通信系统中,利用同余方程可以进行频率的合成与解析,实现信号的调制与解调操作。
3. 编码理论:同余方程可以应用于编码理论中的纠错码设计。
通过求解一系列同余方程,可以构造出性能良好的纠错码,提高数据传输的可靠性。
同余的基本概念和性质

模相等的同余关系的运算性质
模相等的同余关系满足交换律和结合律 模相等的同余关系满足消去律 模相等的同余关系满足分配律 模相等的同余关系满足幂等律
同余的应用
同余在模方程中的应用
模方程的同余解法 同余在模方程中的应用实例 同余在模方程中的求解步骤 同余在模方程中的优势与局限性
同余在数论中的应用
整除理论:同余是整除理论中的重要概念,用于研究整数之间的除法关系。
● - 同余关系具有反身性,即任意整数a都与自身对模m同余,即a≡a(mod m)。 ● - 同余关系具有对称性,即如果a≡b(mod m),则b≡a(mod m)。 ● - 同余关系具有传递性,即如果a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。 ● - 对于任意整数a、b和c,若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。
同余的性质
模相等的同余关系
● 定义:如果两个整数a和b除以同一个正整数m的余数相同,则称a和b对模m同余,记作 a≡b(mod m)。
● 性质: - 同余关系具有反身性,即任意整数a都与自身对模m同余,即a≡a(mod m)。 - 同余关 系具有对称性,即如果a≡b(mod m),则b≡a(mod m)。 - 同余关系具有传递性,即如果 a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。 - 对于任意整数a、b和c,若a≡b(mod m)且 b≡c(mod m),则a≡c(mod m)。
同余的基本概念和性质
汇报人:XX
目录
同余的定义
同余的性质
01
02
同余的应用
同余的证明方法
03
04
同余的定义
什么是同余
同余的定义:两个整数除以某 个固定整数得到的余数相同, 则称这两个整数同余。
2.1 同余的概念与基本性质

2 同余同余是由大数学家高斯引入的一个概念.我们可以将它理解为“余同”,即余数相同.正如奇数与偶数是依能否被2整除而得到的关于整数的分类一样,考虑除以m (≥2)所得余数的不同,可以将整数分为m 类.两个属于同一类中的数相对于“参照物”m 而言,具有“余数相同”这个性质.这种为对比两个整数的性质,引入一个参照物的思想是同余理论的一个基本出发点.同余是初等数论中的一门语言,是一件艺术品.它为许多数论问题的表述赋予了统一的、方便的和本质的形式.2.1 同余的概念与基本性质定义 如果a 、b 除以m (≥1)所得的余数相同,那么称a 、b 对模m 同余,记作a ≡b (mod m ).否则,称a 、b 对模m 不同余,记作a b ≡(mod m ).性质1 a ≡b (mod m )的充要条件是|m a b -.性质2 若a ≡b (mod m ),c ≡d (mod m ),则a +c ≡b +d (mod m ),a -c ≡b -d (mod m ),ac ≡bd (mod m ). 证明 这些结论与等式的一些相关结论极其相似,它们都容易证明.我们只给出第3个式子的证明. 只需证明:|m ac bd -.因为ac -bd =ac -bc +bc -bd=(a -b )c +b (c -d )由条件|m a b -,|m c d -,知|m ac bd -.说明 与同余有关的许多结论都要用到性质1,事实上,很多数论教材中利用性质1来引入同余的定义.性质3 若a ≡b (mod m ),n 为正整数,则()mod n n a b m ≡.性质4 若a ≡b (mod 1m ),a ≡b (mod 2m ),则a ≡b (mod [1m ,2m ]).性质5 若ab ≡ac (mod m ),则()mod m b c a m ⎛⎫≡ ⎪ ⎪⎝⎭,. 在同余式两边约去一个数时,应将该数与m 的最大公因数在“参照物”中同时约去.性质6 如果(a ,m )=1,那么存在整数b ,使得ab ≡1(mod m ).这个b 称a 对模m 的数论倒数,记为()1mod a m -,在不会引起误解时常常简记为1a -.证明 利用贝祖定理,可知存在整数x 、y 使得ax +my =1.于是,|1m ax -,即()1mod ax m ≡,故存在符合条件的b . 说明 由数论倒数的定义,易知当(a ,m )=1时,()()11mod aa m ≡--.例1 求所有的素数p 、q 、r (p ≤q ≤r ),使得pq +r ,pq +2r ,qr +p ,qr +2p ,rp +q ,rp +2q 都是素数. 解:若p >2,则p 、q 、r 都是奇数,此时pq +r 是一个大于2的偶数,矛盾,故p =2.现在,数2q +r ,2q +2r ,qr +2,qr +4,2r +q ,2r +2q 都是素数.若q 、r 中有偶数,则qr +2为一个大于2的偶数,矛盾,故q 、r 都是奇素数.若q >3,则3qr .此时,若()1mod3qr ≡,则()20mod3qr ≡+,与qr +2为素数矛盾;若qr ≡2()mod3,则()40mod3qr ≡+,与qr +4为素数矛盾,故q =3.这样,数6+r ,6+2r ,3r +2,3r +4,2r +3,2r +9都是素数.若r ≠5,则()0mod5r ≡,但分别当1r ≡,2,3,4(mod5)时,对应地,数3r +2,3r +4,2r +9,6+r 为5的倍数,矛盾,故r =5.直接验证,可知它们满足条件,所求的素数为p =2,q =3,r =5.例2 设n 为大于1的正整数,且1!,2!,…,n !中任意两个数除以n 所得的余数不同.证明:n 是一个素数.证明:注意到,()!0mod n n ≡,而n =4时,有2!()3mod4≡!.因此,如果能够证明:当n 为大于4的合数,都有()()1!0mod n n ≡-,就能依题中的条件导出矛盾,从而证出n 为素数.事实上,若n 为大于4的合数,则可对n 作分解,变为下述两种情形.情形一 可写n =pq ,2≤p <q ,p 、q 为正整数,这时1<p <q <n -1,从而()|1!pq n -, 即()()1!0mod n n ≡-.情形二 当2n p =,p 为素数时,由n >4,知p ≥3,故11<p <2q <(n -1),从而p · (2p ) ()|1!n -,于是,()()1!0mod n n ≡-.综上可知,n 只能是素数.说明 反过来,当n 为素数时,并不能保证1!,2!,…,n !中任意两个数对模n 不同余.例如p =5时,()31mod5≡!!.例3 设整数x 、y 、z 满足()()()x y y z z x x y z ---=++. ①证明:x +y +z 是27的倍数.证明:考虑x 、y 、z 除以3所得的余数,如果x 、y 、z 中任意两个对模3不同余,那么()0120mod3x y z ≡≡++++,但是()()()3x y y z z x ---,这与①矛盾.现在x 、y 、z 中必有两个对模3同余,由对称性,不妨设()mod3x ≡,这时由①式知 3|x y z ++,于是 ()()2mod3z x y x x ≡≡≡-+-,这表明 ()mod3x y z ≡≡,从而由①式知 27|x y z ++.例4 是否存在19个不同的正整数,使得在十进制表示下,它们的数码和相同,并且这19个数之和为1999?解:此题需要用到一个熟知的结论:在十进制表示下,每个正整数与它的数码和对模9同余.(这个结论只需利用()101mod9k ≡即可得证)若存在19个满足条件的不同正整数,则由它们的数码和相同(设这个相同的数码和为k ),可知()199919mod9k ≡,故()1mod9k ≡.又这19个数之和为1999,故其中必有一个数不大于199919,即有一个数≤105,所以k ≤18.结合()1mod9k ≡,知k =1或10. 若k =1,则这19个数为1,10,100,…,和不可能为1999,所以,k =10.而当k =10时,最小的数码和为10的20个正整数是19,28,37,…,91,109,118,127,…,190,208.前面19个数之和为1990,故符合要求的19个正整数中必有一个≥208,此时这19个数之和≥208+(19+28+…+91)+(109+118+127+…+181)=2198>1999, 矛盾.所以不存在19个不同的整数满足条件.例5 设m 、n 、k 为正整数,n ≥m +2,k 为大于1的奇数,并且×21np k =+为素数, 2|21m p +.证明:()121mod n k p ≡-.证明:由条件知()221mod mp ≡-,而n ≥m +2,故12m +是12n n •-的因数,所以, ()()122211mod n t n p •≡--=(这里22n m t n •--=). 现在,由()21mod n k p •≡-,知()()111222211mod n n n n k p ••≡----=,结合上面的结论,即可得()121mod n k p ≡-.说明 本题的背景是讨论费马数(形如221m m F =+的数为费马数)的素因数的性质.例6 设m 为正整数,证明:存在整数a 、b 、k ,使得a 、b 都是奇数,而k ≥0,并且2011201122m a b k •=++. ①证明:①式等价于(在左边不小于右边的情形下)()201120112mod 2m a b =+. ② 我们先证明:满足②的奇数a 、b 是存在的.注意到,对任意奇数x 、y ,有()()111110910x y x y x x y y ⋯-=-+++,上式右边10910x x y y ⋯+++是11个奇数之和,它应为奇数,因此,()111120110mod 2x y ≡- ()2011mod 2x y ⇔≡.这表明:在2011mod 2的意义下,数20111,20113,…,20111121(-)是 数1,3,5,…,201121-的一个排列,从而,存在奇数0b ,使得()112011021mod 2b m ≡-.现在,取一个充分小的负奇数b ,使得 ()20110mod 2b b ≡,且1121m b --≥0,则 ()11112011021210mod 2m b m b ≡≡----,于是,令()1120112112m b a b k b ⎛⎫ ⎪⎝⎭--,,=,,,则符合①.所以,满足条件的a 、b 、k 存在.。
1.同余的概念及基本性质

第三章 同余§1 同余的概念及其基本性质定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作()\mod a b m ≡.甲 ()mod .a a m ≡(甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.)乙 若()mod ,a b m ≡则()mod .b a m ≡丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡⇔-证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是,()12,|.a b m q q m a b -=--反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是,()()1221.r r m q q a b -=-+-故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡±证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-戊 若()()1122mod ,mod ,a b m a b m ≡≡则()1212mod .a a bb m ≡ 证 因()()1122mod ,mod a b m a b m ≡≡,故1122|,|.m a b m a b --又因()()()1212111212211122,a a bb a b b a bb a a b b a b -=-+-=-+-故()12121212|,mod .m a a bb a a bb m -≡ 定理2 若()()11mod ,mod ,1,2,,,kki i A B m x y m i k αααα≡≡=则()11111111,,,,mod .k k k kkkk k A xx B y y m αααααααααααα≡∑∑特别地,若()mod ,0,1,,i i a b m i n ≡=,则()111010mod .n n n n n n n n a x a x a b x b x b m ----+++≡+++证 因()mod ,1,2,,i i x y m i k ≡=故,1,2,,iii i x y i k αα≡=,从而()1111mod .k k k k x x y y m αααα≡又因()11mod kkA B m αααα≡,故()()111111111111111,,,,mod ,mod .k k kk k k kkkk k k k A xx B y y m A xx B y y m αααααααααααααααααααα≡≡∑∑己 若()()mod ,,1,ka kb m k m ≡=则()mod .a b m ≡证 因()mod ka kb m =,故()|.m ka kb k a b -=-又因(),1k m =,故()|,mod .m a b a b m -≡庚 (ⅰ)若()mod ,0,a b m k ≡>则()mod .ka kb km ≡ (ⅱ)若()mod ,|,|,|,0,a b m d a d b d m d ≡>则mod .a b m d d d ⎛⎫≡ ⎪⎝⎭证 (ⅰ)因()mod ,0a b m k ≡>,故()()|,|,mod .m a b km k a b ka kb ka kb km --=-≡(ⅱ)因()mod ,a b m ≡故|,.m a b a b mq --=又因|,|,|,0d a d b d m d >111111,,,0,0,0a da b db m dm a b m ===>>>. 于是()111111111,,mod ,mod .a b m da db dm q a b m q a b m d d d ⎛⎫-=-=≡≡ ⎪⎝⎭辛 若()mod ,1,2,,i a b m i k ≡=,则[]()12mod ,,,.k a b m m m ≡证 因()mod ,1,2,,i a b m i k ≡=,故|,1,2,,.i m a b i k -=于是,[][]()1212,,,|,mod ,,,.k k m m m a b a b m m m -≡附记 最小公倍数的一个常用性质是,若12|,|,,|k m a m a m a ,则[]12,,,|.k m m m a证 由带余除法,设[][]1212,,,,0,,,k k a m m m q r r m m m =+≤<,则12|,|,,|k m a m a m a 及12|,|,,|k m a m a m a 得, |,1,2,,.i m r i k =但[]12,,,k m m m 是12,,,k m m m 的最小公倍数,故[]120,,,,|.k r m m m a =壬 若()mod ,|,0,a b m d m d ≡>则()mod .a b d ≡证 因()mod ,a b m ≡故|.m a b -又因|,0d m d >,故()|,mod .d a b a m d -≡ 癸 若()mod a b m ≡,则()(),,.a m b m =证 因()mod a b m ≡,故|.m a b -于是,存在整数t 使得.a b mt -=故.a mt b =+故()(),,.a m b m =例 一个整数0a >被9整除的充分必要条件是n 的各位数字(十进制)的和倍9整除.证 设1101010,010n n n n i a a a a a --=+++≤<.因()101mod9≡,故()()101mod9,10mod9,0,1,,.i i i i a a i n ≡≡=于是,()010mod 9.n nii i i i a a a ===≡∑∑故9|a 的充分必要条件是09|.ni i a =∑作业 P53:2,3,4,5.习题选解2.设正整数1101010,010,n n n n i a a a a a --=+++≤<证明11整除a 的充分必要条件是11整除()01.niii a =-∑证 因为()101mod11≡-,故()()()()101mod11,101mod11,0,1,,.i ii i i i a a i n ≡-≡-=.于是,()()0101mod11.n nii iii i a a a ===≡-∑∑由此可得,11|a 的充分必要条件是()0111.nii i a =-∑3.找出能被37,101整除的判别条件来.解 (ⅰ)因()10001mod37≡,故()()10001mod370.ii ≡≥设11010001000,01000.n n n n i a a a a a --=+++≤<则由()10001mod37i≡得()1000mod37,0,1,,ii i a a i n ≡=,故()01000mod 37.n nii i i i a a a ===≡∑∑由此可得,37|a 的充分必要条件是037.ni i a =∑(ⅱ)因()1001mod101≡-,故()()()1001mod1010.iii ≡-≥ 设110100100,0100,n n n n i a a a a a --=+++≤<则由()()1001mod101ii ≡-得()()1001mod101,0,1,,ii i i a a i n ≡-=,故()01001.n niii i i i a a a ===≡-∑∑由此可得,101|a 的充分必要条件是()01011.niii a =-∑4.证明52641|2 1.+ 证 因()()8163222256,265536154mod 641,2154237166401mod 641,==≡≡=≡≡-故52641|2 1.+5.若a 是任一奇数,则()()221mod 21.nn a n +≡≥证 对n 作数学归纳法.当1n =时,因a 为奇数,故可设121a a =+,则()()2221111112114441a a a a a a -=+-=+=+.而()111a a +是两个连续两个整数的积,一定是2的倍数,从而()122128|1,1mod 2,a a +-≡即1n =时结论正确.假设对()12n n -≥结论正确,即()12121mod 2.n n -+≡下面说明在此假设下,对n 结论正确.因()()()111222221111nn n n a aa a ----=-=-+,而由归纳假设得121n a--是12n +的倍数,又因a 为奇数,故121n a -+也为奇数,于是()()112211n n a a ---+是22n +的倍数,故()221mod 2.nn a +≡。
第2章 同余一

下面我们定义同余类的加法以及乘法,并揭示出其可能
的带式结构。
定义2.1.4 设a,b为模m的同余类,定义加法(“⊕”)为
a b a1 b1,其中 a1 a, b1 b ;
定义乘法(“”)为
d 1 2 4 5 10 20
a : ( a ,20)=d 1 ,3 ,7 ,9 ,11 ,13,17,19 2 ,6 ,14,18 4 ,8 ,12,16 5 ,15 10 20
定义2.1.3 n个整数 a1 , a2 , , an 叫作模n 的完全剩余系(简称 完系),是指 a1 , a2 , , an 彼此模 n 不同余。
1 1 10 10 1(mod11) × ≡×≡ ,
这意味着 1, 1 0 模11 的逆元均为本身;而 26× ≡ 34× ≡ 59× ≡ 78 1 × ≡ (mod11) , 即 2, 3, 4, 5, 6, 7,8, 9 分成 11 3 4 2
−
= 对:2 和6 ,3 和4 ,5 和9 ,7 和8 ,
我们把形如ax =xa ≡ 1(mod m)的整数称为a模m的逆元 (简称a的逆)。
推广的Euclid算法
定理2.1.4` 设 m N ,若(a, m)=1,则a在模m的意义下 存在唯一的逆元; 若(a, m) ≠ 1,则a没有模m的逆元。
前述的性质并不十分困难,但却是重要的。我们可以 举出如下的例证: 整系数多项式同余方程 an xn a1x a0 0 mod m 是 同余理论中的一个核心课题,从前述的基本性质中,我们 至少可以推知以下的认识: (1)若 x0 为 f x 0 mod m 的解,则 y x0 mod m ,都 有 f y 0 mod m ,也就是整系数多项式同余方程的解数 是模的意义下的; (2) 一 次 同 余 方 程 ax ≡ b(mod m) , 在 (a, m)=1 时 的 解 1 a 为 b mod m ,此时解数在模m的意义下为1; n (3)若 m, an 1,则an x a1x a0 0 mod m xn an1an1xn1 an1a1x an1a0 0 mod m 与 是同解方程; f x 0 mod ml 的解必为 f x 0 mod m 的解, (4)若 l N , 这就为探讨解的结构提供了一种可能性。
同余的概念与性质

同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。
性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。
性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。
性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。
(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。
性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。
性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。
性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。
性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。
性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。
同余的概念及其基本性质

学院学术论文题目: 同余的概念及其基本性质学号:学校:专业:班级:姓名:指导老师:时间:摘要:初等数论是研究数的规律,特别是整数性质的数学分支。
它以算术方法为主要研究方法,在日常生活中,我们所要注意的常常不是某些整数,而是这些数用某一固定的数去除所得的余数。
同余概念的产生可以说大大丰富了数学的内容。
同余是数论中的一个基本概念,同余的应用,一:检查因数的一些方法;二:弃九法。
在本专题的学习中,培养我分析推理解决问题的能力,理解问题的实质。
关键字:同余整数算术Summary:The number of elementary number theory is to study the law, in particularinteger nature of the branch of mathematics. It arithmetic method as the main research methods in their daily lives, we are often not to pay attention to some integer, but these numbers with a fixed a number of removal from the remainder. I created the concept of the same can be said to have greatly enriched the content of mathematics. Number theory congruence is a basic concept of the application with more than one: Check factor of some of the ways; 2: abandoned nine law. In the topic of study, training my analysis reasoning ability to solve problems, understand the essence of the problem.Keyword :Congruence Integer Arithmetic引言数论是研究整数性质的一门学科,它是数学中最古老的分支之一,内容极为丰富,曾被数学家说成是数学的皇后。
同余定理知识点总结

同余定理知识点总结同余定理通常被描述为以下形式:如果整数a和b对于模m同余,即a ≡ b (mod m),那么a和b除以模m的余数是相等的。
同余定理可以改写为a mod m = b mod m。
同余定理有两个基本的性质。
首先,它是一种等价关系,具有自反性、对称性和传递性。
其次,同余定理具有乘法和加法性质。
首先,我们来讨论同余定理的基本性质。
同余关系是一种等价关系,即它具有自反性、对称性和传递性。
自反性指的是对于任意的整数a,a ≡ a (mod m)。
这意味着任意整数都与自己对模m同余。
对称性指的是如果a ≡ b (mod m),那么b ≡ a (mod m)。
传递性指的是如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。
这三种性质构成了同余关系的一个等价关系,可以将整数划分为同余类,使得具有相同除模m余数的整数在同一个同余类中。
其次,同余定理具有乘法和加法性质。
对于任意的整数a、b、c和模m,如果a ≡ b (mod m)和c ≡ d (mod m),那么有以下性质:a + c ≡ b + d (mod m)和a * c ≡ b * d (mod m)。
这两个性质表明了同余定理在乘法和加法下的保持性。
同余定理在数论和代数中有广泛的应用。
首先,同余定理常常被用来简化计算。
通过使用同余定理,我们可以将复杂的计算转化为求余数的简单计算,从而节省时间和精力。
其次,同余定理在代数方程的求解中有着广泛的应用。
例如,对于一个模线性方程a * x ≡ b (mod m),我们可以通过同余定理将其转化为x的一元一次同余方程,从而求解出x的取值范围。
此外,同余定理在密码学领域也有着重要的应用。
加密算法中常常使用同余定理来进行模运算,从而实现数据的加密和解密。
在数论中,同余定理还有一些重要的推论。
首先,费马小定理和欧拉定理是同余定理的重要推论。
费马小定理描述了素数模意义下的幂运算规律,欧拉定理描述了任意模意义下的幂运算规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙若 则
定理1
证设 ,则 于是,
反之,设 由带余除法, ,于是,
故, ,又因 ,故
丁若 则,
证只证“ ”的情形.因 ,故 ,于是 ,所以
推论若 则
戊若 则
证 因 ,故 又因
故
定理2若
则
特别地,若 ,则
证因 故 ,从而
又因 ,故
己若 则
证因 ,故 又因 ,故
庚(ⅰ )若 则
(ⅱ)若 则
证(ⅰ )因 ,故
4.证明
证因
故
5.若 是任一奇数,则
证对 作数学归纳法.
当 时,因 为奇数,故可设 ,则
.
而 是两个连续两个整数的积,一定是 的倍数,从而 即 时结论正确.
假设对 结论正确,即
下面说明在此假设下,对 结论正确.因
,
而由归纳假设得 是 的倍数,又因 为奇数,故 也为奇数,于是 是 的倍数,故
第三章同余
§1同余的概念及其基本性质
定义给定一个正整数 ,若用 去除两个整数 和 所得的余数相同,则称 对模 同余,记作 若余数不同,则称 对模 不同余,记作 .
甲
(甲:jia 3声调;乙:yi 3声调;丙:bing 3声调;丁:ding 1声调;戊:wu声调;己:ji 3声调;庚:geng 1声调;辛: xin 1声调天;壬: ren 2声调;癸: gui 3声调.)
于是,
故 的充分必要条件是
作业P53:2,3,4,5.
习题选解
2.设正整数
证明 整除 的充分必要条件是 整除
证因为 ,故
.
于是, 由此可得,
的充分必要条件是
3.找出能被 整除的判别条件来.
解(ⅰ)因 ,故 设
则由 得 ,故
由此可得, 的充分必要条件是
(ⅱ)因 ,故
设
则由 得 ,故
由此可得, 的充分必要条件是
(ⅱ)因 故 又因
.于是
辛若,则
证因 ,故 于是,
附记最小公倍数的一个常用性质是,若 ,则
证由带余除法,设
,
则 及 得,
但 是 的最小公倍数,故
壬若 则
证因 故 又因 ,故
癸若 ,则
证因 ,故 于是,存在整数 使得 故 故
例一个整数 被 整除的充分必要条件是 的各位数字(十进制)的和倍 整除.
证设 .因 ,故