桥式整流电路参数计算
桥式整流电路计算

桥式整流电路计算桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。
桥式整流电路计算主要参数:单相全波整流电路图利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。
从图中可见正负半周都有电流流过负载,提高了整流效率。
全波整流的特点:输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。
主要参数:桥式整流电路电感滤波原理电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。
从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。
桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。
例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。
试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。
桥式整流电路电容滤波电路图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。
这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。
结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。
结论2:从图10.6可看出,滤波电路中二极管的导电角小于180o,导电时间缩短。
因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。
在纯电阻负载时:有电容滤波时:结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。
整流桥后端的计算公式

整流桥后端的计算公式
整流桥后端的计算公式与整流电路的类型、滤波电容的使用情况等有关。
1. 如果采用全波或桥式整流,并采用电容滤波的方式得到直流电,那么工频50Hz的交流电整流滤波后得到的直流电压,可通过以下公式计算:
未经过电容滤波前,Vd=V×
经过电容滤波后,Vc=V×
其中,V是变压器次级的输出电压;Vd是整流后得到的脉动直流电压;Vc 是整流、电容滤波后得到的直流电压。
2. 由于负载电流是动态变化的,随着这个变化,Vc值也在改变,所以接上负载后的Vc值在与之间波动。
3. 如果整流电路的内阻不太大,且负载与滤波电容的时间常数足够大,那么整流滤波后得到的直流电压Vrl,可以这样估算:Vrl≈Vdc+If
其中,Vdc是直流侧电压;If是滤波电容的电流。
如果需要了解更多关于整流桥后端计算公式的信息,建议咨询电子技术专家或查阅相关文献资料。
整流电路公式范文

整流电路公式范文整流电路是一种将交流电转换为直流电的电路,在电力供应、通信以及电子设备中广泛应用。
整流电路的基本工作原理是使用二极管将交流信号转换为单向的直流信号。
下面我们将详细介绍整流电路的公式及其工作原理。
1.单相半波整流电路公式:单相半波整流电路由一个二极管和一个负载电阻组成,其工作原理如下:当输入信号为正弦波时,二极管导通时,输出电压等于输入电压;当输入信号为负弦波时,二极管不导通,输出电压等于零。
因此,输出电压的波形为半波整流。
单相半波整流电路的输出电压计算公式为:Vout = Vpk * (1 - exp(-t/(R * C)))其中Vout为输出电压峰值;Vpk为输入电压峰值;t为时间;R为负载电阻;C为滤波电容。
2.单相全波整流电路公式:单相全波整流电路由两个二极管和一个负载电阻组成,其工作原理如下:当输入信号为正弦波时,D1导通,负载电阻处于正向偏置状态,输出电压等于输入电压;当输入信号为负弦波时,D2导通,负载电阻处于反向偏置状态,输出电压等于输入电压的相反数。
因此,输出电压的波形为全波整流。
单相全波整流电路的输出电压计算公式为:Vout = Vpk * (1 - exp(-t/(2 * R * C)))其中Vout为输出电压峰值;Vpk为输入电压峰值;t为时间;R为负载电阻;C为滤波电容。
3.三相桥式整流电路公式:三相桥式整流电路由四个二极管和一个负载电阻组成,其工作原理如下:当输入信号为正弦波时,二极管D1和D3导通,负载电阻处于正向偏置状态,输出电压等于输入电压;当输入信号为负弦波时,二极管D2和D4导通,负载电阻处于反向偏置状态,输出电压等于输入电压的相反数。
因此,输出电压的波形为全波整流。
三相桥式整流电路的输出电压计算公式为:Vout = √3 * Vpk * (1 - exp(-t/(2 * R * C)))其中Vout为输出电压峰值;Vpk为输入电压峰值;t为时间;R为负载电阻;C为滤波电容。
桥式整流电路参数计算

桥式整流电路参数计算桥式整流电路是一种常用的电路配置,用于将交流电转变为直流电。
在这篇文章中,我们将讨论桥式整流电路的参数计算方法。
我们需要了解桥式整流电路的基本结构。
桥式整流电路由四个二极管组成,形成一个桥形结构。
交流电信号通过变压器的副边输入到桥式整流电路中,从而实现电流的单向导通。
在计算桥式整流电路的参数之前,我们需要明确一些基本概念。
首先是电流和电压的平均值和有效值。
电流和电压的平均值是一段时间内的平均值,而有效值是电流和电压的平方平均值开根号。
在桥式整流电路中,我们通常关注的是电流和电压的有效值。
接下来,我们将介绍桥式整流电路的参数计算方法。
1. 电流的有效值计算:桥式整流电路中,电流的有效值可以通过电流的平均值和形状因子进行计算。
形状因子是电流波形的峰值与有效值之比。
对于桥式整流电路,形状因子约为1.11。
因此,电流的有效值可以通过电流的平均值乘以1.11来计算。
2. 电压的有效值计算:桥式整流电路中,电压的有效值可以通过电压的平均值和形状因子进行计算。
形状因子同样约为1.11。
因此,电压的有效值可以通过电压的平均值乘以1.11来计算。
3. 输出电流和电压的平均值计算:桥式整流电路中,输出电流和电压的平均值可以通过输入电流和电压的平均值以及二极管的导通时间来计算。
在桥式整流电路中,每个二极管的导通时间约为半个周期。
因此,输出电流和电压的平均值可以通过输入电流和电压的平均值乘以2来计算。
4. 输出电流和电压的峰值计算:桥式整流电路中,输出电流和电压的峰值可以通过输入电流和电压的峰值减去二极管的压降来计算。
二极管的压降约为0.7V。
因此,输出电流和电压的峰值可以通过输入电流和电压的峰值减去0.7V来计算。
桥式整流电路的参数计算可以通过以上方法完成。
通过计算桥式整流电路的参数,我们可以得到电流和电压的有效值、平均值和峰值,从而更好地理解和分析电路的性能。
需要注意的是,桥式整流电路的参数计算方法仅适用于理想情况下,即假设二极管完全导通和不考虑电路的损耗。
桥式整流电路计算

桥式整流电路计算桥式整流属于全波整流,它不就是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。
桥式整流电路计算主要参数:单相全波整流电路图利用副边有中心抽头的变压器与两个二极管构成如下图所示的全波整流电路。
从图中可见正负半周都有电流流过负载,提高了整流效率。
全波整流的特点:输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。
主要参数:桥式整流电路电感滤波原理电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。
从能量的观点瞧,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。
桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。
例10.1.1桥式整流器滤波电路如图所示,已知V1就是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。
试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。
桥式整流电路电容滤波电路图10、5分别就是单相桥式整流电路图与整流滤波电路的部分波形。
这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。
结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。
结论2:从图10、6可瞧出,滤波电路中二极管的导电角小于180o,导电时间缩短。
因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。
在纯电阻负载时:有电容滤波时:结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。
单相桥式全控整流电路

ud=0) ud=u2 ud=0 ud=-u2 ud=0
输出电压波形同电阻性负载,电路有自然续流功能 移相范围: 0~π; 导通角θ=π-α
㈡各电量计算
1、负载
Ud
0.9 1
cos
2
Id
Ud Rd
2、晶闸管
I dT
1 2
Id
IT
1 2
流二极管 IdD IdT
ID IT U DM 2U 2
㈢存在问题:失控现象
若突然关断触发脉冲或将α迅速移到 180°,可能出现一只晶闸管直通,两 只整流二极管交替导通的电路失去控制 的现象,即失控现象。 此时输出变成单相不可控半波整流电压 波形,导通的晶闸管会因过热而损坏。 解决办法:接续流二极管VD
㈣接续流二极管VD后电路分析
在的负半周 0<ωt<α期间 VT1~VT4都不导通 ωt=α 时刻 触发 0<ωt<α期间 VT2、VT4导通 ωt=π 时刻 VT2、VT4关断
结论
1、在交流电源电源u2的正、负半周里, VT1、 VT3和 VT2、VT2两组晶闸管轮流触发导通,将 交流电转变成脉动直流电;
2、改变 α 角度大小,ud、id波形相应改变;
2、参数计算:
•输出电流平均值
Id
Ud E Rd
•其它参数计算与大电感负载时相同
2.3 单相桥式半控整流电路
一、电路结构(flash)
将单相桥式全控整流电路中的一对晶 闸管换成两只整流二极管即可
工作特点:晶闸管需触发才导通;整 流二极管承受正向电压时会自然(换 相)导通
二、电路工作原理及参数计算
Id
Ud R
三相桥式整流电路

负载电压 •2021/6/7
•2
2. 工作原理
变压器副边电压 u2
u2U u2V u2W
–u+
V1 V3 V5 U
iL
+
o
N
2 t
V
RL uL
W
–
uL
V2 V4 V6
在 t3 ~ t4 期间
共阴极组中V点电位最高,V3 导通;
共阳极组中W点电位最低,V6 导通。
o
负载两端的电压为线电压uVW。
t1 t2 t3 t4 t5 t6 t7 t8 t9 t
•2021/6/7
•7
5.课堂练习
课本第138页第13题。
解:已知UL=12~72V P=4kw (1)求U2:由公式U2≈0.43UL得 当UL=12V时,U2 ≈0.43×12 ≈5.16V 当UL=72V时, U2 ≈0.43×72 ≈31V
(2) 因UL=72V时,整流管承受最大反向电压和流过最大 整流电流,所以
负载电压 •2021/6/7
•4
2. 工作原理
变压器副边电压
u2
u u u 2U
2V
2W
–u+
V1 V3 V5 U
iL
+
o
N
2 t
V
RL uL
W
–
uL
T
o
t1 t2 t3 t4 t5 t6 t7 t8 t9 t
负载电压 •2021/6/7
结论: V2 V4 V6 在一个周期中,每个二极 管只有三分之一的时间导 通(导通角为120°)。 负载两端的电压为线电压。
负载电压 •2021/6/7
•3
2. 工作原理
桥式整流电压计算

桥式整流电压计算 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】整流电路将交流电压变换成单向脉动的电压,为了改善电压的脉动程度,得到较平直的直流电压,以满足电子设备的需要,常在整流电路输出端接上滤波电路。
滤波电路主要由电容、电感元件组成,从本篇的电容滤波电路开始,分三篇分别介绍这几种滤波电路。
如下图所示,在桥式整流电路负载两端并联一个电容器C,利用电容C 的充放电作用,可以使负载上得到的电压较为平直。
当输入电压u2u2正半周时,如果u2>u C u2>uC,二极管VD1、VD3导通(参看《》的单相桥式整流电路图),电流流过负载R L RL的同时,也对电容C充电,忽略二极管的正向管压降,电容C两端的电压u C uC和输入电压u2u2相同,并充电到最大值2√u22u2,当u2u2按正弦规律连续下降时,在接负载R L RL的情况下,开始时u C uC也是按u2u2的规律下降;但是,由于u2u2的下降速度大于u C uC的下降速度,所以下降到u2<u C u2<uC时,VD1、VD3处于反向偏置截止,而电容c开始向负载R L RL放电,即u C uC按指数规律下降。
当输入电压u2u2的负半周变化到|u2|>u C|u2|>uC时,如上图,VD2、VD4开始导通,此时电容C放电停止,u2u2重新对电容充电,使u C uC按正弦规律充电到最大值2√u22u2,然后u2u2下降到|u2|<u C|u2|<uC时,VD2、VD4截止,电容C又开始向负载R L RL放电,此时u C uC按指数规律下降。
如此作周期性重复,故电容器两端的电压u C uC,即负载电压u o uo变得比较平直。
由以上分析可知,桥式整流电路加电容滤波后,输出电压的脉动成分减小,同时也使平均值U o Uo。
得到提高,U o Uo的大小取决于负载R L RL和电容C的乘积,即电容放电时间常数R L CRLC。