整流电路总结表

合集下载

整流电路分析

整流电路分析

I

O

2 稳压管限幅
RF
ui
R:限流电阻。 一般取100 。
t uo
UZ
ui
R1
– +

A +
R
uo
DZ
DZ双向 稳压管
t
-UZ
§2.5.5 对数和反对数运算电路
1、对数运算电路
iR iD
vO vD
iD I S e vD /VT
iD vI vO VT ln VT ln IS RI S
t
uo (2)二极管上承受的 最高电压:
b (3) 输出电压平均值(Uo):
U RM 2U2
(4)流过负载和二极 管的平均电流为
1 π 2 U U 2U sin td(t ) U 0.45U o L 2π 2 2 2 π 0
ID Uo 0.45 U2 IL RL RL
1 普通二极管限幅
R + D + + R rD Vth VREF (b)
+
(1) vI (Vth VREF ), v0 vi
R + +
I
O
VREF
+

I
VREF (a)
O

I

O

(2) vI (Vth VREF ) vo (Vth VREF )
R rD Vth VREF +
§2.5.2 整流电路
整流电路的任务:把交流电压转变为直流脉动的 电压。 常见的小功率整流电路,有单相半波、全波、 桥式和倍压整流等。 为分析简单起见,把二极管当作理想元件处理,即 二极管的正向导通电阻为零,反向电阻为无穷大。

(完整word版)整流电路总结表(word文档良心出品)

(完整word版)整流电路总结表(word文档良心出品)
=1.17
=2.34
=2.34
同单相桥式全控
α的可控范围
同单相桥式全控
VT
导通角
θ=π-α
θ=π
θ=π-α
θ=2
θ=π
θ=π
同单相桥式全控
θ≤
θ=
θ≤
耐压
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向和反向均反向反向电流 Nhomakorabea;
;
同单相桥式全控
脉波数
单脉波
单脉波
单脉波
单相可控整流电路
单相桥式全控整流电路
单相全波可控整流电路
三相半波可控整流电路
三相桥式全控整流电路
电阻负载
阻感负载
带续流二极管阻感负载
电阻负载
阻感负载
带反电动势的阻感负载
各种负载
电阻负载
阻感负载
电阻负载
阻感负载
输出
=0.45
=0.45
=0.45
=0.9
=0.9
=0.9
同单相桥式全控
=1.17
=0.675
二脉波
二脉波
二脉波
二脉波
三脉波
三脉波
六脉波
六脉波
变压器
同单相桥式全控
=0.816
=0.816
有直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
无直流磁化
无直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
整流电路

三相桥式全控整流电路仿真实验实训小结

三相桥式全控整流电路仿真实验实训小结

三相桥式全控整流电路仿真实验实训小结
在电子技术实验中,我们学习了很多不同的电路原理,并通过实际操作来巩固所学知识。

在本次实验中,我们学习了三相桥式全控整流电路的仿真实验,通过这一次的实训,我对这一电路有了更加深入的理解。

首先,我们要了解三相桥式全控整流电路的工作原理。

这种电路由四个可控硅组成,可以实现对交流电的整流控制。

在实验中,我们将交流电源接入电路,通过可控硅的控制,将三个正弦波形的交流电转化为可控硅控制的直流电。

这一过程中,我们需要特别注意可控硅的触发方式,要控制好脉冲的宽度和脉冲的长度,以保证可控硅能正常工作。

在实验过程中,我们通过调节可控硅的触发脉冲宽度,可以控制整流电路的输出功率和整流后的电压波形。

通过对可控硅触发脉冲宽度的调节,我们可以改变电路中的电流分布,从而改变整流后的电压波形。

这一点对我们了解整流电路的特性非常有帮助。

另外,在实验中我们还需要注意一些细节问题。

例如,我们需要保证电路中的元器件都能够正常工作,如可控硅、电感、电容等。

同时,我们也需要保证实验环境的稳定,避免其他干扰因素对电路的影响。

在实验过程中,我们还需要特别注意安全问题,例如触电等危险情况,以保证实验的安全进行。

总结来说,通过这次三相桥式全控整流电路仿真实验实训,我对这一电路的原理和特性有了更加深入的理解。

在实验过程中,我也学会了如何调节可控硅的触发方式,掌握了整流电路的特性,以及对实验环境的安全控制。

这对于我进一步学习电子技术以及进行实际项目开发都具有很大的帮助。

4种整流5种滤波电路总结

4种整流5种滤波电路总结

4种整流5种滤波电路总结写在前⾯: 本⽂包含内容: 1、变压电路 2、整流电路 2-1:半波整流电路 2-2:全波整流电路 2-3:桥式整流电路 2-4:倍压整流电路 3、滤波电路 3-1:电容滤波电路 3-2:电感滤波电路 3-3:RC滤波电路 3-4:LC滤波电路 3-5:有源滤波电路 4、整流滤波电路总结 4-1:常⽤整流电路性能对照 4-2:常⽤⽆源滤波电路性能对照 4-3:电容滤波电路输出电流⼤⼩与滤波电容量的关系 4-4:常⽤整流滤波电路计算表基本电路: ⼀般直流稳压电源都使⽤220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进⾏稳压,最终成为稳定的直流电源。

这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将⽆法正常⼯作。

1、变压电路 通常直流稳压电源使⽤电源变压器来改变输⼊到后级电路的电压。

电源变压器由初级绕组、次级绕组和铁芯组成。

初级绕组⽤来输⼊电源交流电压,次级绕组输出所需要的交流电压。

通俗的说,电源变压器是⼀种电→磁→电转换器件。

即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁⼒线切割次级线圈产⽣交变电动势。

次级接上负载时,电路闭合,次级电路有交变电流通过。

变压器的电路图符号见图2-3-1。

2、整流电路 经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。

在直流稳压电源中利⽤⼆极管的单项导电特性,将⽅向变化的交流电整流为直流电。

(1)半波整流电路 半波整流电路见图2-3-2。

其中B1是电源变压器,D1是整流⼆极管,R1是负载。

B1次级是⼀个⽅向和⼤⼩随时间变化的正弦波电压,波形如图 2-3-3(a)所⽰。

0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,⼆极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过; π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,⼆极管D1反向截⽌,没有电压加到负载R1上,负载R1中没有电流通过。

电力电子技术整流电路总结

电力电子技术整流电路总结

电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。

触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。

直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。

带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。

续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。

2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

3.实际上很少应用此种电路。

4.分析该电路的主要目的建立起整流电路的基本概念。

单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。

向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。

各种整流电路图解分析

各种整流电路图解分析

整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。

整流,就是把交流电变为直流电的过程。

利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。

下面介绍利用晶体二极管组成的各种整流电路。

一、半波整流电路图5-1、是一种最简单的整流电路。

它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。

变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电变换为脉动直流电。

下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。

在0~K时间内,e2 为正半周即变压器上端为正下端为负。

此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。

这时D 承受反向电压,不导通,Rfz,上无电压。

在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。

以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。

这种除去半周、图下半周的整流方法,叫半波整流。

不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。

图5-3 是全波整流电路的电原理图。

全波整流电路,可以看作是由两个半波整流电路组合成的。

变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。

各种整流电路详解(推荐)

各种整流电路详解(推荐)

各种整流电路桥式整流电路图及工作原理介绍桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。

由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。

四只整流二极管接成电桥形式,故称桥式整流。

图1 桥式整流电路图桥式整流电路的工作原理如图2所示。

图2 桥式整流电路原理图在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压;在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。

这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2;IL = 0.9U2/RL流过每个二极管的平均电流为:ID = IL/2 = 0.45 U2/RL什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图1(c)的形式。

桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。

在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

电设计网()二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。

当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。

半波整流电路输入和输出电压的波形如图所示。

电设计网()图3二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。

但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。

整流电路波形总结

整流电路波形总结

1、单相半波可控整流电路——阻性负载,触发角α2、单相半波可控整流电路——阻感负载,触发角α3、单相半波可控整流电路——阻感负载有续流二极管,触发角α4、单相桥式全控整流电路——纯阻性负载,触发角α5、单相桥式全控整流电路——带反电动势负载,触发角α6、单相桥式全控整流电路——阻感性负载,触发角α7、单相全波可控整流电路(单相双半波可控整流电路)——阻性负载,触发角α8、单相桥式半控整流电路——阻性负载,触发角α9、单相桥式半控整流电路——阻感负载,有续流二极管,触发角α10、单相桥式半控整流电路另一种接法1、三相半波可控整流电路——纯阻性负载R 1)纯电阻负载,触发角为0度2)纯阻性负载,触发角30度3)纯阻性负载,触发角大于30度电流断续,以60度为例2、三相半波可控整流电路——阻感负载1)阻感负载,触发角60度(当触发角α≤30° 时,整流电压波形与纯阻性负载时相同,因为两种负载情况下,负载电流均连续)。

3、三相桥式全控整流电路1)纯电阻负载,触发角0度纯阻性负载,0度触发角时晶闸管工作情况2)纯阻性负载,触发角30度3)纯阻性负载,触发角60度4)纯阻性负载,触发角90度5)阻感负载,触发角0度6)阻感负载,触发角30度7)阻感负载,触发角90度4、考虑变压器漏感时的三相半波可控整流电路及波形各种整流电路换相压降和换相重叠角的计算5、电容滤波的不可控整流电路(单相桥式整流电路)6、感容滤波的二极管整流电路7、带平衡电抗器的双反星型可控整流电路触发角为0度时,两组整流电压电流波形平衡电抗器作用下输出电压的波形和电抗器上的电压波形平衡电抗器作用下,两个晶闸管同时导通的情况当触发角为30度、60度、90度时,双反星形电路的输出电压波形8、多重化整流电路(并联多重联结的12脉波整流电路)9、移相30度串联2重联结电路移相30度串联2重联结电路电流波形三相桥式整流电路工作于有源逆变状态时的电压波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VT
导通角
θ=π-α
θ=π
θ=π-α
θ=2
θ=π
θ=π
θ≤
耐压
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向和反向均
反向
反向
电流
;
;
同单相桥式全控
脉波数
单脉波
单脉波
单脉波
二脉波
二脉波
二脉波
二脉波
三脉波
三脉波
六脉波
六脉波
变压器
同单相桥式全控
=
=
有直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
无直流磁化
无直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
整流电路
整流电路总结表
单相可控整流电路
单相桥式全控整流电路
单相全波可控整流电路
三相半波可控整流电路
三相桥式全控整流电路
电阻负载
阻感负载
带续流二极管阻感负载
电阻负载
阻感负载
带反电动势的阻感负载
各种负载
电阻负载
阻感负载
电阻负载
阻感负载
输出
=
=
=
=
=
=
同单相桥式全控
=
=
=
=
=
同单相桥式全控
α的可控范围
同单相桥式全控
相关文档
最新文档